Articles | Volume 18, issue 2
https://doi.org/10.5194/acp-18-845-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-18-845-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model
Andreas Kürten
CORRESPONDING AUTHOR
Institute for Atmospheric and Environmental Sciences, Goethe
University Frankfurt, 60438 Frankfurt am Main, Germany
Chenxi Li
Department of Mechanical Engineering, University of Minnesota, 111
Church St. SE, Minneapolis, MN 55455, USA
Federico Bianchi
Institute for Atmospheric and Earth System Research, University of Helsinki, 00014 Helsinki,
Finland
Joachim Curtius
Institute for Atmospheric and Environmental Sciences, Goethe
University Frankfurt, 60438 Frankfurt am Main, Germany
António Dias
SIM, University of Lisbon, 1849-016 Lisbon, Portugal
Neil M. Donahue
Center for Atmospheric Particle Studies, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213, USA
Jonathan Duplissy
Institute for Atmospheric and Earth System Research, University of Helsinki, 00014 Helsinki,
Finland
Richard C. Flagan
Division of Chemistry and Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, USA
Jani Hakala
Institute for Atmospheric and Earth System Research, University of Helsinki, 00014 Helsinki,
Finland
Tuija Jokinen
Institute for Atmospheric and Earth System Research, University of Helsinki, 00014 Helsinki,
Finland
Jasper Kirkby
Institute for Atmospheric and Environmental Sciences, Goethe
University Frankfurt, 60438 Frankfurt am Main, Germany
CERN, 1211 Geneva, Switzerland
Markku Kulmala
Institute for Atmospheric and Earth System Research, University of Helsinki, 00014 Helsinki,
Finland
Ari Laaksonen
Finnish Meteorological Institute, 00101 Helsinki, Finland
Katrianne Lehtipalo
Institute for Atmospheric and Earth System Research, University of Helsinki, 00014 Helsinki,
Finland
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232
Villigen PSI, Switzerland
Vladimir Makhmutov
Solar and Cosmic Ray Research Laboratory, Lebedev Physical Institute,
119991 Moscow, Russia
Antti Onnela
CERN, 1211 Geneva, Switzerland
Matti P. Rissanen
Institute for Atmospheric and Earth System Research, University of Helsinki, 00014 Helsinki,
Finland
Mario Simon
Institute for Atmospheric and Environmental Sciences, Goethe
University Frankfurt, 60438 Frankfurt am Main, Germany
Mikko Sipilä
Institute for Atmospheric and Earth System Research, University of Helsinki, 00014 Helsinki,
Finland
Yuri Stozhkov
Solar and Cosmic Ray Research Laboratory, Lebedev Physical Institute,
119991 Moscow, Russia
Jasmin Tröstl
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232
Villigen PSI, Switzerland
Penglin Ye
Center for Atmospheric Particle Studies, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213, USA
Aerodyne Research Inc., Billerica, Massachusetts 01821, USA
Peter H. McMurry
Department of Mechanical Engineering, University of Minnesota, 111
Church St. SE, Minneapolis, MN 55455, USA
Viewed
Total article views: 5,752 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Aug 2017)
| HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 3,671 | 1,960 | 121 | 5,752 | 138 | 195 |
- HTML: 3,671
- PDF: 1,960
- XML: 121
- Total: 5,752
- BibTeX: 138
- EndNote: 195
Total article views: 4,977 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 Jan 2018)
| HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 3,233 | 1,629 | 115 | 4,977 | 123 | 175 |
- HTML: 3,233
- PDF: 1,629
- XML: 115
- Total: 4,977
- BibTeX: 123
- EndNote: 175
Total article views: 775 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Aug 2017)
| HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 438 | 331 | 6 | 775 | 15 | 20 |
- HTML: 438
- PDF: 331
- XML: 6
- Total: 775
- BibTeX: 15
- EndNote: 20
Viewed (geographical distribution)
Total article views: 5,752 (including HTML, PDF, and XML)
Thereof 5,712 with geography defined
and 40 with unknown origin.
Total article views: 4,977 (including HTML, PDF, and XML)
Thereof 4,951 with geography defined
and 26 with unknown origin.
Total article views: 775 (including HTML, PDF, and XML)
Thereof 761 with geography defined
and 14 with unknown origin.
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
Latest update: 27 Nov 2025
Short summary
A recent laboratory study (CLOUD) showed that new particles nucleate efficiently from sulfuric acid and dimethylamine (DMA). The reanalysis of previously published data reveals that the nucleation rates are even faster than previously assumed, i.e., nucleation can proceed at rates that are compatible with collision-controlled new particle formation for atmospheric conditions. This indicates that sulfuric acid–DMA nucleation is likely an important source of particles in the boundary layer.
A recent laboratory study (CLOUD) showed that new particles nucleate efficiently from sulfuric...
Special issue
Altmetrics
Final-revised paper
Preprint