Articles | Volume 18, issue 4
https://doi.org/10.5194/acp-18-2363-2018
https://doi.org/10.5194/acp-18-2363-2018
Research article
 | 
19 Feb 2018
Research article |  | 19 Feb 2018

Measurement–model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber

Nina Sarnela, Tuija Jokinen, Jonathan Duplissy, Chao Yan, Tuomo Nieminen, Mikael Ehn, Siegfried Schobesberger, Martin Heinritzi, Sebastian Ehrhart, Katrianne Lehtipalo, Jasmin Tröstl, Mario Simon, Andreas Kürten, Markus Leiminger, Michael J. Lawler, Matti P. Rissanen, Federico Bianchi, Arnaud P. Praplan, Jani Hakala, Antonio Amorim, Marc Gonin, Armin Hansel, Jasper Kirkby, Josef Dommen, Joachim Curtius, James N. Smith, Tuukka Petäjä, Douglas R. Worsnop, Markku Kulmala, Neil M. Donahue, and Mikko Sipilä

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Nina Sarnela on behalf of the Authors (21 Dec 2017)  Author's response   Manuscript 
ED: Publish subject to minor revisions (review by editor) (02 Jan 2018) by Frank Keutsch
AR by Nina Sarnela on behalf of the Authors (08 Jan 2018)  Author's response   Manuscript 
ED: Publish as is (09 Jan 2018) by Frank Keutsch
AR by Nina Sarnela on behalf of the Authors (11 Jan 2018)
Download
Short summary
Atmospheric trace gases can form small molecular clusters, which can grow to larger sizes through the condensation of vapours. This process is called new particle formation. In this paper we studied the formation of sulfuric acid and highly oxygenated molecules, the key compounds in atmospheric new particle formation, in chamber experiments and introduced a way to simulate these ozonolysis products of α-pinene in a simple manner.
Altmetrics
Final-revised paper
Preprint