Articles | Volume 19, issue 17
https://doi.org/10.5194/acp-19-11253-2019
https://doi.org/10.5194/acp-19-11253-2019
Research article
 | 
05 Sep 2019
Research article |  | 05 Sep 2019

Chamber-based insights into the factors controlling epoxydiol (IEPOX) secondary organic aerosol (SOA) yield, composition, and volatility

Emma L. D'Ambro, Siegfried Schobesberger, Cassandra J. Gaston, Felipe D. Lopez-Hilfiker, Ben H. Lee, Jiumeng Liu, Alla Zelenyuk, David Bell, Christopher D. Cappa, Taylor Helgestad, Ziyue Li, Alex Guenther, Jian Wang, Matthew Wise, Ryan Caylor, Jason D. Surratt, Theran Riedel, Noora Hyttinen, Vili-Taneli Salo, Galib Hasan, Theo Kurtén, John E. Shilling, and Joel A. Thornton

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Emma L. D'Ambro on behalf of the Authors (26 Jun 2019)
ED: Referee Nomination & Report Request started (05 Jul 2019) by Jacqui Hamilton
RR by Anonymous Referee #2 (08 Jul 2019)
RR by Anonymous Referee #3 (24 Jul 2019)
ED: Publish subject to minor revisions (review by editor) (25 Jul 2019) by Jacqui Hamilton
AR by Emma L. D'Ambro on behalf of the Authors (06 Aug 2019)  Author's response   Manuscript 
ED: Publish as is (14 Aug 2019) by Jacqui Hamilton
AR by Emma L. D'Ambro on behalf of the Authors (16 Aug 2019)  Manuscript 
Download
Short summary
Isoprene is the most abundantly emitted reactive organic gas globally, and thus it is important to understand its fate and role in aerosol formation and growth. A major product of its oxidation is an epoxydiol, IEPOX, which can be efficiently taken up by acidic aerosol to generate substantial amounts of secondary organic aerosol (SOA). We present chamber experiments exploring the properties of IEPOX SOA and reconcile discrepancies between field, laboratory, and model studies of this process.
Altmetrics
Final-revised paper
Preprint