Articles | Volume 18, issue 2
Atmos. Chem. Phys., 18, 845–863, 2018
https://doi.org/10.5194/acp-18-845-2018

Special issue: The CERN CLOUD experiment (ACP/AMT inter-journal SI)

Atmos. Chem. Phys., 18, 845–863, 2018
https://doi.org/10.5194/acp-18-845-2018

Research article 23 Jan 2018

Research article | 23 Jan 2018

New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model

Andreas Kürten et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Andreas Kürten on behalf of the Authors (24 Nov 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (24 Nov 2017) by Farahnaz Khosrawi
RR by Anonymous Referee #3 (05 Dec 2017)
ED: Publish subject to technical corrections (05 Dec 2017) by Farahnaz Khosrawi
Download
Short summary
A recent laboratory study (CLOUD) showed that new particles nucleate efficiently from sulfuric acid and dimethylamine (DMA). The reanalysis of previously published data reveals that the nucleation rates are even faster than previously assumed, i.e., nucleation can proceed at rates that are compatible with collision-controlled new particle formation for atmospheric conditions. This indicates that sulfuric acid–DMA nucleation is likely an important source of particles in the boundary layer.
Altmetrics
Final-revised paper
Preprint