Articles | Volume 19, issue 19
https://doi.org/10.5194/acp-19-12361-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-19-12361-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO2 exchange
Department of Geography, Ludwig-Maximilians-Universität, Luisenstr. 37, 80333, Munich, Germany
Philippe Ciais
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191
Gif-sur-Yvette, France
Frédéric Chevallier
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191
Gif-sur-Yvette, France
Christian Rödenbeck
Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
Ashley P. Ballantyne
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191
Gif-sur-Yvette, France
Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana 59812, USA
Fabienne Maignan
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191
Gif-sur-Yvette, France
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
Marcos Fernández-Martínez
Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
Pierre Friedlingstein
College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
Josep Peñuelas
CSIC, Global Ecology Unit CREAF–CEAB–UAB, Bellaterra, 08193, Catalonia, Spain
CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
Shilong L. Piao
Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
Stephen Sitch
College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
William K. Smith
School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA
Xuhui Wang
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191
Gif-sur-Yvette, France
Zaichun Zhu
School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
Vanessa Haverd
CSIRO Oceans and Atmosphere, Canberra, 2601, Australia
Etsushi Kato
Institute of Applied Energy (IAE), Minato, Tokyo 105-0003, Japan
Atul K. Jain
Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61801, USA
Sebastian Lienert
Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research,
University of Bern, Bern 3012, Switzerland
Danica Lombardozzi
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80302, USA
Julia E. M. S. Nabel
Max Planck Institute for Meteorology, 20146 Hamburg, Germany
Philippe Peylin
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191
Gif-sur-Yvette, France
Benjamin Poulter
Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20816, USA
Dan Zhu
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191
Gif-sur-Yvette, France
Data sets
Atmospheric CO2 Inversion, 1985-2016 C. Rödenbeck https://doi.org/10.17871/CarboScope-s85_v4.1
Atmospheric CO2 Inversion, 1976-2016 C. Rödenbeck https://doi.org/10.17871/CarboScope-s76_v4.1
Atmospheric CO2 Inversion, 1993-2016 C. Rödenbeck https://doi.org/10.17871/CarboScope-s93_v4.1
Short summary
Here we show that land-surface models improved their ability to simulate the increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) by ecosystems compared to estimates by two atmospheric inversions. We find a dominant role of vegetation growth over boreal Eurasia to the observed increase in SCANBP, strongly driven by CO2 fertilization, and an overall negative effect of temperature on SCANBP. Biases can be explained by the sensitivity of simulated microbial respiration to temperature.
Here we show that land-surface models improved their ability to simulate the increase in the...
Altmetrics
Final-revised paper
Preprint