Articles | Volume 19, issue 20
https://doi.org/10.5194/acp-19-12887-2019
https://doi.org/10.5194/acp-19-12887-2019
Research article
 | 
17 Oct 2019
Research article |  | 17 Oct 2019

Water vapour adjustments and responses differ between climate drivers

Øivind Hodnebrog, Gunnar Myhre, Bjørn H. Samset, Kari Alterskjær, Timothy Andrews, Olivier Boucher, Gregory Faluvegi, Dagmar Fläschner, Piers M. Forster, Matthew Kasoar, Alf Kirkevåg, Jean-Francois Lamarque, Dirk Olivié, Thomas B. Richardson, Dilshad Shawki, Drew Shindell, Keith P. Shine, Philip Stier, Toshihiko Takemura, Apostolos Voulgarakis, and Duncan Watson-Parris

Data sets

PDRMIP A Precipitation Driver and Response Model Intercomparison Project-Protocol and Preliminary Results G.Myhre, P. M. Forster, B. H. Samset, O. Hodnebrog, J. Sillmann, S. G. Aalbergsjo, T. Andrews, O. Boucher, G. Faluvegi, D. Fläschner, T. Iversen, M. Kasoar, V. Kharin, A. Kirkevag, J. F. Lamarque, D. Olivie, T. B. Richardson, D. Shindell, K. P. Shine, C. W. Stjern, T. Takemura, A. Voulgarakis, and F. Zwiers https://doi.org/10.1175/bams-d-16-0019.1

An Overview of CMIP5 and the Experiment Design K. E. Taylor, R. J. Stouffer, and G. A. Meehl https://doi.org/10.1175/BAMS-D-11-00094.1

Download
Short summary
Different greenhouse gases (e.g. CO2) and aerosols (e.g. black carbon) impact the Earth’s water cycle differently. Here we investigate how various gases and particles impact atmospheric water vapour and its lifetime, i.e., the average number of days that water vapour stays in the atmosphere after evaporation and before precipitation. We find that this lifetime could increase substantially by the end of this century, indicating that important changes in precipitation patterns are excepted.
Altmetrics
Final-revised paper
Preprint