Articles | Volume 18, issue 6
https://doi.org/10.5194/acp-18-4297-2018
https://doi.org/10.5194/acp-18-4297-2018
Research article
 | 
28 Mar 2018
Research article |  | 28 Mar 2018

Using eddy covariance to measure the dependence of air–sea CO2 exchange rate on friction velocity

Sebastian Landwehr, Scott D. Miller, Murray J. Smith, Thomas G. Bell, Eric S. Saltzman, and Brian Ward

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Brian Ward on behalf of the Authors (15 Jan 2018)  Author's response   Manuscript 
ED: Publish subject to technical corrections (27 Jan 2018) by Mike Harvey (deceased)
AR by Brian Ward on behalf of the Authors (02 Feb 2018)  Manuscript 
Download
Short summary
The ocean takes up about 25 % of emitted anthropogenic emitted carbon dioxide and thus plays a significant role in the regulation of climate. In order to accurately calculate this uptake, a quantity known as the air–sea gas transfer velocity needs to be determined. This is typically parameterised with mean wind speed, the most commonly used velocity scale for calculating air–sea transfer coefficients. In this article, we propose an alternative velocity scale known as the friction velocity.
Altmetrics
Final-revised paper
Preprint