
Using Eddy Covariance to Measure the Dependence of Air-Sea CO2

Exchange Rate on Friction Velocity
Sebastian Landwehr1, Scott D. Miller2, Murray J. Smith3, Thomas G. Bell4, Eric S. Saltzman5, and
Brian Ward1

1School of Physics and Ryan Institute, National University of Ireland Galway, Galway, Ireland.
2Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York, USA.
3National Institute of Water and Atmospheric Research (NIWA), Private Bag 14-901 Kilbirnie, Wellington, New Zealand.
4Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, United Kingdom.
5Earth System Science, University of California, Irvine, California, USA

Correspondence to: Brian Ward (bward@nuigalway.ie)

Abstract. Parameterisation of the air-sea gas transfer velocity of CO2 and other trace gases under open-ocean conditions has

been a focus of air-sea interaction research and is required for accurately determining ocean carbon uptake. Ships are the most

widely used platform for air-sea flux measurements but the quality of the data can be compromised by airflow distortion and

sensor cross-sensitivity effects. Recent improvements in the understanding of these effects have led to enhanced corrections to

the shipboard eddy covariance (EC) measurements.5

Here we present a revised analysis of eddy covariance measurements of air-sea CO2 and momentum fluxes from the Southern

Ocean Surface Ocean Aerosol Production study (SOAP). We show that it is possible to significantly reduce the scatter in

the EC data and achieve consistency between measurements taken on-station and with the ship underway. The gas transfer

velocities from the EC measurements correlate better with the EC friction velocity (u∗) than with mean wind speeds derived

from shipboard measurements corrected with an airflow distortion model. For the observed range of wind speeds (u10N=3–10

23 m s−1), the transfer velocities can be parameterised with a linear fit to u∗. The SOAP data are compared to previous gas

transfer parameterisations using u10N computed from the EC friction velocity with the drag coefficient from the COARE

model. The SOAP results are consistent with previous gas transfer studies, but at high wind speeds they do not support the

sharp increase in gas transfer associated with bubble-mediated transfer predicted by physically based models.
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1 Introduction

Mass exchange across the air-sea interface is an important component of the Earth’s climate system. Uptake by the world

oceans has removed approximately 25% of the anthropogenic carbon dioxide (CO2) emissions from the atmosphere (Le Quéré

et al., 2015). Understanding the processes that control the ocean/atmosphere exchange of CO2 is important in order to estimate

global carbon fluxes and to assess the evolution and future impact of ocean uptake on Earth’s climate.5

The flux of CO2 across the air-sea interface can be written as

FCO2
= ∆pCO2αCO2

kCO2
, (1)

where ∆pCO2, αCO2
, and kCO2

are the partial pressure difference, the solubility, and the transfer velocity. The gas transfer

velocity is often parameterised as polynomial function of the mean wind speed at a height of 10 meter above sea level (u10N ).

Several different experimental approaches have been used to quantify air-sea gas exchange: (i) tracer studies utilising ambient10

gases (14CO2) (e.g. Wanninkhof, 1992; Sweeney et al., 2007) which integrate the flux over time scales of years, (ii) deliberately

introduced tracers (3He/SF6) (e.g. Nightingale et al., 2000; Ho et al., 2006) which integrate the flux over time scales of days, and

(iii) direct eddy covariance (EC) flux measurements on hourly time scales (e.g. McGillis et al., 2001, 2004; Kondo and Osamu,

2007; Miller et al., 2009, 2010; Prytherch et al., 2010; Edson et al., 2011; Blomquist et al., 2014). Some EC measurements

tend to support a cubic wind-speed dependence for kCO2
, (e.g. McGillis et al., 2001; Prytherch et al., 2010; Edson et al.,15

2011) whereas results from tracer studies (e.g. Nightingale et al., 2000; Ho et al., 2011) and more recent EC studies (Miller

et al., 2010; Butterworth and Miller, 2016a) are better fitted by a quadratic model. Gas exchange measurements at high wind

speeds are rare and the extrapolation of the kCO2
versus u10N relation leads to large uncertainties in global CO2 uptake e.g.

Takahashi et al. (2002) found a 70% enhancement in annual CO2 uptake when comparing cubic to quadratic wind speed

parameterisations.20

Eddy covariance (EC) is a method for the direct measurement of surface fluxes of momentum, heat, or trace gases at a height

of a few metres above the surface (Kaimal and Finnigan, 1994). The CO2 flux is defined as the covariance of the CO2 mixing

ratio (x′CO2
) with the vertical wind speed (w′) multiplied by the dry air density (nair):

FCO2
= nair

〈
w′x′CO2

〉
(2)

There are several challenges associated with the shipboard use of EC to measure air-sea fluxes. One is the need to correct25

measured winds due to anemometer accelerations and changes in orientation due to ship motion. Another is the disturbance

of the wind field by the ship (here termed air-flow distortion or AFD). Air flow over the bow and the presence of the ship

superstructure can lead to deflection of the wind vector and acceleration or deceleration of the mean wind speed. Uplift of

air as it passes over the ship also leads to a discrepancy between the measurement height and the height from which the

sampled air originated. This can lead to biased results when Monin-Obukhov Similarity Theory (MOST) profiles are used to30

extrapolate shipboard measurements to a specific reference height (typically 10 meter). The resulting errors in the wind speed

measurements are sensitive to the sensor location and the orientation of the ship with respect to the wind field.
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Typical approaches to deal with this problem are by careful anemometer placement, by restricting the use of data to a narrow

sector of relative wind direction, or by using numerical air-flow models to quantify air flow disturbance (Yelland et al., 1998,

2002; Popinet et al., 2004; O’Sullivan et al., 2013; O’Sullivan et al., 2015).

Direct comparisons between ship-board momentum flux measurements and those from low profile buoys or floating plat-

forms (FLIP) have shown significant differences (Pedreros et al., 2003; Edson et al., 1998). Landwehr et al. (2015) showed that5

such discrepancies could be explained by inappropriate application of the platform motion correction and rotation of the wind

vector, which led to overestimates of the deflection of the apparent wind vector by the ship’s structure and provided an adapted

correction.

Another concern is air flow generated by the moving platform that is not accounted by tracking the motion of the measure-

ment volume. Ship motion is essentially wave driven and this signal can therefore manifest itself as a residual motion peak in10

the flux spectra. Flügge et al. (2016) showed that residual motion-correlated signals in the momentum flux spectra measured

from a discuss-buoy were related to the platform motion as they were not observed in the spectra measured at a nearby tower.

Prytherch et al. (2015) provided evidence that the residual motion signal in momentum flux spectra obtained on board the

RRS James Clark Ross were caused by motion-induced flow distortion rather than by wave-induced momentum flux. They

also provided a simple correction for the induced bias via linear regression of the motion corrected wind speed signal with the15

vertical acceleration and velocity signals. Similar methods were previously employed successfully by Yang et al. (2013).

The non-dispersive infrared CO2 gas analysers used in most EC studies have cross-sensitivities to water vapour, which lead

to large uncertainties in the measurements and unrealistic transfer velocity estimates (Kondo and Osamu, 2007; Prytherch

et al., 2010; Edson et al., 2011; Blomquist et al., 2014). The cross-sensitivity effect can be mitigated by the use of closed-path

systems in combination with a dryer to remove water vapour fluctuations in the measurement volume (Miller et al., 2010).20

CO2 gas analysers also exhibit motion sensitivity (Miller et al., 2010), yielding signals that may covary with motion-induced

apparent winds. If not fully corrected, such signals would lead to spurious fluxes.

Here we discuss the analysis of EC measurements of momentum and CO2 fluxes taken on board the R/V-Tangaroa during the

Southern Ocean Aerosol Production study (SOAP), which was conducted from February to March 2012 on the R/V Tangaroa

(Law et al., 2017). The SOAP study was conducted in biologically productive waters on the Chatham Rise east of New25

Zealand. The CO2 flux measurements were previously published in Landwehr et al. (2014). Here the data are reanalysed

using the corrections proposed by Landwehr et al. (2015) and Prytherch et al. (2015). We describe the correction methods

and discuss the resulting improvements in the quality of the EC fluxes and mean wind speeds. Air-sea gas transfer velocities

are calculated using continuous underway measurements of seawater and atmospheric CO2, and compared with results from

previous gas-exchange studies.30

3



2 Methods

2.1 Sea water, atmospheric and flux measurements

The EC system consisted of two Csat 3 sonic anemometers mounted on the bow mast at a nominal height of 12.6 meter above

sea level (m a.s.l.). The two anemometers (port and starboard) were mounted 0.38 m away from the ship’s main axis so that

the distance between the two sensing volumes was 0.76 m. An inertial motion sensor (IMU - Systron Donner MotionPak II)5

measured linear accelerations and angular rates along 3 orthogonal axes. The motion sensor was located between and slightly

aft of the sonic anemometers. Together with a GPS compass and the ship’s gyrocompass these data were used to completely

describe the ship’s motion following Miller et al. (2008). Two Licor non-dispersive infra-red gas analysers (IRGA) of the

model LI-7500 were installed in a laboratory van on the foredeck and supplied with sample air via heated stainless steel tubing

(ID = 1 cm, L = 20 m). A bypass flow system was used to provide a high flow rate of 100 standard liter per minute (slpm)10

through the long tubing of which a fraction (18 slpm) was passed through the gas analysers. The sample air was dried prior to

analysis using a Nafion membrane dryer. The bypass flow system allowed for a high flow rate through the long sample tubing

to minimize delay and loss of turbulent fluctuations. There was a pressure drop of 260 mbar between the inlet and the gas

analyser. Further details on the EC system can be found in Landwehr et al. (2014).

Surface water pCO2 was measured using a showerhead equilibrator based system followed by a drier and infrared gas15

analyser (Licor 6251). Seawater was supplied from a 5 meter depth intake through the ship’s scientific seawater supply. The

gas analyser was calibrated using 4 gas standards ranging in concentration from 0.0 to 406.8 ppmv. The precision of the system

is estimated to be about ±1% (Currie et al., 2011).

Wind speed measurements from the Automated Weather Station (AWS) positioned above the crow’s nest of the R/V-

Tangaroa (25.6 m a.s.l.) are also used in this study.20

2.2 Simulation-based air flow distortion correction

The Gerris computational fluid dynamics (CFD) model was used to simulate flow over the R/V-Tangaroa for a range of asimuth

angles at 15° intervals. Gerris achieves a high degree of numerical efficiency by using an adaptive grid, increasing the grid

resolution in regions of high turbulence (Popinet, 2003). The adaptive grid was limited to the 0.5 m resolution of the numerical

CAD model of the ship, which did not include details such as the foremast or handrails, nor the two vans placed on the foredeck25

during SOAP. The large-eddy simulations (LES) did not explicitly include viscous terms but includes “numerical viscosity”

associated with the discretisation provided for subgrid-scale dissipation (Popinet et al., 2004). The inflow velocity was uniform

with height, rather than a more realistic logarithmic profile. The Gerris model is started with initial conditions, the flow speed

and uplift predictions were obtained from a time average of the modelled time-evolving three-dimensional turbulence, after the

conditions have reached steady state. The simulations were used to estimate corrections for acceleration and uplift of apparent30

wind at the Automated Weather Station (AWS) anemometer at the crow’s nest (25.6 m a.s.l.) and the two anemometers at the

bow mast (12.6 m a.s.l). The wind speeds were subsequently corrected for platform motion and converted to u10N .
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2.3 Correction for platform motion and flow distortion

In Landwehr et al. (2014), the measured wind speed was fully motion corrected before the mean tilt was estimated. This leads

to an overestimation of the vertical tilt θ that scales with the ratio of the apparent and true wind speed. Here we estimate the

vertical tilt angle by rotating the apparent wind vector for each 12 minute interval and subsequently applying the radial planar

fit (rPF) following Landwehr et al. (2015). The vertical tilt of the wind vector varied from about 5◦ for beam on wind directions5

to a maximum of 12.4◦ for bow on wind directions.

The tilt in the wind vector indicates an uplift of the air passing over the ship. For the bow mast anemometers, an uplift

ranging from 0.5 m to 4 m was estimated from the observed momentum flux cospectra and from LES simulations, as described

in Appendix A. The estimated undisturbed height of the sampled air (z̃) was used to normalise the wind speed measurements

to a nominal height of 10 m a.s.l. On average this resulted in u10N estimates about 2% higher than those based on the sampling10

height. The uplift estimate can also be used to improve the measurement height adjustment of other bulk measurements like

temperature and humidity.

2.4 Regression of the vertical wind speed signal with platform motion signals

Figure 1 shows average cospectra of the turbulent component of the vertical velocity with the longitudinal (alongwind) com-

ponent of horizontal velocity (nCouw) during a 220 minute long period when the ship was pointed into the wind. The cospectra15

are shown with different levels of vertical tilt and sensor motion corrections applied.

In this example the platform motion leads to a large negative peak in the cospectrum. This was mostly removed when the

measured speed was corrected for platform motion following Miller et al. (2008). However some residual structures remain in

the frequency band of the ships motion 0.07Hz≤ n≤ 0.3Hz. For this dataset the structure typically consisted of two peaks in

opposite directions i.e. one added energy to the observed momentum flux and the other removed energy.20

Prytherch et al. (2015) showed that the structures in the cospectrum are a measurement error related to the wave-induced

platform motion and suggested a regression of the wind speeds with the platform’s acceleration and velocity signals to remove

the erroneous signal. This motion scale correction (MSC) was used with a small modification. The acceleration and velocity

signals, used in the MSC, were separated into high and low frequency components using a complementary filter at fc=0.1 Hz.

This procedure provided a much higher effectiveness of the MSC. Our interpretation is that the motion-scale flow distortion25

effects may function differently for different frequencies and types of platform motion.

It was noted that increased energy in the momentum cospectrum at low frequencies (≤ 0.01Hz) was associated with small

changes in ship heading and/or speed. This is presumably due to atmospheric turbulence induced by changes in ship motion. A

linear regression of the vertical wind speed signal w with the ships speed and heading signal (navigation or NAV - regression)

was used to remove this component of the vertical wind, significantly reducing the sensitivity of the momentum flux to changes30

in the ship’s speed and heading (Fig. 1).
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Figure 1. Average along-wind momentum flux cospectra (220 minute long period, relative wind direction α= 15.5◦, u∗ = 0.62ms−2).

Shown are spectra for different tilt-motion corrections (i) the measured wind speed corrected only for instantaneous platform orientation and

wind direction (ume) (black line); (ii) corrected for the vertical tilt of the stream line (θ = 10◦) (dashed magenta line); (iii) the tilt-motion

corrected wind speed (Landwehr et al., 2015) (dashed grey line); (iv) additional application of the motion scale correction (MSC), which

was adapted from Prytherch et al. (2015) and regression with speed and heading (NAV), (thin blue line); (v) also shown is the semiempirical

shape of the cospectrum (Kaimal et al., 1972) (green dashed line). The shaded area marks the part of the momentum-flux signal that was

removed by the MSC and NAV regressions. In this case the reduction was 5% and 3% of the u∗ estimate, respectively.

6



2.5 Observation of elevated energy in the momentum flux co-spectra at high frequencies

It is conventional in EC data analysis to “rotate” the anemometer signals to correct for sensor or air flow tilt, to satisfy the

condition that (v = 0) and (w = 0). Figure 1 illustrates the effect of this rotation on measured winds from the SOAP cruise. For

this interval, the tilt of vertical was estimated to be (θ = 10◦) upward from horizontal (〈wme〉 ≥ 0). Adjusting the coordinate

system for this brings nCouw(n) closer to the semiempirical shape (nCoK33
uw , Kaimal et al., 1972). This is true however only5

for n≤ 1Hz. For n≈ 1Hz the shape of nCouw(n) is rather independent of θ and for n> 2Hz the adjustment of the natural

coordinate system causes nCouw(n) to diverge from nCoK33
uw . At those higher frequencies nCouw(n) was well matched for

θ = 0◦. In this example U ≈ 13.5ms−1, hence n= 1Hz corresponds to a length scale of λ= U (n)−1 = 1.1 m.

In order to quantify the potential bias in the momentum flux the integration of nCouw was separated into the part below

and above n= 1Hz, where for the frequencies above n= 1Hz the observed cospectrum nCouw(n≥ 1Hz) was replaced with10

nCoK33
uw (z̃,U,L) as predicted by (A1). The bias can then be formulated as:

∆u2
∗ = 〈uw〉−1

5Hz∫

1Hz

[
nCouw−nCoK33

uw (z̃,U,L)
]
dn, (3)

where 〈uw〉 is computed from the integration of nCouw over the full frequency range.

The results are plotted in Fig. B3 in the Appendix. The overestimation of u∗ as estimated from (3) is 2% on average but

ranges from 0%–6% and appears to be a function of z̃
U and z̃

L , which define the fraction of spectral energy at n≥ 1Hz. Relative15

wind direction is also important in determining the overestimation of u∗. This measurement bias could be reduced by placing

the anemometer further away from the ships hull, in order to reduce the vertical tilt of the wind vector.

In order to compare the EC based measurements of the air-side friction velocity (u∗) with other wind speed measurements,

they are converted to u10N using the wind speed dependent drag coefficient from COARE version 3.5 (Edson et al., 2013).

This done by iterating three times through the following equations:20

CD10N =
(

κ
log10(10z−1

0 )

)2

, (4)

u10N = u∗√
CD10N

(5)

where (z0 = γνu−1
∗ +αu2

∗g
−1) is the roughness length depending on, gravity (g), kinematic viscosity (ν), roughness Reynolds

number for smooth flow (γ = 0.11), and the wind speed dependent Charnock parameter,

α=





0.0017u10N− 0.005, (u10N ≤ 19.4ms−1).

0.028, (u10N > 19.4ms−1).
(6)25

that is recomputed for each iteration (Edson et al., 2013).

2.6 Regression corrections applied to the CO2 signal

LI-7500-measured CO2 densities were converted to mixing-ratios using the simultaneously measured pressure, temperature and

water vapour density in the measurement volume. The LI-7500 deployed in this experiment have sensitivity to motion (Miller
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et al., 2010). Following Miller et al. (2010) the residual motion signal was quantified for each 12 minute interval by a linear

regression of the xCO2
signal against the three acceleration signals and subtracted from the xCO2

signal. The LI-7500 sensors

also have cross sensitivity to H2O (Kohsiek, 2000). The Nafion dryer removed humidity fluctuations effectively, reducing the

ambient H2O flux on average by 93% (Miller et al., 2010; Landwehr et al., 2014). A similar reduction was observed for the

temperature flux signal due to heat exchange across the tubing walls. Small (< 10%) differences in the CO2 fluxes measured by5

the two LI-7500 units correlated with the residual humidity and temperature “fluxes” measured by the two dry close-path IRGA

units. The bias signal was quantified by linear regressions of xCO2
with xH2O and the cell Temperature Tcell and subtracted

from the xCO2
signal. This reduced the disagreement between the CO2 fluxes measured by the two units and the scatter in

the CO2 flux time series significantly. Since the variations of Tcell and xH2O in the CP-IRGA are fully decoupled from the

atmospheric variations by the long sample tubing and the diffusion dryer, there is no danger of removing real CO2 flux signal10

with this regression. The regression resulted in a small reduction of the observed CO2 fluxes (< 2% on average) and a 20%

reduction in variability of the flux signal. The mean, median, and standard deviation of the CO2 flux were -5.14, -4.85, 2.60,

respectively with the regression being applied, and -5.23, -4.84, 3.07 molm2yr−1, without regression.

2.7 Correction of the CO2 fluxes for attenuation of high frequency fluctuations.

In order to assess the reduction of the CO2 flux signal measured with the closed-path analysers due to high frequency attenu-15

ation, resulting from the long inlet tubing, the normalised 〈wCO2〉 cospectra were compared with the cospectra of the sonic

speed of sound temperature 〈wθs〉. The flux loss was estimated as the ratio of the cumulative sums counting from low to high

frequencies (ogives) at n= 0.3Hz (Marandino et al., 2007; Blomquist et al., 2010). High frequency fluctuations of CO2 are at-

tenuated by the measurement system due to passage of air through the intake tubing, drier, and closed path detector. According

to similarity theory, the fraction of CO2 flux lost due to high frequency attenuation depends on wind speed and atmospheric20

stability: For high wind speeds the cospectra are shifted to higher frequencies, thus increasing the relative loss in the CO2 flux.

At low wind speeds stratification (z/L > 0) can suppress large scale motion. In this case the spectral peak is shifted to higher

frequencies, when compared to neutral or unstable atmospheric stability (z/L≤ 0). For a moving observer, the apparent wind

speed is the relevant velocity scale to predict the frequency distribution of the turbulent motion that is observed by the EC

system. This is illustrated in Fig. B1 in the Appendix.25

The high frequency attenuation is assessed by comparing the normalised cospectra of CO2 (nCowθ) and sensible heat using

the sonic temperature (nCowθ). This is based on the assumptions that the cospectra of CO2 and sensible heat are similar (Sahlée

et al., 2008), that the measured nCowθ is not attenuated, and that the attenuation of the CO2 flux spectrum becomes negligible

for low frequencies (n≤ 0.3Hz). The last assumption was tested by using slightly higher and lower frequencies for the loss

estimation. The CO2 flux data were corrected by applying a gain (gCO2
) computed as the ratio of the cumulative sums (from30

low to high frequencies) of sensible heat and CO2 cospectra at n= 0.3Hz (Marandino et al., 2007; Blomquist et al., 2010).

In Fig. 2 the gain estimates (gCO2 ) are plotted as function of the stability parameter ζ. For this plot the data set was further

reduced by requiring |∆T |= |Tair−Tsea| ≥ 1K and |∆pCO2|< 50ppm. The gain (gCO2 ) for this cruise was parametrerised

as a function of relative wind speed U and the stability function
[
H( zL )

]3/4
, with H = 6.4ζ + 1 taken from Kaimal et al.
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(1972), as follows:

gCO2
(U,

z

L
) =Ag ·U +Bg ·

[
H(

z

L
)
]3/4

+Cg (7)

where Ag = 0.0038(±0.0026)[ms−1]−1, Bg = 0.37(±0.06), and Cg = 0.61(±0.07). This function was used to correct the

measured CO2 fluxes.

On average the correction to the CO2 flux signal was found to be 4%. For the range of wind speeds (U ≤ 25ms−1) and5

stratification ( zL ≤+0.2) on the SOAP cruise, the effect of stratification on the signal attenuation (0–30%) is larger than the

effect of the relative wind speed (0–10%). It is therefore necessary to predict the attenuation of the closed-path derived scalar

fluxes based on both apparent wind speed and atmospheric stability.
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2.8 Gas transfer velocity calculations

The time series of the 3D wind speed and CO2 mixing ratio were separated into 12 minute periods, over which all averages

and covariances were calculated. Equation (2) was used to obtain the CO2 fluxes (unit molm−2 s−1) which were converted to

gas transfer velocities in units of cmhr−1:

kSc = (3600 ∗ 100 ∗ 106)
FCO2

αCO2
∆pCO2

, (8)5

where αCO2
[molm−3 atm−1] is solubility of CO2 in sea water (Weiss, 1974).

In order to account for the influence of the sea surface temperature and salinity the transfer velocities were normalised to a

Schmidt number of 660, which corresponds to CO2 at 25°C

k660 = k

(
660

ScCO2

)−n
(9)

During SOAP the Schmidt number varied between 820 and 960, for a Schmidt number exponent of n= 1/2, this corresponds10

to a normalisation factor (Sc/660)1/2 of 1.12 to 1.21. Laboratory studies have shown a smooth transition of n from 2/3 to 1/2,

when the water surface changes from smooth to rough with increasing wind speed (Jähne et al., 1984). The exact shape wind

speed dependence of this transition has been found in to depend on surfactant concentration on the water surface (e.g. Frew

et al., 2004; Krall, 2013). Esters et al. (2017) showed that assuming a wind speed dependent Schmidt number can improve

gas transfer velocity parameterisations. For this work, however, the choice of Schmidt number exponent has only small effect15

on the overall results (for Sc= 900 n= 2/3 or n= 1/2 corresponds to a change in the normalisation factor from 1.17 to

1.23). For simplicity n= 1/2 was used for the whole dataset. Equation (9) assumes that the gas transfer velocity is purely

interfacial. Bell et al. (2017), however, showed that for u10N > 10ms−1 bubble mediated transfer becomes significant for the

air-sea gas exchange of CO2. Therefore a more complex Schmidt number/solubility normalisation may be necessary, to treat

the interfacial and bubble-mediated component of the CO2 gas transfer velocity separately. Due to the small range of Schmidt20

number variation observed during SOAP the effect of such a normalisation on the observed wind speed dependency of kCO2

should be minor.

3 Discussion of SOAP Data Analysis

3.1 Effect of the tilt-motion correction on gas transfer coefficients measured underway vs on station

As described in Sec. 2.3, the eddy covariance data were analysed using the improved tilt motion correction developed by25

Landwehr et al. (2015). Figure 3 shows the impact of that correction on the SOAP CO2 transfer velocities, k660(CO2). The

improved correction has relatively little impact on transfer velocities measured while the ship was on station (uship ≤ 1ms−1),

giving results that are similar to those previously published by Landwehr et al. (2014). However, the transfer velocities obtained

while the ship was underway (uship > 1ms1) were significantly reduced (up to 20cmhr−1) using the improved correction.
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The new tilt-motion correction method eliminates the systematic bias between ship on station and ship underway data. The

corresponding tilt estimates are shown in Fig. A1 in the Appendix.
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3.2 Length scale dependence of the streamline coordinate system

Our observation in described in Sec. 2.5 suggests that while rotation of the coordinate system into the air stream is crucial

to adequately measure the contribution of large eddies, it is counter-productive for the measurement of flux carried by small

eddies, i.e., it may be that the small scale turbulence (λ < 1 m) does not adjust its orientation to the new flow direction as

efficiently as the large scale turbulence. Another possible explanation could be that the magnitude of small scale turbulence5

may be increased locally as a result of the shear in the tilted and accelerated air flow.

The elevated cospectral energy for n≥ 1Hz is only observed in nCouw(n) while the heat flux spectra of the anemometers’

speed-of-sound temperature (Cowθ(n)) tend to collapse into the expected f−4/3 shape (see Fig. B2 in the Appendix). Due to the

projection of the auto-covariances of the three components u,v, and w, the momentum flux estimate is generally more sensitive

to the choice of the coordinate system than the scalar fluxes (see Wilczak et al., 2001). The sensitivity of the nCouw(n) estimate10

to the tilt increases in the inertial sub-range, where the auto-covariances of the three velocity components diminish slower with

increasing frequency (f−2/3). Elevated energy in nCouw at high frequencies has also been observed by (Butterworth and

Miller, 2016a), who observed wind vector tilt angles of up to 15° with anemometers mounted on the bow mast of the R/V

Nathaniel B. Palmer .
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3.3 Effect of the air flow distortion corrections on friction velocity

Figure 4 shows the u∗ obtained from EC with and without the regression and high frequency correction applied as function

of the air-flow distortion corrected wind speed measured at the bow mast (average of port and starboard anemometer). The

corrections lead to a reduction in the friction velocity by about 10% and to a better correlation with the air-flow distortion

corrected wind speed measured at the bow mast. The u∗ obtained from EC with and without the regression and high frequency5

correction are 12% and 22% higher than the u∗(bulk) derived from the bow mast wind speed using the COARE 3.5 (Edson

et al., 2013) and a linear fit of u∗(EC) to u∗(bulk) explained 94% and 90% of the variability, respectively. The neutral drag

coefficient CD10N = u2
∗u
−2
10N computed from the measurements showed no dependence on the true wind direction, which

could have indicated an effect of the varying fetch. The measured CD10N varied, however, on average by about ±7% with

the relative wind direction, for relative wind directions within ±90◦ to the bow. The disagreement with the COARE 3.510

parameterisation is likely due to residual flow distortion errors in either the mean wind speeds or the friction velocities, which

were not completely removed by the applied corrections. For the wind speeds these can originate from (i) errors in the estimated

acceleration/deceleration of the relative wind speed; (ii) errors in the estimated horizontal deflection, which will lead to minor

inaccuracies in the correction for horizontal ship velocity; and (iii) errors in the estimated uplift, which would introduce bias

in the wind speed normalisation. For the friction velocities, bias in estimates can arise from (i) insufficient removal of the15

ship-motion signals (MSC) and (NAV); (ii) small inaccuracies in the tilt estimate; and (iii) uncertainties in the estimation of

the elevated cospectral energy for n≥ 1 Hz.
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Figure 4. Eddy Covariance estimates of u∗ as function of u10N, estimated from the air-flow distortion corrected wind speed measured by

bow mast anemometers. The COARE 3.5 open ocean relation (Edson et al., 2013) is shown as black line.
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3.4 Wind speeds measured on free floating catamaran as external reference

During periods of fair weather, wind speed and direction were also measured by an Airmar PB200 marine sonic anemometer

at 5.6 m a.s.l. on the mast of a small catamaran. The PB200 has an RMS uncertainty of 0.5 m s−1 at wind speeds < 5m s−1,

which increases to 1 m s−1 for higher wind speeds. A GPS incorporated in the unit was used to correct the measured speeds

for horizontal platform motion. These data can provide an external reference to assess the uncertainties associated with the5

corrected shipboard measurements. For this comparison, we use data collected when the catamaran was free floating within

10 km of the ship (i.e. not dragged by the ship or small boat), and when significant wave heights were below 2.1 meters.

The catamaran measurements were adjusted to 10 meter height neutral stability using the u∗ and L measured with the ship-

borne EC system. The same adjustment using the bulk u∗ and L derived from the AWS wind speed measurements would

result in slightly lower (< 2%) u10N estimates. Figure 5 shows a comparison of the u10N estimates from the various shipborne10

wind measurements with those based on the catamaran. Compared to the u10N estimates from the catamaran wind speed

measurements, the EC-based results are 4% higher while the mean wind speed based estimates from the air-flow distortion

corrected shipborne measurements are 8% and 15% lower for bow and crow’s nest anemometer, respectively. This shows that

the direct EC measurements of u∗ enable a better estimate of the undisturbed wind speed than the flow distortion corrected

wind speeds. Note that for the adjustment of the bow mast wind speeds the estimated height of the undisturbed streamlines15

(z̃) has been used, which varies between 9-12 m.a.s.l. If instead the height of the bow anemometer (z = 12.6m) was used to

adjust the wind speed measurements a 2% lower u10N would be estimated, providing an on average 10% underestimation of

the catamaran wind speeds.
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Figure 5. Scatter of the normalised wind speed (u10N) measured by the Catamaran (zC = 5.6m) and the wind speed estimates from the

ship: (i) from the bow mast friction velocity (converted via COARE 3.5); (ii) from the bow mast wind speed (z̃b = [9− 12] m); and (iii) from

the AWS anemometer at the crow’s nest (zM = 25.6m). The lines indicate the mean ratio of the shipborne wind speeds with those from the

catamaran. The ratios are 1.04(±0.10), 0.92(±0.07), and 0.85(±0.08) for the bow mast momentum flux and the bow mast and crow’s nest

wind speeds, respectively.
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3.5 Regression corrections and the observed correlation between wind forcing and gas transfer.

Wind forcing or wind stress (τ = ρairu
2
∗) is the major driver of near surface turbulence, and the most important parameter to

predict air-sea gas exchange of CO2. In order to assess the corrections that were applied to the direct flux measurements the

measured k660(CO2) were parametrised as a polynomial function of u∗. Least squares regressions of k660(CO2) to u∗ were

examined for different levels of corrections applied to the data (Table 1). Linear and quadratic fits gave equivalent goodness5

of fit for the whole data set and provided very similar results for the wind speed range between 6ms−1 ≤ u10N ≤ 16ms−1,

therefore linear fits are used here.

The Deming regression (Deming, 1943) was used, which accounts for errors in observations on both the independent and

dependent variable. The ratio of the relative uncertainty ([σk/k] : [σu∗/u∗]) was estimated from the standard deviation of

the k660(CO2) and u∗ values when these were averaged over 4 hour long periods. The ratio of relative uncertainty was ap-10

proximately 6 : 1 for uncorrected EC results and approximately 2 : 1 for the EC results with regression corrections applied,

respectively. The Deming regression resulted in slightly steeper slopes than the normal linear regression, which only accounts

for uncertainty in the dependent variable (k).

The regression corrections applied to the CO2 mixing ratios and 3D wind speed measurements significantly improve the

k660(CO2) to u∗ correlation, resulting in an increase inR2 from 0.35 to 0.83. These corrections did not significantly change the15

slope of k660 vs u∗. The high frequency loss correction applied to the k660 estimates and correction of u∗ for elevated cospectral

energy at n≥ 1Hz did not improve the fit further, but slightly increased the slope of k660 vs (u∗) by about 7%. Figure 6 shows

a scatter plot of k660 and u∗ for the uncorrected EC results and for the data with all motion regression corrections applied to

FCO2 and u∗.

Table 1 also shows the results for least squares regressions of k660(CO2) to u∗(bulk), which were derived from the wind20

speeds measured at the bow mast and at the crow’s nest (AWS).

The corrections applied in the data analysis are summarised in Table 2, which provides the range and mean of the relative

bias in the EC friction velocities and CO2 fluxes that were removed by each of the corrections. Most corrections, on average,

reduced the results of the EC flux measurements. Only the correction for signal attenuation of the CO2 fluxes in the long

sample tubing caused an increase in the CO2 fluxes.25
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Table 1. Cumulative effect of various corrections on the relationship of gas transfer and friction velocity. Slope a and offset b with standard

error (±SE) and coefficients of determination (R2) for linear Deming regression of k660(CO2) with u∗, (k660 = au∗+ b) (Deming, 1943).

The first five rows feature EC results with increasing level of corrections applied to the data. The two last rows show the results for using

u∗(bulk) derived from the wind speed measurements on bow mast and crow’s nest (both were corrected for air-flow distortion).

Corrections applied slope a(±SE) offset b(±SE) R2

(cumulative)
[
cmhr−1(ms−1)−1

] [
cmhr−1

]
[−]

Basic EC 114.7(±6.1) -11.2(±2.2) 0.35

EC +...+ xCO2 regr. 98.2(±2.7) -6.4(±1.0) 0.75

EC +...+ MSC regr. 94.9(±2.4) -6.7(±0.9) 0.77

EC +...+ NAV regr. 97.6(±2.3) -6.5(±0.8) 0.83

EC +...+ high freq. corr 104.8(±2.3) -7.3(±0.8) 0.83

Bow mast wspd. 114.3(±3.0) -5.0(±0.9) 0.78

crow’s nest (AWS) wspd. 109.4(±2.4) -3.7(±0.7) 0.76
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Figure 6. CO2 gas transfer velocity normalised to Sc= 660 as function of u∗. Shown are the direct EC estimates prior and after the

application of the regression corrections to the CO2 mixing ratios and wind speed measurements. The lines show linear fits of k660(u∗)

against u∗. The linear regression explained 83% of the EC results with the regression corrections applied and 35% without regression

corrections, respectively.
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Table 2. Corrections to the EC data listed in the order in which they were applied. Column #2 notes to which data the correction is applied. In

column #3 the range of bias is given in % of the corrected value, with negative numbers indicating that the corrected value was underestimated

by the uncorrected observation. The mean and standard deviation of the relative corrections for the SOAP data are provided in column #4.

Column #5 provides references were applicable. † For the motion regression applied to the CO2 mixing ratios the bias ranges are given for

the two cases that the MSC was or [ was not ] applied to the 3D wind speeds.

Name Applied Range of relative bias mean(± std) References

(abbreviation) to of

Tilt-motion (u,v,w) u∗: -50% to +500% +80(±50)% Edson et al. (1998)

correction (rPF) Landwehr et al. (2015)

Motion regression (u,v,w) u∗: -50% to +110% +3(± 10)% Prytherch et al. (2015)

(MSC) (with modifications)

Speed/heading (u,v,w) u∗: -30% to +120% +5(± 9)% this work

regression (NAV)

High frequency nCouw u∗: 0% to +6% +2(± 1)% this work

elevated energy

†Regression with xCO2 FCO2 : -100% to +150% +1.5(± 20)% Miller et al. (2010)

motion, xH2O,T [ -200% to 300% ] [+14(± 40)% ] (with modifications)

High frequency nCowx FCO2 : -30% to +0% -4(± 5)% Marandino et al. (2007)

loss correction (x = xCO2
) Blomquist et al. (2010)
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3.6 Correlation between transfer velocity and different wind speed estimates

In order to study how air-flow distortion influenced the relationship between k660 and u∗, the relative anomaly from the fit

prediction (δk = kmeas./kfit(u∗)− 1) was calculated and bin-averaged over 25°wind direction sectors (Fig. 7). No difference

was observed when using 1st, 2nd, or 3rd order polynomials to fit the data. For the air-flow distortion corrected wind speed

from the AWS anemometer the anomalies show a strong directional pattern spanning more than 25% variation. This can be5

attributed to air-flow distortion effects (including height displacement), which were not properly accounted for by the LES

model. The AWS wind speed explains 77% of the variability in k660. For the u∗(bulk) calculated from the bow mast wind

speeds (corrected for air-flow distortion and effective measurement height) the directional variability is considerably reduced

and the correlation explains 79% of the variability in k660. The u∗ values derived from the eddy covariance momentum flux

measurements exhibited the least directional variability in the δk and explained 83% of the variability in k660.10

Based on these results, the k660 measured on SOAP are best reported as function of the directly measured u∗ (EC). This result

might apply to other ship-borne EC gas flux studies where disagreement between direct and bulk estimates of the momentum

flux have been recorded. For example, on the R/V-Knorr bow mast, u∗ measured (EC) at 13.6 m a.s.l. agreed well with the

COARE prediction u∗ when plotted against u10N derived from an anemometer at 15.5 m a.s.l. When u10N was derived from

the 13.6 m a.s.l. anemometer, the COARE prediction substantially underestimated the measured u∗ (EC) across a range of wind15

speeds (Bell et al., 2013, supplementary info). Scaling k(EC) with u∗ or u10N(EC) instead of u10N(bulk) avoids uncertainties

arising from height and stability corrections as well as potential bias arising from air-flow distortion effects that might affect

EC and mean wind speed measurements differently.
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Figure 7. Average relative deviations (δk = kmeas./kfit(u∗)− 1) from linear fits to k660(u∗) as a function of the relative wind direction.

The relative anomalies are averaged into relative wind direction sectors (25°bins). The errorbars indicate the standard error of the mean

value of each sector. The red and green line show the anomalies for direct EC k660 and bulk u∗ derived from the AWS (crow’s nest) and the

bow mast anemometer respectively. The blue line shows the anomalies for the ratio of direct EC k660 and direct EC u∗. The coefficients of

determination (R2) of the polynomial fits are provided in the legend. The black dashed line indicates the fraction of data observed in each

wind direction sector.
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4 Discussion of SOAP Gas Transfer Velocities

4.1 SOAP gas transfer velocity as a function of friction velocity

The SOAP data set consists of 1155 measurements (231 hours), ranging in wind speed (u10N) from 3− 23ms−1, with the

majority of the data (95%) between 5− 16ms−1. The SOAP gas transfer velocities are highly correlated with wind forcing

and wind speed. For the observed range of wind speeds the relationship to friction velocity is well described by a linear fit to5

the measured (EC) u∗ (Fig. 8).

k660 = 104.8(±2.3)u∗− 7.3(±0.8), (10)

where the units of k660 and u∗ are [cmhr−1] and [ms−1], respectively. The fit explains 83% of the observed variability in the

gas transfer velocity. For the wind speed range 5− 19ms−1 Eq. (10) predicts the wind speed binned data within one standard

deviation. As noted in section 2.6, regressions with higher order polynomials do not improve the fit. The SOAP gas transfer10

velocities exhibit much less scatter as function of wind speed than previous CO2 EC flux studies (McGillis et al., 2001; Edson

et al., 2011), providing for a more precise estimate of the wind speed dependence.

Eq. (10) should not be interpreted as physical law, but rather as empirical parametrisation for the wind speed range 5−
19ms−1. Extrapolation of this linear k vs EC u∗ relationship outside of the wind speed range of the SOAP data set is not

recommended, because there are physical reasons why this relationship might not hold. At lower wind speeds, buoyancy-15

driven processes may contribute significantly to gas transfer (Soloviev, 2007; Fredriksson et al., 2016). In fact (10) slightly

underestimates the wind speed binned data for u10N < 5ms−1 and would predict negative k660 for u∗ ≤ 0.07ms−1 (u10N ≤
2.3ms−1). However, since our estimations of the Richardson number (Ri=B0,wνwu

−4
∗,w) remained below the critical value of

Ri≈ 0.004, which was suggested by Fredriksson et al. (2016), we do not expect significant contribution of buoyancy-driven

processes to the gas exchange rates observed during SOAP. Here B0,w, νw, and u∗,w are the water side surface buoyancy20

flux, kinematic viscosity of sea water, and waterside friction velocity respectively. At higher wind speeds, wave breaking and

bubble-driven gas transfer are expected to contribute to gas transfer of CO2 and other sparingly soluble gases (Woolf, 1997;

Fairall et al., 2011; Bell et al., 2017). Surprisingly, there is no evidence in the SOAP data for an increase in the slope of the

k660 vs u∗ relationship at high wind speeds. If anything, the limited SOAP data available at the highest wind speeds appear to

be biased low relative to the linear regression.25
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Figure 8. Top: CO2 gas transfer velocity normalised to Sc= 660 as function of u∗. The data are shown as individual measurements (light

blue) and bin averaged over 1ms−1 wind speed bins (dark blue) (the width of the last two bins was increased to 3ms−1, in order to account

for the scarcity of the data at high wind speeds). The error bars indicate the standard deviation. The linear regression to the individual data

(10) is shown as black line. Bottom: residual difference of the bin averages from (10). The two x-axis show the friction velocity and the

corresponding u10N when the COARE 3.5 drag coefficient is assumed.

26



4.2 Comparison of SOAP results to previous gas transfer parameterisations

Most previously published gas transfer parameterisations are based on u10N. In order to compare Eq. (10) with the u10N-based

parameterisations the measured (EC) u∗ was converted to u10N using Eqs. (4), (5), and (6). The linear u∗ dependency observed

on SOAP corresponds to wind speed dependence that is greater than unity but less than quadratic (Fig. 9). At low to intermediate

wind speeds (u10N of 4ms−1–14ms−1) the SOAP gas transfer coefficients are 0–20% larger than the quadratic Sweeney et al.5

(2007) parameterisation. Above 14ms−1, however, the SOAP observations are lower than Sweeney et al. (2007), e.g., at

u10N = 20 m s−1 the Sweeney et al. (2007) parametrisation predicts 15% higher gas exchange than observed during SOAP.

The SOAP gas transfer observations agree well with the COAREG 3.1 bulk flux model at low wind speeds (u10N < 11 m s−1;

Fairall et al., 2011). At higher wind speeds, COAREG predicts greater gas exchange than observed during SOAP. At wind

speeds (u10N) of 13 m s−1, 16 m s−1, and 20 m s−1, COAREG yields 16%, 45%, and 90% higher gas transfer velocities than10

observed during SOAP, respectively. The recent high latitude Southern Ocean EC measurements from Butterworth and Miller

(2016b) agree with the observations from SOAP within the uncertainties of both data sets.
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Figure 9. CO2 gas transfer velocity normalised to Sc= 660 as function of normalised wind speed u10N, which was calculated from the

directly measured u∗ using the COARE 3.5 drag coefficient. The data are bin averaged over 1ms−1 wind speed bins (dark blue) (the width

of the last two bins was increased to 3ms−1, in order to account for the scarcity of the data at high wind speeds). The error bars indicate the

standard deviations. Equation (10) is shown as black line. Parameterisations from (Sweeney et al., 2007; Fairall et al., 2011) are shown as

dashed lines in green, and cyan respectively. Also shown are 1ms−1 wind speed bin median values (and standard deviations) observed by

Butterworth and Miller (2016b) with EC in the high latitude Southern Ocean (red).
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The SAGE dual tracer (3He/SF6) experiment was conducted in March/April 2004 in the same area as SOAP (Ho et al., 2006,

2007; Smith et al., 2011). In order to compare these data to SOAP, we corrected the QuikSCAT wind speed measurements after

Boutin et al. (2009) and converted to u∗ using the COARE 3.5 drag coefficient. The transfer velocities were corrected for

enhancement of k due to wind speed variability following Wanninkhof et al. (2004), which leads to a 3%-25% reduction of

the k values (Smith et al., 2011). The SAGE k600 values were converted to k660 using (9) with n= 0.5. The data from SAGE5

covers the wind speed range (u10N=7–16 m s−1). A linear fit to the SAGE data yields,

k660 = 101.6(±16.4)u∗− 5.7(±7.9), (11)

with k660 and u∗ in the units [cmhr−1] and [ms−1], respectively. The slope and intercept of this relationship are in very good

agreement with the SOAP linear fit.

Smith et al. (2011) provided a quadratic fit of the SAGE data to wind speed (k600 = 0.294u10N). Converting this fit to10

u∗(COARE 3.5), yields a goodness of fit similar to that of Eq. (11) (R2 = 0.80 and R2 = 0.81, respectively). However, above

16ms−1, the SAGE quadratic relationship greatly overestimates the SOAP results. (Fig. 10).

Due to the lower u10N estimated by the AFD-corrected wind speed measurements on SOAP (at the bow mast and crow’s nest)

the usage of those would lead to about 20% and 10% higher k660 values at u10N = 10ms−1 and u10N = 20ms−1, respectively.
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Figure 10. Schmidt number normalised gas transfer velocities (k660) from the Southern Ocean SOAP and SAGE experiments as a function

of friction velocity (u∗). Red points - SAGE data from Ho et al. (2007, Table 1), with corrected QuikSCAT wind speeds following Boutin

et al. (2009) and converted to u∗ using COARE 3.5 (see section 2.5). Magenta dashed line: SAGE parameterisation from Smith et al. (2011).

Orange dashed line: u∗-linear fit to the SAGE data Eq. (11). Blue points: SOAP shown as 1ms−1 wind speed bin averages. Black line:

SOAP u∗-linear regression (Eq. 10). The error bars indicate the standard error of the mean.
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5 Conclusions

Direct eddy covariance CO2 and momentum flux measurements made on board the R/V-Tangaroa during the SOAP experiment

have been reanalysed using a series of established and new corrections for platform motion, air-flow distortion, and sensor

cross-sensitivity. The wind speed measurements from a free floating catamaran correlated better with u10N, which was derived

from the measured u∗ using COARE 3.5 drag coefficient, than with u10N derived from wind speeds, which were measured5

on the ship and corrected for airflow distortion using a LES-model. Reprocessing the SOAP data resulted in CO2 gas transfer

velocities with considerably less scatter than prior studies using similar instrumentation. The improved SOAP data set exhibits

a strong linear correlation between CO2 transfer velocity and friction velocity over a wind speed (u10N) range of 5−19ms−1.

This result is surprising, and suggests that the contribution of bubble-mediated CO2 gas transfer may be overestimated in

current physically-based gas transfer models, or that a reduction of the interfacial gas transfer at high wind speeds may offset10

the bubble-mediated enhancement (e.g. Soloviev, 2007).
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Appendix A: Vertical tilt and uplift estimation

When the air stream approaches the ship the stream lines are distorted by the bluff body. This leads to an uplift of the air from

its original height and to an upward tilt of the streamlines. For accurate Eddy Covariance flux estimates it is essential to estimate

to tilt of the wind vector. Figure A1 shows the vertical tilt estimates that were used in Landwehr et al. (2014) and the estimates

obtained following Landwehr et al. (2015), as a function of the relative wind direction. For underway data the incorrect order5

of motion and tilt-correction used in Landwehr et al. (2014) lead to large overestimations of the tilt and consequently biased

EC flux results. The LES model predictions for the vertical tilt (Popinet et al., 2004) are of the same magnitude but show a

contrary functionality with relative wind direction for |α| ≤ 60◦. Note that the bow mast was not included in the LES model of

the R/V-Tangaroa. This might explain the differences between the observed tilts and the LES simulation.
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Figure A1. Estimates of the vertical tilt of the wind vector from the starboard side anemometer as function of the relative wind direction.

(i) using the true wind speed as done in Landwehr et al. (2014) (orange dots); (ii) using the apparent wind speed as suggested by Landwehr

et al. (2015) (blue circles); (iii) using the radial planar fit (Landwehr et al., 2015) (blue line); (iv) from the LES model of the R/V-Tangaroa

(Popinet et al., 2004) (red dashed line).
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Due to the uplift of the air flow passing over the ship, the true measurement height z̃ does not coincide with the average

height z of the anemometer on board. While not affecting the measurement of air-sea fluxes with the EC method, the true

measurement height and thus the uplift ∆z = z− z̃ is an important parameter for the normalisation of the wind speed u10N and

for the interpretation of the observed cospectra.

Here the observed cospectra were used to estimate the effective measurement height and thus the uplift. The momentum flux5

spectra were averaged over 1–2 hour intervals with steady speed and heading of the ship. A total of 95 such intervals where

found. The nCo〈uw〉(n) were fitted with the universal shape of the momentum flux cospectrum, proposed by Kaimal et al.

(1972):

nCouw(n)

〈uw〉 =
A f
f0

1 +B( ff0 )C
(A1)

whereA= 0.88,B = 1.5, the exponentC = 2.1, and the characteristic non-dimensional frequency is given by f0 = 0.1
[
G( zL )

]3/4
,10

wereG is a function of the non-dimensional stability parameter ζ = z
L . The square of the residuals (weighted with the standard

deviation of the frequency weighted cospectral averages) were minimised by varying A and n0 = f0
U
z , while keeping B = 1.5

andC = 2.1 constant. The average of the fit was found to beA= 0.86±0.07, which agrees within uncertainty with the value of

A= 0.88 found by Kaimal et al. (1972). For all intervals with unstable to neutral stability ( zL ≤ 0 and G( zL ) = 1) the original

height of the measured streamlines can be estimated with,15

z̃ = 0.1
zbow

f0
= 0.1

U

n0
, (A2)

where zbow = 12.6m is the nominal measurement height above mean sea level. The estimates of z̃ were bin-average over 15°

absolute wind direction bins (assuming symmetry over the ships main axis). The results are plotted in Fig. A2 and compared

with the uplift estimates from the LES model (Popinet et al., 2004).

For wind direction at 0° to the bow, the resulting z̃ agreed (within the uncertainties) with the predictions of the LES sim-20

ulation (Popinet et al., 2004). For 20°6 |α|660° the fit to cospectra indicates a higher uplift than the LES model, while for

|α|>60° the observed uplift is lower than predicted by the LES model.
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Figure A2. Measurement height estimated with (A2) as function of the relative wind direction. Individual measurements are shown as dots

with the errorbars indicating the uncertainty of the fit. The measurements are averaged over direction bins, this is shown as dashed blue line.

The dashed black line indicates the nominal measurement height zbow = 12.6m and the red curve shows the results from the Gerris Large

Eddy Simulation. Only results obtained from fits to unstable spectra z
L
≤ 0 (withG( z

L
) = 1) are shown in this plot and were used to estimate

z̃.
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Appendix B: Shape of the cospectra

The size distribution nCouw(λ) of the turbulent energy depends on the stability parameter ζ (Kaimal et al., 1972). In an EC

system, however, the turbulence are recorded as time series. The frequency distribution nCouw(f) reflects the size distribution

depending on the relative velocity (f ∼ λU ). For a stationary observer U = |u|, the true wind speed; but for a moving observer

it is necessary to take the observer’s velocity (vobs.) into account (U = |u+vobs.|). This is illustrated in Fig. B1, where average5

normalised cospectra are shown for three scenarios:

a) with ua = 9.3ms−1, vobs.,a = 0ms−1 −→ Ua ≈ 9.3ms−1,

b) with ub = 9.3ms−1, vobs.,b = 4ms−1, −→ Ub ≈ 13.5ms−1,

c) with uc = 13.0ms−1, vobs.,c = 0ms−1, −→ Uc ≈ 13.5ms−1.

This provides ua ≈ ub ≈ 9.3ms−1 and Ub ≈ Uc ≈ 13.5ms−1. The average cospectra from case (b) and (c) are similar and10

shifted to higher frequencies when compared to case (a). This shows that the relative wind speed U , rather than the true wind

speed u, determines the frequency distribution of the turbulent energy.

Figure B2 shows the normalised cospectra of the momentum CO2 and sensible heat flux grouped for atmospheric stability

as function of the non-dimensional frequency (using U , L, and the directional dependent estimates of z̃). As described in

section 2.5, for f > 1 the energy observed in nCouw is higher than expected from the universal shape. The estimated effect on15

u∗ was however relatively small (0-6%, on average 2% overestimation, see Fig. B3). However in general the cospectra exhibit

Kaimal like shapes, mostly follow -4/3 or slope, and shift to higher frequencies for ζ > 0 as expected. Note that the shown

spectra are only weighted with the corresponding EC flux and do therefore not collapse in the inertial sub-range.
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Figure B1. Average normalised cospectra of the momentum flux (a) station measurements with 8ms−1 < u10N < 10ms−1, (b) underway

measurements with 8ms−1 < u10N < 10ms−1 and a ship’s speed of vobs. ≈ 4ms−1, (c) station measurements with 12ms−1 < u10N <

14ms−1. Only data with relative wind direction |α|< 20◦ and z/L < 0 are used.
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Figure B2. Normalised Cospectra of momentum CO2 and sensible heat bin averaged over based on the dimensionless stability parameter.

The dashed green curve shows (A1) (Kaimal et al., 1972). The magenta and red dotted lines indicate the expected slopes in the inertial

sub-range for Co and power spectra respectively. Note that the cospectra are not normalised for the stability function, this would reduce the

magnitude of the stable spectra and make them fall together with the unstable-neutral spectra in the inertial subrange.
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(A1) as function of the relative wind direction and the value of the non-dimensional frequency fn=1Hz corresponding to n= 1Hz.
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Appendix C: Flux calculations and Data quality assessment

The data were separated in 12 minute long intervals, over which all averages and fluxes were computed. For the correlation of

CO2 fluctuations measured in the closed-path analyser with w′ the optimal time lag was found by searching for the maximum

covariance 〈w′(t)x′CO2
(t+ δt)〉 within a reasonable range of δt= 0− 3seconds. For both IRGAs dryA and dryB the average

optimal time lag was 〈δt〉= 1.50(±0.15)seconds. Individual δt that deviated more than two samples from 〈δt〉 were defaulted5

to δt= 〈δt〉. This was the case only for periods of relatively low CO2 fluxes and during the high wind speed event doy=(60.76-

60.80), where residual motion related signals lead to a strong correlation between w and xCO2 at δt= 0.

Power and cospectra are computed as fast Fourier transforms (FFT). All spectra are smoothed and down sampled using

linearly increasing averaging intervals in the frequency domain.

The quality control of the data were performed in different levels. For stage A momentum flux data were rejected when any10

of the following criteria was fulfilled:

– The vector average of the instantaneous course/heading vector was smaller than 0.90 (1 indicates a perfectly stable

course). This corresponds to a maximum standard deviation of the heading of 25°.

– The measured relative wind direction to the bow |〈α〉| ≥ 110◦

– The true relative wind direction to the bow |〈αtrue〉| ≥ 125◦15

– Measured average relative wind speed 〈ume〉 ≤ 1ms−1

– Data from 20-Feb-2012 18:30 till 21-Feb-2012 06:00 were excluded for malfunctioning of the starboard anemometer.

– If the momentum flux computed over the 12 minutes period was more than 30% different from the average momentum

flux computed over 5 subintervals of 2.4 minutes.

This removed approx 30% of the total number of 2222 available measurements. Only a fraction of 2% were excluded solemnly20

based on the stability test.

The CO2 flux data were discriminated based on the following stage A criteria:

– If the momentum flux failed the stage A quality control.

– The air-sea CO2 concentration difference was low (|∆pCO2| ≤ 30ppm).

– The root mean square value (RMS) of xCO2
was larger than 0.3 ppm (the total median and restricted median and mean25

values of the RMS were 0.07 ppm and 0.06 ppm, for LI-7500 dryA and dryB, respectively).

– Strong stable atmospheric condition ( zL ≥+0.2) where excluded to reduce the uncertainty introduced by the high fre-

quency loss correction (see section 2.7).
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This removed 45% of the total number of available measurements. Further a total of 8 measurements with negative transfer

velocities were excluded.

The quality control stage B was mainly based on the shape of the cumulative sum of normalised cospectra (Fsum) as function

of the non-dimensional frequency with stability correction f = n z
U [G( zL )]−3/4, whereG is taken from (Kaimal et al., 1972), to

account for the shift of the spectra to higher frequencies for z
L >> 0. Intervals where any of the following criteria was fulfilled5

for the normalised along-wind momentum flux cospectrum, where excluded.

– Fsum ≤−0.2 @ f = 0.03Hz

– Fsum ≥+0.7 @ f = 0.03Hz

– Fsum ≥+0.9 @ f = 0.1Hz

– Fsum ≤+0.8 @ f = 1Hz10

– min(Fsum)≤−0.2

– max(Fsum)≥ 1.1

– min(nConorm)≤−1

– max(nConorm)≥ 2

The same filter was applied to the heat flux cospectra which where used for the estimation of the high frequency flux loss in15

section 2.7.

Accounting for the lower signal to noise ration in the CO2 flux spectra and the effects of high frequency attenuation, only

the last four of the above criteria where applied as additional filter on the CO2. For both the momentum and CO2 flux, stage B

removed about 6% of the data that had passed the respective stage A.

Using z̃, U , and L with (A1) allows to estimated how much of the turbulent flux signal would be expected to be outside20

of the observed frequency range 1/720 to 5 Hz. Based on (A1), 98.3% of the theoretical momentum flux spectrum was

resolved for U ≈ 15ms−1 and z
L ≥ 0. Between 98% and 98.3% of nCoK33

uw were resolved for 15ms−1 ≤ U ≤ 25ms−1. Thus

the theoretical loss cause by the limited measurement frequency of 10 Hz was always less than 2%. Even for low wind speeds

(U ≤ 3ms−1) and unstable stratification, the theoretically resolved fraction was not lower than 96%. The chosen flux-averaging

time of 12 minutes was therefore adequate to resolve the turbulent air-sea fluxes.25
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Appendix D: Differences in wind speed and momentum flux estimates from the two bow mast anemometer

The relative difference between the momentum flux/wind speed measurements of the port and starboard anemometer illustrates

the small scale variability of the flow-distortion effects, but also gives an indication on the absolute flow-distortion errors in the

measurement of each anemometer. Figure D1 shows the relative difference of the port and starboard anemometer measurements

of friction velocity and wind speed as function of the relative wind direction. The wind speed as well as the friction velocity5

estimates from the two anemometer agree well with each for bow on relative wind directions. However for increasing relative

wind direction the windward anemometer reads up to 7% and 6% higher wind speed U and friction velocity u∗ than the leeward

anemometer, respectively. The air flow distortion correction with the model results from (Popinet et al., 2004) removes only

30% of the relative difference in the wind speed measurements from the two bow mast anemometers. The MSC and NAV

regression corrections clearly reduce relative differences observe in the u∗ measurement from the two anemometers to within10

±2% for most wind direction sectors and most of the measurements. With all corrections applied the relative difference in the

u∗ estimates from the two anemometers is less than half of the relative difference of the wind speed estimates.
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Figure D1. Relative differences of starboard and port side measurements of u∗ and wind speed as a function of the relative wind direction

calculated as (stbd-port)/(stbd+port) and averaged over 15◦ wind direction bins. The plot shows δu∗/〈u∗〉 for only motion and tilt corrected

wind speeds (grey dashed open circles) and with all regression corrections applied (blue filled circles), respectively. The relative difference

of the wind speed measurements, with and without air flow distortion correction applied, are shown as open and filled green diamonds,

respectively. The black dashed line indicates the fraction of data observed in each wind direction sector. The errorbars show the standard

error of the mean values.
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