the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States
Jingyi Li
Arlene M. Fiore
Ronald C. Cohen
John D. Crounse
Alex P. Teng
Paul O. Wennberg
Ben H. Lee
Felipe D. Lopez-Hilfiker
Joel A. Thornton
Jeff Peischl
Ilana B. Pollack
Thomas B. Ryerson
Patrick Veres
James M. Roberts
J. Andrew Neuman
John B. Nowak
Glenn M. Wolfe
Thomas F. Hanisco
Alan Fried
Hanwant B. Singh
Jack Dibb
Fabien Paulot
Larry W. Horowitz
Abstract. Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004), SENEX (June–July 2013), and SEAC4RS (August–September 2013) and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (∼ 42–45 %), followed by NOx (31 %), total peroxy nitrates (ΣPNs; 14 %), and total alkyl nitrates (ΣANs; 9–12 %) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.
- Article
(3135 KB) - Full-text XML
-
Supplement
(2403 KB) - BibTeX
- EndNote