Articles | Volume 18, issue 13
Research article
 | Highlight paper
03 Jul 2018
Research article | Highlight paper |  | 03 Jul 2018

High- and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels

Kanako Sekimoto, Abigail R. Koss, Jessica B. Gilman, Vanessa Selimovic, Matthew M. Coggon, Kyle J. Zarzana, Bin Yuan, Brian M. Lerner, Steven S. Brown, Carsten Warneke, Robert J. Yokelson, James M. Roberts, and Joost de Gouw


Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Kanako Sekimoto on behalf of the Authors (28 May 2018)  Author's response   Manuscript 
ED: Publish subject to technical corrections (18 Jun 2018) by Jacqui Hamilton
AR by Kanako Sekimoto on behalf of the Authors (19 Jun 2018)  Author's response   Manuscript 
Short summary
We found that on average 85 % of the VOC emissions from biomass burning across various fuels representative of the western US (including various coniferous and chaparral fuels) can be explained using only two emission profiles: (i) a high-temperature pyrolysis profile and (ii) a low-temperature pyrolysis profile. The high-temperature profile is quantitatively similar between different fuel types (r2 > 0.84), and likewise for the low-temperature profile.
Final-revised paper