Articles | Volume 18, issue 10
https://doi.org/10.5194/acp-18-7217-2018
https://doi.org/10.5194/acp-18-7217-2018
Research article
 | 
25 May 2018
Research article |  | 25 May 2018

Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations

Clara Orbe, Huang Yang, Darryn W. Waugh, Guang Zeng, Olaf Morgenstern, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, David A. Plummer, John F. Scinocca, Beatrice Josse, Virginie Marecal, Patrick Jöckel, Luke D. Oman, Susan E. Strahan, Makoto Deushi, Taichu Y. Tanaka, Kohei Yoshida, Hideharu Akiyoshi, Yousuke Yamashita, Andreas Stenke, Laura Revell, Timofei Sukhodolov, Eugene Rozanov, Giovanni Pitari, Daniele Visioni, Kane A. Stone, Robyn Schofield, and Antara Banerjee

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Clara Orbe on behalf of the Authors (08 Mar 2018)  Manuscript 
ED: Publish as is (27 Mar 2018) by Peter Hess
AR by Clara Orbe on behalf of the Authors (06 Apr 2018)  Manuscript 
Download
Short summary
In this study we compare a few atmospheric transport properties among several numerical models that are used to study the influence of atmospheric chemistry on climate. We show that there are large differences among models in terms of the timescales that connect the Northern Hemisphere midlatitudes, where greenhouse gases and ozone-depleting substances are emitted, to the Southern Hemisphere. Our results may have important implications for how models represent atmospheric composition.
Altmetrics
Final-revised paper
Preprint