Articles | Volume 19, issue 19
https://doi.org/10.5194/acp-19-12455-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-12455-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Common volume satellite studies of polar mesospheric clouds with Odin/OSIRIS tomography and AIM/CIPS nadir imaging
Department of Meteorology, Stockholm University, Stockholm, Sweden
Susanne Benze
Department of Meteorology, Stockholm University, Stockholm, Sweden
Jörg Gumbel
Department of Meteorology, Stockholm University, Stockholm, Sweden
Ole Martin Christensen
Department of Meteorology, Stockholm University, Stockholm, Sweden
Cora E. Randall
Laboratory for Atmospheric and Space Physics and Department of
Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder,
CO, USA
Related authors
No articles found.
Björn Linder, Peter Preusse, Qiuyu Chen, Ole Martin Christensen, Lukas Krasauskas, Linda Megner, Manfred Ern, and Jörg Gumbel
Atmos. Meas. Tech., 17, 3829–3841, https://doi.org/10.5194/amt-17-3829-2024, https://doi.org/10.5194/amt-17-3829-2024, 2024
Short summary
Short summary
The Swedish research satellite MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is designed to study atmospheric waves in the mesosphere and lower thermosphere. These waves perturb the temperature field, and thus, by observing three-dimensional temperature fluctuations, their properties can be quantified. This pre-study uses synthetic MATS data generated from a general circulation model to investigate how well wave properties can be retrieved.
John M. C. Plane, Jörg Gumbel, Konstantinos S. Kalogerakis, Daniel R. Marsh, and Christian von Savigny
Atmos. Chem. Phys., 23, 13255–13282, https://doi.org/10.5194/acp-23-13255-2023, https://doi.org/10.5194/acp-23-13255-2023, 2023
Short summary
Short summary
The mesosphere or lower thermosphere region of the atmosphere borders the edge of space. It is subject to extreme ultraviolet photons and charged particles from the Sun and atmospheric gravity waves from below, which tend to break in this region. The pressure is very low, which facilitates chemistry involving species in excited states, and this is also the region where cosmic dust ablates and injects various metals. The result is a unique and exotic chemistry.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Mingjiao Jia, Wuhu Feng, John M. C. Plane, Daniel R. Marsh, Jonas Hedin, Jörg Gumbel, and Xiankang Dou
Atmos. Chem. Phys., 22, 11485–11504, https://doi.org/10.5194/acp-22-11485-2022, https://doi.org/10.5194/acp-22-11485-2022, 2022
Short summary
Short summary
We present a study on the climatology of the metal sodium layer in the upper atmosphere from the ground-based measurements obtained from a lidar network, the Odin satellite measurements, and a global model of meteoric sodium in the atmosphere. Comprehensively, comparisons show good agreement and some discrepancies between ground-based observations, satellite measurements, and global model simulations.
John P. McCormack, V. Lynn Harvey, Cora E. Randall, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys., 21, 17577–17605, https://doi.org/10.5194/acp-21-17577-2021, https://doi.org/10.5194/acp-21-17577-2021, 2021
Short summary
Short summary
In order to have confidence in atmospheric predictions, it is important to know how well different numerical model simulations of the Earth’s atmosphere agree with one another. This work compares four different data assimilation models that extend to or beyond the mesosphere. Results shown here demonstrate that while the models are in close agreement below ~50 km, large differences arise at higher altitudes in the mesosphere and lower thermosphere that will need to be reconciled in the future.
Anqi Li, Chris Z. Roth, Adam E. Bourassa, Douglas A. Degenstein, Kristell Pérot, Ole Martin Christensen, and Donal P. Murtagh
Earth Syst. Sci. Data, 13, 5115–5126, https://doi.org/10.5194/essd-13-5115-2021, https://doi.org/10.5194/essd-13-5115-2021, 2021
Short summary
Short summary
The nightglow emission originating from the vibrationally excited hydroxyl layer (about 85 km altitude) has been measured by the infrared imager (IRI) on the Odin satellite for more than 15 years. In this study, we document the retrieval steps, the resulting volume emission rates and the layer characteristics. Finally, we use the monthly zonal averages to demonstrate the fidelity of the data set. This unique, long-term data set will be valuable for studying various topics near the mesopause.
David E. Siskind, V. Lynn Harvey, Fabrizio Sassi, John P. McCormack, Cora E. Randall, Mark E. Hervig, and Scott M. Bailey
Atmos. Chem. Phys., 21, 14059–14077, https://doi.org/10.5194/acp-21-14059-2021, https://doi.org/10.5194/acp-21-14059-2021, 2021
Short summary
Short summary
General circulation models have had a very difficult time simulating the descent of nitric oxide through the polar mesosphere to the stratosphere. Here, we present results suggesting that, with the proper specification of middle atmospheric meteorology, the simulation of this process can be greatly improved. Despite differences in the detailed geographic morphology of the model NO as compared with satellite data, we show that the overall abundance is likely in good agreement with the data.
Anqi Li, Chris Z. Roth, Kristell Pérot, Ole Martin Christensen, Adam Bourassa, Doug A. Degenstein, and Donal P. Murtagh
Atmos. Meas. Tech., 13, 6215–6236, https://doi.org/10.5194/amt-13-6215-2020, https://doi.org/10.5194/amt-13-6215-2020, 2020
Short summary
Short summary
The OSIRIS IR imager, one of the instruments on the Odin satellite, routinely measures the oxygen airglow at 1.27 μm. In this study, we primarily focus on the steps done for retrieving the calibrated IRA band limb radiance, the volume emission rate of O2(a1∆g) and finally the ozone number density. Specifically, we use a novel approach to address the issue of the measurements that were made close to the local sunrise, where the O2(a1∆g) diverges from the equilibrium state.
Jörg Gumbel, Linda Megner, Ole Martin Christensen, Nickolay Ivchenko, Donal P. Murtagh, Seunghyuk Chang, Joachim Dillner, Terese Ekebrand, Gabriel Giono, Arvid Hammar, Jonas Hedin, Bodil Karlsson, Mikael Krus, Anqi Li, Steven McCallion, Georgi Olentšenko, Soojong Pak, Woojin Park, Jordan Rouse, Jacek Stegman, and Georg Witt
Atmos. Chem. Phys., 20, 431–455, https://doi.org/10.5194/acp-20-431-2020, https://doi.org/10.5194/acp-20-431-2020, 2020
Short summary
Short summary
Gravity waves can link together atmospheric conditions over large distances. MATS is a new Swedish satellite that will study gravity waves at altitudes around 80–110 km. MATS will take images of emissions from excited molecules, so-called airglow, and of the highest clouds in our atmosphere, so-called noctilucent clouds. These measurements will be analysed to provide three-dimensional wave structures and a comprehensive picture of wave interactions in the atmosphere.
Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, and Pierre-Dominique Pautet
Atmos. Chem. Phys., 19, 11443–11460, https://doi.org/10.5194/acp-19-11443-2019, https://doi.org/10.5194/acp-19-11443-2019, 2019
Short summary
Short summary
Sounding rockets are the only means of measuring small-scale structures (i.e., spatial scales of kilometers to centimeters) in the Earth's middle atmosphere (50–120 km). We present and analyze brand-new high-resolution measurements of atomic oxygen (O) concentration together with high-resolution measurements of ionospheric plasma and neutral air parameters. We found a new behavior of the O inside turbulent layers, which might be essential to adequately model weather and climate.
Martin Eberhart, Stefan Löhle, Boris Strelnikov, Jonas Hedin, Mikhail Khaplanov, Stefanos Fasoulas, Jörg Gumbel, Franz-Josef Lübken, and Markus Rapp
Atmos. Meas. Tech., 12, 2445–2461, https://doi.org/10.5194/amt-12-2445-2019, https://doi.org/10.5194/amt-12-2445-2019, 2019
Short summary
Short summary
This paper describes the measurement of atomic oxygen in the upper atmosphere onboard sounding rockets using solid electrolyte sensors. Calibration of the sensors in the laboratory is explained in detail. Results from the WADIS-2 rocket campaign show profiles of atomic oxygen density with a high spatial resolution.
Gary E. Thomas, Jerry Lumpe, Charles Bardeen, and Cora E. Randall
Atmos. Meas. Tech., 12, 1755–1766, https://doi.org/10.5194/amt-12-1755-2019, https://doi.org/10.5194/amt-12-1755-2019, 2019
Short summary
Short summary
Polar mesospheric clouds are an upper atmospheric phenomenon of great interest in that they provide information about a previously inaccessible atmospheric region, the coldest of the planet. This paper provides the basis for converting raw radiance measurements of clouds, made by diverse satellite instrumentation, into a physically based quantity, the cloud ice water content. The new algorithm allows intercomparisons of data collected using diverse optical methods.
Mykhaylo Grygalashvyly, Martin Eberhart, Jonas Hedin, Boris Strelnikov, Franz-Josef Lübken, Markus Rapp, Stefan Löhle, Stefanos Fasoulas, Mikhail Khaplanov, Jörg Gumbel, and Ekaterina Vorobeva
Atmos. Chem. Phys., 19, 1207–1220, https://doi.org/10.5194/acp-19-1207-2019, https://doi.org/10.5194/acp-19-1207-2019, 2019
Short summary
Short summary
Based on rocket-borne true common volume observations of atomic oxygen, atmospheric band emission (762 nm), and background atmosphere density and temperature, one-step, two-step, and combined mechanisms of
O2(b1Σg+) formation were analyzed. We found new coefficients for the fit function based on self-consistent temperature, atomic oxygen, and volume emission observations. This can be used for atmospheric band volume emission modeling or the estimation of atomic oxygen by known volume emission.
Pingping Rong, Jia Yue, James M. Russell III, David E. Siskind, and Cora E. Randall
Atmos. Chem. Phys., 18, 883–899, https://doi.org/10.5194/acp-18-883-2018, https://doi.org/10.5194/acp-18-883-2018, 2018
Short summary
Short summary
There is a massive manifestation of atmospheric gravity waves (GWs) in polar mesospheric clouds (PMCs) at the summer mesopause, which serves as indicators of the atmospheric dynamics and climate change. We obtained a universal power law that governs the GW display morphology and clarity level throughout the wave population residing in PMCs. Higher clarity refers to more distinct exhibition of the features. A GW tracking algorithm is used to identify the waves and to sort the albedo power.
Gerald E. Nedoluha, Michael Kiefer, Stefan Lossow, R. Michael Gomez, Niklaus Kämpfer, Martin Lainer, Peter Forkman, Ole Martin Christensen, Jung Jin Oh, Paul Hartogh, John Anderson, Klaus Bramstedt, Bianca M. Dinelli, Maya Garcia-Comas, Mark Hervig, Donal Murtagh, Piera Raspollini, William G. Read, Karen Rosenlof, Gabriele P. Stiller, and Kaley A. Walker
Atmos. Chem. Phys., 17, 14543–14558, https://doi.org/10.5194/acp-17-14543-2017, https://doi.org/10.5194/acp-17-14543-2017, 2017
Short summary
Short summary
As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. In the lower mesosphere, we quantify instrumental differences in the observed trends and annual variations at six sites. We then present a range of observed trends in water vapor over the past 20 years.
Yunxia Yuan, Nickolay Ivchenko, Gunnar Tibert, Marin Stanev, Jonas Hedin, and Jörg Gumbel
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-91, https://doi.org/10.5194/amt-2017-91, 2017
Revised manuscript has not been submitted
Short summary
Short summary
The paper presents a method to determine altitude profile of atmospheric density, temperature and wind by means of analysing the reconstructed trajectory of a rigid falling sphere released from a sounding rocket. The trajectory reconstruction is achieved by post-flight analysis of GPS raw data gathered in the sphere. A comparison of the results with independent measurements is presented, with good agreement of the falling sphere results with other sources in the stratosphere.
Boris Strelnikov, Artur Szewczyk, Irina Strelnikova, Ralph Latteck, Gerd Baumgarten, Franz-Josef Lübken, Markus Rapp, Stefanos Fasoulas, Stefan Löhle, Martin Eberhart, Ulf-Peter Hoppe, Tim Dunker, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Jörg Gumbel, and Aroh Barjatya
Ann. Geophys., 35, 547–565, https://doi.org/10.5194/angeo-35-547-2017, https://doi.org/10.5194/angeo-35-547-2017, 2017
Short summary
Short summary
The WADIS sounding rocket mission utilized multi-point turbulence measurements in the mesosphere by different techniques, i.e., with ionization gauges carried by rockets and ground-based MAARSY and EISCAT radars. Results show that turbulence energy dissipation rates oscillate in space and time with amplitude of up to 2 orders of magnitude. Spatial oscillations show the same wavelengths as atmospheric gravity waves. Temporal variability reveals periods of atmospheric tides and gravity waves.
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Linda Megner, Ole M. Christensen, Bodil Karlsson, Susanne Benze, and Victor I. Fomichev
Atmos. Chem. Phys., 16, 15135–15146, https://doi.org/10.5194/acp-16-15135-2016, https://doi.org/10.5194/acp-16-15135-2016, 2016
Short summary
Short summary
Noctilucent clouds (NLCs) are ice clouds that form at the polar summer mesopause and are very sensitive to temperature. They may therefore provide a way to monitor this remote region as our atmosphere changes. We show that temperature variations in the mesosphere are crucial for the growth of ice particles and that average fields are not enough to describe the process of NLC development. The paper also emphasises the difficulties in retrieving ice particle properties from optical observations.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Chris A. McLinden, Peter F. Bernath, Adam E. Bourassa, John P. Burrows, Doug A. Degenstein, Bernd Funke, Didier Fussen, Gloria L. Manney, C. Thomas McElroy, Donal Murtagh, Cora E. Randall, Piera Raspollini, Alexei Rozanov, James M. Russell III, Makoto Suzuki, Masato Shiotani, Joachim Urban, Thomas von Clarmann, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 5781–5810, https://doi.org/10.5194/amt-9-5781-2016, https://doi.org/10.5194/amt-9-5781-2016, 2016
Short summary
Short summary
This study validates version 3.5 of the ACE-FTS NOy species data sets by comparing diurnally scaled ACE-FTS data to correlative data from 11 other satellite limb sounders. For all five species examined (NO, NO2, HNO3, N2O5, and ClONO2), there is good agreement between ACE-FTS and the other data sets in various regions of the atmosphere. In these validated regions, these NOy data products can be used for further investigation into the composition, dynamics, and climate of the stratosphere.
Ole Martin Christensen, Susanne Benze, Patrick Eriksson, Jörg Gumbel, Linda Megner, and Donal P. Murtagh
Atmos. Chem. Phys., 16, 12587–12600, https://doi.org/10.5194/acp-16-12587-2016, https://doi.org/10.5194/acp-16-12587-2016, 2016
Short summary
Short summary
This study investigates the properties of ice clouds forming in the upper summer mesosphere known as polar mesospheric clouds, and their relationship with the background atmosphere combining two different satellite instruments. We find that temperature variations in the atmosphere of the order of some hours reduce the amount of ice in these clouds and see indications of strong vertical transport in these clouds.
David E. Siskind, Gerald E. Nedoluha, Fabrizio Sassi, Pingping Rong, Scott M. Bailey, Mark E. Hervig, and Cora E. Randall
Atmos. Chem. Phys., 16, 7957–7967, https://doi.org/10.5194/acp-16-7957-2016, https://doi.org/10.5194/acp-16-7957-2016, 2016
Short summary
Short summary
The strong descent of wintertime mesospheric air into the stratosphere has been of great recent interest. Here, we show that because mesospheric air is depleted in methane, it implies that chlorine will be found more in its active form, chlorine monoxide. This is a new way for mesosphere/stratosphere coupling to affect ozone. Second, these effects seem to persist longer than previously thought. Studies of the summer upper stratosphere should consider the conditions from the previous winter.
P. Forkman, O. M. Christensen, P. Eriksson, B. Billade, V. Vassilev, and V. M. Shulga
Geosci. Instrum. Method. Data Syst., 5, 27–44, https://doi.org/10.5194/gi-5-27-2016, https://doi.org/10.5194/gi-5-27-2016, 2016
Short summary
Short summary
Microwave radiometry is the only ground-based technique that can provide vertical profiles of gases in the middle atmosphere both day and night, and even during cloudy conditions. Today these measurements are performed at relatively few sites, more simple and reliable instruments are required to make the measurement technique more widely spread. In this study a compact double-sideband frequency-switched radiometer system for simultaneous observations of mesospheric CO and O3 is presented.
O. M. Christensen, P. Eriksson, J. Urban, D. Murtagh, K. Hultgren, and J. Gumbel
Atmos. Meas. Tech., 8, 1981–1999, https://doi.org/10.5194/amt-8-1981-2015, https://doi.org/10.5194/amt-8-1981-2015, 2015
Short summary
Short summary
Polar mesospheric clouds are clouds that form in the summer polar mesopause, 80km above the surface. In this study we present new measurements by the Odin satellite, which are able to determine water vapour, temperature and cloud coverage with a high resolution and a large geographical coverage. Using these data we can see structures in the clouds and background atmosphere that have not been detectable by previous measurements.
B. Ehard, P. Achtert, and J. Gumbel
Ann. Geophys., 32, 1395–1405, https://doi.org/10.5194/angeo-32-1395-2014, https://doi.org/10.5194/angeo-32-1395-2014, 2014
C. H. Jackman, C. E. Randall, V. L. Harvey, S. Wang, E. L. Fleming, M. López-Puertas, B. Funke, and P. F. Bernath
Atmos. Chem. Phys., 14, 1025–1038, https://doi.org/10.5194/acp-14-1025-2014, https://doi.org/10.5194/acp-14-1025-2014, 2014
O. M. Christensen and P. Eriksson
Atmos. Meas. Tech., 6, 1597–1609, https://doi.org/10.5194/amt-6-1597-2013, https://doi.org/10.5194/amt-6-1597-2013, 2013
P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel
Atmos. Meas. Tech., 6, 91–98, https://doi.org/10.5194/amt-6-91-2013, https://doi.org/10.5194/amt-6-91-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Extending the SBUV polar mesospheric cloud data record with the OMPS NP
Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images
The relationship between polar mesospheric clouds and their background atmosphere as observed by Odin-SMR and Odin-OSIRIS
Gravity wave influence on NLC: experimental results from ALOMAR, 69° N
First climatology of polar mesospheric clouds from GOMOS/ENVISAT stellar occultation instrument
Matthew T. DeLand and Gary E. Thomas
Atmos. Chem. Phys., 19, 7913–7925, https://doi.org/10.5194/acp-19-7913-2019, https://doi.org/10.5194/acp-19-7913-2019, 2019
Short summary
Short summary
We have extended our 40-year satellite data record of polar mesospheric cloud (PMC) behavior by adding data from a new instrument. Long-term trends in PMC ice water content derived from this record are smaller since 1998 compared to the first part of our data record. The PMC response to solar activity has decreased in the Northern Hemisphere but increased in the Southern Hemisphere, for reasons that are not understood.
Pingping Rong, Jia Yue, James M. Russell III, David E. Siskind, and Cora E. Randall
Atmos. Chem. Phys., 18, 883–899, https://doi.org/10.5194/acp-18-883-2018, https://doi.org/10.5194/acp-18-883-2018, 2018
Short summary
Short summary
There is a massive manifestation of atmospheric gravity waves (GWs) in polar mesospheric clouds (PMCs) at the summer mesopause, which serves as indicators of the atmospheric dynamics and climate change. We obtained a universal power law that governs the GW display morphology and clarity level throughout the wave population residing in PMCs. Higher clarity refers to more distinct exhibition of the features. A GW tracking algorithm is used to identify the waves and to sort the albedo power.
Ole Martin Christensen, Susanne Benze, Patrick Eriksson, Jörg Gumbel, Linda Megner, and Donal P. Murtagh
Atmos. Chem. Phys., 16, 12587–12600, https://doi.org/10.5194/acp-16-12587-2016, https://doi.org/10.5194/acp-16-12587-2016, 2016
Short summary
Short summary
This study investigates the properties of ice clouds forming in the upper summer mesosphere known as polar mesospheric clouds, and their relationship with the background atmosphere combining two different satellite instruments. We find that temperature variations in the atmosphere of the order of some hours reduce the amount of ice in these clouds and see indications of strong vertical transport in these clouds.
H. Wilms, M. Rapp, P. Hoffmann, J. Fiedler, and G. Baumgarten
Atmos. Chem. Phys., 13, 11951–11963, https://doi.org/10.5194/acp-13-11951-2013, https://doi.org/10.5194/acp-13-11951-2013, 2013
K. Pérot, A. Hauchecorne, F. Montmessin, J.-L. Bertaux, L. Blanot, F. Dalaudier, D. Fussen, and E. Kyrölä
Atmos. Chem. Phys., 10, 2723–2735, https://doi.org/10.5194/acp-10-2723-2010, https://doi.org/10.5194/acp-10-2723-2010, 2010
Cited articles
AIM science team: AIM CIPS PMC Level 2 Data v4.20r06, available at: http://lasp.colorado.edu/aim/download-data.php, last access: 18 August 2018.
Backhouse, T. W.: The luminous cirrus clouds of June and July, Meteorol.
Mag. 20, 133 pp., 1885.
Bailey, S. M., Thomas, G. E., Rusch, D. W., Merkel, A. W., Jeppesen, C. D.,
Carstens, J. N., ... Russell, J. M. III.: Phase functions of polar
mesospheric cloud ice as observed by the CIPS instrument on the AIM
satellite, J. Atmos. Sol.-Terr. Phy., 71(3-4), 373–380,
https://doi.org/10.1016/j.jastp.2008.09.039, 2009.
Bailey, S. M., Thomas, G. E., Hervig, M. E., Lumpe, J. D., Randall, C. E.,
Carstens, J. N., Thurairajah, B., Rusch, D. W., Russell III, J. M., and
Gordley, L. L.: Comparing nadir and limb observations of polar mesospheric
clouds: the effect of the assumed particle size distribution, J. Atmos.
Sol.-Terr. Phy. 127, 51–65, https://doi.org/10.1016/j.jastp.2015.02.007, 2015
Baumgarten, G., Fiedler, J., Lübken, F.-J., and von Cossart, G.:
Particle properties and water content of noctilucent clouds and their
interannual variation, J. Geophys. Res., 113, D06203,
https://doi.org/10.1029/2007JD008884, 2008.
Baumgarten, G., Fiedler, J., and Rapp, M.: On microphysical processes of noctilucent clouds (NLC): observations and modeling of mean and width of the particle size-distribution, Atmos. Chem. Phys., 10, 6661–6668,
https://doi.org/10.5194/acp-10-6661-2010, 2010.
Baumgarten, G., Chandran, A., Fiedler, J., Hoffmann, P., Kaifler, N., Lumpe,
J., Merkel, A., Randall, C., Rusch, D., and Thomas, G.: On the horizontal
and temporal structure of noctilucent clouds as observed by satellite and
lidar at ALOMAR (69N), Geophys. Res. Lett., 39, L01803, https://doi.org/10.1029/2011GL049935, 2012.
Benze, S., Randall, C. E., DeLand, M. T., Thomas, G. E., Rusch, D. W.,
Bailey, S. M., Russell III, J. M., McClintock, W. E., Merkel, A. W., and
Jeppesen, C. D.: Comparison of polar mesospheric cloud measurements from the
cloud imaging and particle size experiment and the solar backscatter
ultraviolet instrument in 2007, J. Atmos. Sol.-Terr. Phy., 71, 365–372,
https://doi.org/10.1016/j.jastp.2008.07.014, 2009.
Benze, S., Randall, C., DeLand, M., Thomas, G., Bailey, Russell, J., and
Merkel, A.: Evaluation of AIM CIPS measurements of Polar Mesospheric Clouds
by comparison with SBUV data, J. Atmos. Sol.-Terr. Phy., 73, 2065–2072, https://doi.org/10.1016/j.jastp.2011.02.003, 2011.
Benze, S., Gumbel, J., Randall, C., Karlsson, B., Hultgren, K., Lumpe, J.,
and Baumgarten, G.: Making limb and nadir measurements comparable: A common
volume study of PMC brightness observed by Odin OSIRIS and AIM CIPS, J.
Atmos. Sol.-Terr. Phy., 167, 66–73, https://doi.org/10.1016/j.jastp.2017.11.007, 2018.
Chandran, A., Rusch, D. W., Palo, S. E., Thomas, G. E., and Taylor, M. J.: Gravity wave observations in the summertime polar mesosphere from the Cloud Imaging and Particle Size (CIPS) experiment on the AIM spacecraft, J. Atmos. Sol.-Terr. Phy., 71, 392–400, https://doi.org/10.1016/j.jastp.2008.09.041, 2009.
Chandran, A., Rusch, D., Merkel, A., Palo, S., Thomas, G., Taylor, M.,
Bailey, S., and Russell, J.: Polar mesospheric cloud structures observed
from the cloud imaging and particle size experiment on the Aeronomy of Ice
in the Mesosphere spacecraft: Atmospheric gravity waves as drivers for
longitudinal variability in polar mesospheric cloud occurrence, J. Geophys.
Res., 115, D13102, https://doi.org/10.1029/2009JD013185, 2010.
Christensen, O. M., Benze, S., Eriksson, P., Gumbel, J., Megner, L., and Murtagh, D. P.: The relationship between polar mesospheric clouds and their background atmosphere as observed by Odin-SMR and Odin-OSIRIS, Atmos. Chem. Phys., 16, 12587–12600, https://doi.org/10.5194/acp-16-12587-2016, 2016.
Dalin, P., Pogoreltsev, A., Pertsev, N., Perminov, V., Shevchuk, N.,
Dubietis, A., Zalcik, M., Kulikov, S., Zadorozhny, A., Kudabayeva, D.,
Solodovnik, A., Salakhutdinov, G., and Grigoryeva, I.: Evidence of the
formation of noctilucent clouds due to propagation of an isolated gravity
wave caused by a tropospheric occluded front, Geophys. Res. Lett., 42,
2037–2046, https://doi.org/10.1002/2014GL062776, 2015.
Dalin, P., Gavrilov, N., Pertsev, N., Perminov, V., Pogoreltsev, A.,
Shevchuk, N., Dubietis, A., Völger, P., Zalcik, M., Ling, A., Kulikov,
S., Zadorozhny, A., Salakhutdinov, G., and Grigoryeva, I.: A case study of
long gravity wave crests in noctilucent clouds and their origin in the upper
tropospheric jet stream, J. Geophys. Res.-Atmos., 121, 14102–14116,
https://doi.org/10.1002/2016jd025422, 2016.
Degenstein, D. A.: Atmospheric volume emission tomography from a satellite
platform, PhD thesis, University of Saskatchewan, Saskatoon, available at:
http://www.collectionscanada.gc.ca/obj/s4/f2/dsk1/tape9/PQDD_0020/NQ43510.pdf (last access: 20 September 2019), 1999.
Degenstein, D. A., Llewellyn, E. J., and Lloyd, N. D.: Volume emission rate
tomography from a satellite platform, Appl. Optics, 42, 1441–1450, 2003.
Degenstein, D. A., Llewellyn, E. J., and Lloyd, N. D.: Tomographic retrieval
of the oxygen infrared atmospheric band with the OSIRIS infrared imager,
Can. J. Phys., 82, 501–515, 2004.
DeLand, M. T. and Thomas, G. E.: Updated PMC trends derived from SBUV data,
J. Geophys. Res.-Atmos, 120, 2140–2166, https://doi.org/10.1002/2014JD022253, 2015.
DeLand, M. T., Shettle, E. P., Thomas, G. E., and Olivero, J. J.: A
quarter-century of satellite polar mesospheric cloud observations, J. Atmos.
Sol.-Terr. Phy., 68, 9–29, https://doi.org/10.1016/j.jastp.2005.08.003, 2006.
Fiedler, J., Baumgarten, G., Berger, U., and Lübken, F.-J.: Long-Term
Variations of Noctilucent Clouds at ALOMAR, J. Atmos. Sol.-Terr. Phy., 162, 79–89, https://doi.org/10.1016/j.jastp.2016.08.006, 2016.
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106,
2003.
Fritts, D. C., Isler, J. R., Thomas, G. E., and Andreassen, O.: Wave
breaking signatures in noctilucent clouds, Geophys. Res. Lett., 20,
2039–2042, https://doi.org/10.1029/93GL01982, 1993.
Garcia, R. R. and Solomon, S.: The effect of breaking gravity waves on the
dynamics and chemical composition of the mesosphere and lower thermosphere,
J. Geophys. Res, 90, 3850–3868, https://doi.org/10.1029/JD090iD02p03850, 1985.
Gordley, L., Hervig, M., Fish, C., Russell, J. M., Bailey, S., Cook, J.,
Hansen, S., Shumway, A., Paxton, G., Deaver, L., Marshall, T., Burton, J.,
Magill, B., Brown, C., Thompson, E., and Kemp, J.: The solar occultation for ice experiment, J. Atmos. Sol.-Terr. Phy., 71, 300–315,
https://doi.org/10.1016/j.jastp.2008.07.012, 2009.
Hart, V. P., Taylor, M. J., Doyle, T. E., Zhao, Y., Pautet, P.-D., Carruth, B. L., Rusch, D. W., and Russell, J. M.: Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery, J. Geophys. Res.-Space, 123, 955–973, https://doi.org/10.1002/2017JA024481, 2018.
Hedin, A.: Extension of the MSIS Thermosphere Model into the middle and
lower atmosphere, J Geophys. Res., 96, 1159–1172, https://doi.org/10.1029/90JA02125, 1991.
Hervig, M., Thompson, R. E., McHugh, M., Gordley, L. L., Russell, J. M., and
Summers, M. E.: First confirmation that water ice is the primary component
of polar mesospheric clouds, Geophys. Res. Lett., 28, 971–974,
https://doi.org/10.1029/2000GL012104, 2001.
Hervig, M., Gordley, L., Russell, J., and Bailey: SOFIE PMC observations
during the northern summer of 2007, J. Atmos. Sol.-Terr. Phy., 71,
331–339, https://doi.org/10.1016/j.jastp.2008.08.010, 2009.
Hervig, M. E., Berger, U., and Siskind, D. E.: Decadal variability in PMCs
and implications for changing temperature and water vapor in the upper
mesosphere, J. Geophys. Res.-Atmos., 121, 2383–2392,
https://doi.org/10.1002/2015JD024439, 2016.
Hultgren, K. and Gumbel, J.: Tomographic and spectral views on the lifecycle
of polar mesospheric clouds from Odin/OSIRIS, J. Geophys. Res., 119,
14129–14143, https://doi.org/10.1002/2014JD022435, 2014.
Hultgren, K., Gumbel, J., Degenstein, D., Bourassa, A., Lloyd, N., and
Stegman, J.: First simultaneous retrievals of horizontal and vertical
structures of Polar Mesospheric Clouds from Odin/OSIRIS tomography, J.
Atmos. Sol.-Terr. Phy., 104, 213–223, https://doi.org/10.1016/j.jastp.2013.06.013,
2013.
Jesse, O.: Auffallende Erscheinungen am Abendhimmel, Met. Zeit., 2, 311–312,
1885.
Kaifler, N., Baumgarten, G., Klekociuk, A. R., Alexander, S. P., Fiedler, J.,
and Lübken, F.-J.: Small scale structures of NLC observed by lidar at
69∘ N/69∘ S and their possible relation to gravity
waves, J. Atmos. Sol.-Terr. Phy., 104, 244–252,
https://doi.org/10.1016/j.jastp.2013.01.004, 2013.
Karlsson, B. and Gumbel, J.: Challenges in the limb retrieval of noctilucent
cloud properties from Odin/OSIRIS, Adv. Space Res., 36, 935–942,
https://doi.org/10.1016/j.asr.2005.04.074, 2005.
Kiliani, J., Baumgarten, G., Lübken, F-J., Berger U., and Hoffmann, P.: Temporal and spatial characteristics of the formation of strong noctilucent clouds, J. Atmos. Sol.-Terr. Phys., 104, 151–166, https://doi.org/10.1016/j.jastp.2013.01.005, 2013.
Kirkwood, S. and Stebel, K.: Influence of planetary waves on noctilucent
cloud occurrence over NW Europe, J. Geophys. Res., 108, 8440, https://doi.org/10.1029/2002JD002356, 2003.
Krisch, I., Preusse, P., Ungermann, J., Dörnbrack, A., Eckermann, S. D., Ern, M., Friedl-Vallon, F., Kaufmann, M., Oelhaf, H., Rapp, M., Strube, C., and Riese, M.: First tomographic observations of gravity waves by the infrared limb imager GLORIA, Atmos. Chem. Phys., 17, 14937–14953, https://doi.org/10.5194/acp-17-14937-2017, 2017.
Krisch, I., Ungermann, J., Preusse, P., Kretschmer, E., and Riese, M.: Limited angle tomography of mesoscale gravity waves by the infrared limb-sounder GLORIA, Atmos. Meas. Tech., 11, 4327–4344, https://doi.org/10.5194/amt-11-4327-2018, 2018.
Leslie, R. C.: Sky glows, Nature, 32, 245, https://doi.org/10.1038/032245a0, 1885.
Lindzen, R. S.: Turbulence stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, https://doi.org/10.1029/JC086iC10p09707, 1981.
Liu, X., Yue, J., Xu, J., Yuan, W., Russell III, J. M., Hervig, M. E., and
Nakamura, T.: Persistent longitudinal variations in 8 years of CIPS/AIM
polar mesospheric clouds, J. Geophys. Res.-Atmos., 121, 8390–8409,
https://doi.org/10.1002/2015JD024624, 2016.
Livesey, N. J. and Read, W. G.: Direct retrieval of line-of-sight at
mespheric structure from limb sounding observations, Geophys. Res. Lett.,
27, 891–894, https://doi.org/10.1029/1999GL010964, 2000.
Llewellyn, E., Lloyd, N., Degenstein, D., Gattinger, R., Petelina, S.,
Bourassa, A., Wiensz, J., Ivanov, E., de, I., Solheim, B., McConnell, J.,
Haley, C., Savigny, C., Sioris, C., McLinden, C., Griffioen, E., Kaminski,
J., Evans, W., Puckrin, E., Strong, K., Wehrle, V., Hum, R., Kendall, D.,
Matsushita, J., Murtagh, D., Brohede, S., Stegman, J., Witt, G., Barnes, G.,
Payne, W., Piché, L., Smith, K., Warshaw, G., -D, D., Marchand, P.,
Richardson, E., King, R., Wevers, I., McCreath, W., Kyrölä, E.,
Oikarinen, L., Leppelmeier, G., Auvinen, H., Mégie, G., Hauchecorne, A.,
Lefèvre, F., LJD, N., Ricaud, P., Frisk, U., Sjoberg, F., Schéele,
F. and Nordh, L.: The OSIRIS instrument on the Odin spacecraft, Can. J.
Phys., 82, 411–422, https://doi.org/10.1139/P04-005, 2004.
Lloyd, N. and Llewellyn, E. J.: Deconvolution of blurred images using photon
counting statistics and maximum probability, Can. J. Phys., 67, 89–94,
1989.
Lübken, F.-J.: Thermal structure of the Arctic summer mesosphere, J.
Geophys. Res., 104, 9135–9149, 1999.
Lübken, F.-J., Berger, U., and Baumgarten, G.: On the anthropogenic
impact on long-term evolution of noctilucent clouds, Geophys. Res. Lett.,
45, 6681–6689, https://doi.org/10.1029/2018GL077719, 2018.
Lumpe, J., Bailey, S., Carstens, J., Randall, C., Rusch, D., Thomas, G.,
Nielsen, K., Jeppesen, C., McClintock, W., Merkel, A., Riesberg, L.,
Templeman, B., Baumgarten, G., and Russell, J.: Retrieval of polar
mesospheric cloud properties from CIPS: Algorithm description, error
analysis and cloud detection sensitivity, J. Atmos. Sol.-Terr. Phy., 104,
167–196, https://doi.org/10.1016/j.jastp.2013.06.007, 2013.
McClintock, W., Rusch, D., Thomas, G., Merkel, A., Lankton, M., Drake, V.,
Bailey, S., and Russell, J.: The cloud imaging and particle size experiment
on the Aeronomy of Ice in the mesosphere mission: Instrument concept,
design, calibration, and on-orbit performance, J. Atmos. Sol.-Terr. Phy.,
71, 340–355, https://doi.org/10.1016/j.jastp.2008.10.011, 2009.
Mishchenko, M. I. and Travis, L. D.: Capabilities and limitations of a
current FORTRAN implementation of the T-matrix method for randomly oriented,
rotationally symmetric scatterers, J. Quant. Spectrosc. Ra.,
60, 309–324, https://doi.org/10.1016/S0022-4073(98)00008-9, 1998.
Megner, L.: Minimal impact of condensation nuclei characteristics on
observable mesospheric ice properties, J. Atmos. Sol.-Terr. Phys., 73,
2184–2191, https://doi.org/10.1016/j.jastp.2010.08.006, 2011.
Megner, L., Christensen, O. M., Karlsson, B., Benze, S., and Fomichev, V. I.: Comparison of retrieved noctilucent cloud particle properties from Odin tomography scans and model simulations, Atmos. Chem. Phys., 16, 15135–15146,
https://doi.org/10.5194/acp-16-15135-2016, 2016.
Murtagh, D., Frisk, U., Merino, F., Ridal, M., Jonsson, A., Stegman, J.,
Witt, G., Eriksson, P., Jiménez, C., Megie, G., JDL, N., Ricaud, P.,
Baron, P., Pardo, J., Hauchcorne, A., Llewellyn, E., Degenstein, D.,
Gattinger, R., Lloyd, N., Evans, W., de, I., Haley, C., Sioris, C., Savigny,
C., Solheim, B., McConnell, J., Strong, K., Richardson, E., Leppelmeier, G.,
Kyrölä, E., Auvinen, H., and Oikarinen, L.: An overview of the Odin
atmospheric mission, Can. J. Phys., 80, 309–319, https://doi.org/10.1139/p01-157,
2002.
Nygren, T., Taylor, M. J., Swenson, G. R., and Lehtinen, M. S.: Observing
gravity wave activity in the mesopause region by means of airglow
tomography, Adv. Space Res., 26, 903–906, 2000.
Rapp, M. and Thomas, G. E.: Modeling the microphysics of mesospheric ice
particles: Assessment of current capabilities and basic sensitivities, J.
Atmos. Sol.-Terr. Phy., 68, 715–744, https://doi.org/10.1016/j.jastp.2005.10.015,
2006.
Rapp, M., Lübken, F.-J., Müllemann, A., Thomas, G., and Jensen, E.:
Small-scale temperature variations in the vicinity of NLC: Experimental and
model results, J. Geophys. Res., 107, 4392, https://doi.org/10.1029/2001JD001241,
2002.
Ridder, C., Baumgarten, G., Fiedler, J., Lübken, F.-J., and Stober, G.:
Analysis of small-scale structures in lidar observations of noctilucent
clouds using a pattern recognition method, J. Atmos. Sol.-Terr. Phy., 162,
48–56, https://doi.org/10.1016/j.jastp.2017.04.005, 2017.
Rusch, D., Thomas, G., Merkel, A., Olivero, J., Chandran, A., Lumpe, J.,
Carstans, J., Randall, C., Bailey, S., and Russell, J.: Large ice particles
associated with small ice water content observed by AIM CIPS imagery of
polar mesospheric clouds: Evidence for microphysical coupling with
small-scale dynamics, J. Atmos. Sol.-Terr. Phy., 162, 97–105,
https://doi.org/10.1016/j.jastp.2016.04.018, 2016.
Russell, J., Bailey, S., Gordley, L., Rusch, D., Horányi, M., Hervig,
M., Thomas, G., Randall, C., Siskind, D., Stevens, M., Summers, M., Taylor,
M., Englert, C., Espy, P., McClintock, W., and Merkel, A.: The Aeronomy of
Ice in the Mesosphere (AIM) mission: Overview and early science results, J.
Atmos. Sol.-Terr. Phy., 71, 289–299, https://doi.org/10.1016/j.jastp.2008.08.011,
2009.
Shibuya, R., Sato, K., Tsutsumi, M., Sato, T., Tomikawa, Y., Nishimura, K., and Kohma, M.: Quasi-12 h inertia–gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6∘ E, 69.0∘ S), Atmos. Chem. Phys., 17, 6455–6476, https://doi.org/10.5194/acp-17-6455-2017, 2017.
Song, R., Kaufmann, M., Ungermann, J., Ern, M., Liu, G., and Riese, M.: Tomographic reconstruction of atmospheric gravity wave parameters from airglow observations, Atmos. Meas. Tech., 10, 4601–4612, https://doi.org/10.5194/amt-10-4601-2017, 2017.
Suzuki, S., Lübken, F.-J., Baumgarten, G., Kaifler, N., Eixmann, R.,
Williams, B. P., and Nakamura, T.: Vertical propagation of a mesoscale
gravity wave from the lower to the upper atmosphere, J. Atmos. Sol.-Terr.
Phy., 97, 29–36, https://doi.org/10.1016/j.jastp.2013.01.012, 2013.
Stober, G., Sommer, S., Rapp, M., and Latteck, R.: Investigation of gravity waves using horizontally resolved radial velocity measurements, Atmos. Meas. Tech., 6, 2893–2905, https://doi.org/10.5194/amt-6-2893-2013, 2013.
Taylor, M. J., Pautet, P.-D., Zhao, Y., Randall, C. E., Lumpe, J., Bailey,
S. M., Carstens, J., Nielsen, K., Russel III, J. M., and Stegman, J.:
High-Latitude Gravity Wave Measurements in Noctilucent Clouds and Polar
Mesospheric Clouds, in: Aeronomy of the Earth's
Atmosphere and Ionosphere, edited by: Abdu, M. and Pancheva, D., IAGA Special Sopron Book Series, vol 2, Springer, Dordrecht, 2011.
Thomas, G. E. and Oliviero, J.: Noctilucent clouds as possible indicators of
global change in the mesosphere, Adv. Space Res., 28, 937–946, 2001.
Thomas, G. E., Olivero, J. J., Jensen, E. J., Schröder, W., and Toon, O.
B.: Relation between increasing methane and the presence of ice clouds at
the mesopause, Nature, 338, 490–492, 1989.
Thurairajah, B., Bailey, S. M., Nielsen, K., Randall, C. E., Lumpe, J. D.,
Taylor, M. J., and Russell, J. M.: Morphology of polar mesospheric clouds as
seen from space, J. Atmos. Sol.-Terr. Phy., 104, 234–243,
https://doi.org/10.1016/j.jastp.2012.09.009, 2013.
Thurairajah, B., Sato, K., Yue, J., Nakamura, T., Kohma, M., Bailey, S. M.,
and Russell, J. M.: Simultaneous observation of gravity waves at PMC
altitude from AIM/CIPS experiment and PANSY radar over Syowa (69∘ S, 39∘ E), J. Atmos. Sol.-Terr. Phy., 164, 324–331,
https://doi.org/10.1016/j.jastp.2017.10.006, 2017.
Toon, O. B., Turco, R. P., Hamill, P., Kiang, C. S., and Whitten, R. C.: A
One-Dimensional Model Describing Aerosol Formation and Evolution in the
Stratosphere: II. Sensitivity Studies and Comparison with Observations, J.
Atmos. Sci., 36, 718–736, https://doi.org/10.1175/1520-0469(1979)036<0699:AODMDA>2.0.CO;2, 1979.
Turco, R. P., Hamill, P., Toon, O. B., Whitten, R. C., and Kiang, C. S.: A One-Dimensional Model Describing Aerosol Formation and Evolution in the
Stratosphere: I. Physical Processes and Mathematical Analogs, J. Atmos.
Sci., 36, 699–717, https://doi.org/10.1175/1520-0469(1979)036<0699:AODMDA>2.0.CO;2, 1979.
Urban, J., Lautié, N., Murtagh, D. P., Eriksson, P., Kasai, Y., Lossow,
S., Dupuy, E., Noë, J. D. L., Frisk, U., Olberg, M., Flochmoën, E.
L., and Ricaud, P.: Global observations of middle atmospheric water vapour
by the Odin satellite: an overview, Planet. Space Sci., 55, 1093–1102,
2007.
von Savigny, C., Kokhanovsky, A., Bovensmann, H., Eichmann, K.-U., Kaiser,
J., Noël, S., Rozanov, A., V., Skupin, J., and Burrows, J. P.: NLC
detection and particle size determination: First results from SCIAMACHY on
ENVISAT, Adv. Space Res., 34, 851–856, https://doi.org/10.1016/j.asr.2003.05.050, 2004.
Witt, G.: Height, structure and displacements of noctilucent clouds, Tellus,
14, 1–18, https://doi.org/10.3402/tellusa.v14i1.9524, 1962.
Zhao, Y., Taylor, M. J., Randall, C. E., Lumpe, J. D., Siskind, D. E.,
Bailey, S. M., and Russell, J. M.: Investigating seasonal gravity wave
activity in the summer polar mesosphere, J. Atmos. Sol.-Terr. Phy., 127,
8–20, https://doi.org/10.1016/j.jastp.2015.03.008, 2015.
Short summary
Combining satellite observations of polar mesospheric clouds are complicated due to satellite geometry and measurement technique. In this study, tomographic limb observations are compared to observations from a nadir-viewing satellite using a common volume approach. We present a technique that overcomes differences in scattering conditions and observation geometry. The satellites show excellent agreement, which lays the basis for future insights into horizontal and vertical cloud processes.
Combining satellite observations of polar mesospheric clouds are complicated due to satellite...
Altmetrics
Final-revised paper
Preprint