Articles | Volume 18, issue 3
https://doi.org/10.5194/acp-18-2341-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-2341-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States
Jingyi Li
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology,
Nanjing 210044, China
Department of Chemistry and Biochemistry & Geophysical Institute,
University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Arlene M. Fiore
Department of Earth and Environmental Sciences & Lamont-Doherty
Earth Observatory of Columbia University, Palisades, NY 10964, USA
Ronald C. Cohen
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
Department of Earth and Planetary Science, University of California,
Berkeley, Berkeley, CA 94720, USA
John D. Crounse
Division of Geological and Planetary Sciences, California Institute of Technology,
Pasadena, CA 91125, USA
Alex P. Teng
Division of Geological and Planetary Sciences, California Institute of Technology,
Pasadena, CA 91125, USA
Paul O. Wennberg
Division of Geological and Planetary Sciences, California Institute of Technology,
Pasadena, CA 91125, USA
Division of Engineering and Applied Science, California Institute of Technology,
Pasadena, CA 91125, USA
Ben H. Lee
Department of Atmospheric Sciences, University of Washington, Seattle,
WA 98195, USA
Felipe D. Lopez-Hilfiker
Department of Atmospheric Sciences, University of Washington, Seattle,
WA 98195, USA
Joel A. Thornton
Department of Atmospheric Sciences, University of Washington, Seattle,
WA 98195, USA
Jeff Peischl
Chemical Sciences Division, NOAA Earth System Research Laboratory,
Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, CO 80309, USA
Ilana B. Pollack
Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
Thomas B. Ryerson
Chemical Sciences Division, NOAA Earth System Research Laboratory,
Boulder, CO 80305, USA
Patrick Veres
Chemical Sciences Division, NOAA Earth System Research Laboratory,
Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, CO 80309, USA
James M. Roberts
Chemical Sciences Division, NOAA Earth System Research Laboratory,
Boulder, CO 80305, USA
J. Andrew Neuman
Chemical Sciences Division, NOAA Earth System Research Laboratory,
Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, CO 80309, USA
John B. Nowak
Aerodyne Research, Inc., Billerica, MA 01821, USA
now at: NASA Langley Research Center, Hampton, VA 23681, USA
Glenn M. Wolfe
Joint Center for Earth System Technology,
University of Maryland Baltimore County, Baltimore, MD 21250, USA
Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center,
Greenbelt, MD 20771, USA
Thomas F. Hanisco
Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center,
Greenbelt, MD 20771, USA
Alan Fried
Institute of Arctic & Alpine Research, University of Colorado Boulder,
Boulder, CO 80309, USA
Hanwant B. Singh
NASA Ames Research Center, Moffett Field, CA 94035, USA
Jack Dibb
Department of Earth Sciences and Institute for the Study of Earth,
Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
Fabien Paulot
Program in Atmospheric and Oceanic Sciences, Princeton University,
Princeton, NJ 08544, USA
Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration,
Princeton, NJ 08540, USA
Larry W. Horowitz
Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration,
Princeton, NJ 08540, USA
Viewed
Total article views: 6,313 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 13 Jul 2017)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 4,701 | 1,510 | 102 | 6,313 | 511 | 98 | 168 |
- HTML: 4,701
- PDF: 1,510
- XML: 102
- Total: 6,313
- Supplement: 511
- BibTeX: 98
- EndNote: 168
Total article views: 5,482 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 16 Feb 2018)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 4,233 | 1,155 | 94 | 5,482 | 303 | 91 | 155 |
- HTML: 4,233
- PDF: 1,155
- XML: 94
- Total: 5,482
- Supplement: 303
- BibTeX: 91
- EndNote: 155
Total article views: 831 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 13 Jul 2017)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 468 | 355 | 8 | 831 | 208 | 7 | 13 |
- HTML: 468
- PDF: 355
- XML: 8
- Total: 831
- Supplement: 208
- BibTeX: 7
- EndNote: 13
Viewed (geographical distribution)
Total article views: 6,313 (including HTML, PDF, and XML)
Thereof 6,268 with geography defined
and 45 with unknown origin.
Total article views: 5,482 (including HTML, PDF, and XML)
Thereof 5,451 with geography defined
and 31 with unknown origin.
Total article views: 831 (including HTML, PDF, and XML)
Thereof 817 with geography defined
and 14 with unknown origin.
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
Latest update: 25 Nov 2025
Short summary
We present the first comprehensive model evaluation of summertime reactive oxidized nitrogen using a high-resolution chemistry–climate model with up-to-date isoprene oxidation chemistry, along with a series of observations from aircraft campaigns and ground measurement networks from 2004 to 2013 over the Southeast US. We investigate the impact of NOx emission reductions on changes in reactive nitrogen speciation and export efficiency as well as ozone in the past and future decade.
We present the first comprehensive model evaluation of summertime reactive oxidized nitrogen...
Altmetrics
Final-revised paper
Preprint