Articles | Volume 19, issue 15
https://doi.org/10.5194/acp-19-10073-2019
https://doi.org/10.5194/acp-19-10073-2019
Research article
 | 
09 Aug 2019
Research article |  | 09 Aug 2019

Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations

Erin Evoy, Adrian M. Maclean, Grazia Rovelli, Ying Li, Alexandra P. Tsimpidi, Vlassis A. Karydis, Saeid Kamal, Jos Lelieveld, Manabu Shiraiwa, Jonathan P. Reid, and Allan K. Bertram

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (18 Jul 2019)  Author's response    Manuscript
ED: Publish as is (18 Jul 2019) by Thorsten Bartels-Rausch
AR by Erin Evoy on behalf of the Authors (18 Jul 2019)  Author's response    Manuscript
Download
Short summary
We measured the diffusion rates of organic molecules in a number of proxies for secondary organic aerosol (SOA) and compared measured diffusion with predictions from two relations: the Stokes–Einstein relation and a fractional Stokes–Einstein relation. The fractional relation does a better job of predicting diffusion rates in this case. Output from an atmospheric model shows that mixing times predicted using the two relations differ by up to 1 order of magnitude at an altitude of ~ 3 km.
Altmetrics
Final-revised paper
Preprint