Articles | Volume 18, issue 20
https://doi.org/10.5194/acp-18-14867-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-14867-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Upper tropospheric ice sensitivity to sulfate geoengineering
Daniele Visioni
CORRESPONDING AUTHOR
Department of Physical and Chemical Sciences, Università dell'Aquila, 67100 L'Aquila, Italy
CETEMPS, Università dell'Aquila, 67100 L'Aquila, Italy
now at: Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
Giovanni Pitari
Department of Physical and Chemical Sciences, Università dell'Aquila, 67100 L'Aquila, Italy
Glauco di Genova
CETEMPS, Università dell'Aquila, 67100 L'Aquila, Italy
Simone Tilmes
National Center for Atmospheric Research, Boulder, CO 80305, USA
Irene Cionni
ENEA, Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, 00123 Rome, Italy
Viewed
Total article views: 4,367 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 Feb 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,350 | 941 | 76 | 4,367 | 190 | 76 | 74 |
- HTML: 3,350
- PDF: 941
- XML: 76
- Total: 4,367
- Supplement: 190
- BibTeX: 76
- EndNote: 74
Total article views: 3,145 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Oct 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,406 | 677 | 62 | 3,145 | 190 | 60 | 57 |
- HTML: 2,406
- PDF: 677
- XML: 62
- Total: 3,145
- Supplement: 190
- BibTeX: 60
- EndNote: 57
Total article views: 1,222 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 Feb 2018)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
944 | 264 | 14 | 1,222 | 16 | 17 |
- HTML: 944
- PDF: 264
- XML: 14
- Total: 1,222
- BibTeX: 16
- EndNote: 17
Viewed (geographical distribution)
Total article views: 4,367 (including HTML, PDF, and XML)
Thereof 4,403 with geography defined
and -36 with unknown origin.
Total article views: 3,145 (including HTML, PDF, and XML)
Thereof 3,175 with geography defined
and -30 with unknown origin.
Total article views: 1,222 (including HTML, PDF, and XML)
Thereof 1,228 with geography defined
and -6 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
30 citations as recorded by crossref.
- Large Variations in Volcanic Aerosol Forcing Efficiency Due to Eruption Source Parameters and Rapid Adjustments L. Marshall et al. 10.1029/2020GL090241
- Solar radiation modification challenges decarbonization with renewable solar energy S. Baur et al. 10.5194/esd-15-307-2024
- The Climatic Effects of Hygroscopic Growth of Sulfate Aerosols in the Stratosphere K. Krishnamohan et al. 10.1029/2019EF001326
- The impact of recent changes in Asian anthropogenic emissions of SO<sub>2</sub> on sulfate loading in the upper troposphere and lower stratosphere and the associated radiative changes S. Fadnavis et al. 10.5194/acp-19-9989-2019
- Interactive stratospheric aerosol models' response to different amounts and altitudes of SO2 injection during the 1991 Pinatubo eruption I. Quaglia et al. 10.5194/acp-23-921-2023
- Anticipating moral hazard undermines climate mitigation in an experimental geoengineering game T. Andrews et al. 10.1016/j.ecolecon.2022.107421
- An approach to sulfate geoengineering with surface emissions of carbonyl sulfide I. Quaglia et al. 10.5194/acp-22-5757-2022
- Stratospheric transport and tropospheric sink of solar geoengineering aerosol: a Lagrangian analysis H. Sun et al. 10.1038/s41612-024-00664-8
- Impact of Stratospheric Aerosol Injection Geoengineering on the Summer Climate Over East Asia Z. Liu et al. 10.1029/2021JD035049
- Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption H. Brown et al. 10.5194/gmd-17-5087-2024
- Exploring accumulation-mode H<sub>2</sub>SO<sub>4</sub> versus SO<sub>2</sub> stratospheric sulfate geoengineering in a sectional aerosol–chemistry–climate model S. Vattioni et al. 10.5194/acp-19-4877-2019
- Climate system response to stratospheric sulfate aerosols: sensitivity to altitude of aerosol layer K. Krishnamohan et al. 10.5194/esd-10-885-2019
- Risk from responses to a changing climate T. Andrews et al. 10.1016/j.crm.2023.100487
- The impact of stratospheric aerosol heating on the frozen hydrometeor transport pathways in the tropical tropopause layer C. Kroll et al. 10.1088/1748-9326/ad33d0
- Uncertainty and the basis for confidence in solar geoengineering research B. Kravitz & D. MacMartin 10.1038/s43017-019-0004-7
- Sensitivity of the global hydrological cycle to the altitude of stratospheric sulphate aerosol layer U. K H et al. 10.1088/1748-9326/ad5e9d
- Limitations of assuming internal mixing between different aerosol species: a case study with sulfate geoengineering simulations D. Visioni et al. 10.5194/acp-22-1739-2022
- Quantification of tropical monsoon precipitation changes in terms of interhemispheric differences in stratospheric sulfate aerosol optical depth S. Roose et al. 10.1007/s00382-023-06799-3
- Analysis of the global atmospheric background sulfur budget in a multi-model framework C. Brodowsky et al. 10.5194/acp-24-5513-2024
- Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations D. Visioni et al. 10.5194/acp-21-10039-2021
- Differing responses of the quasi-biennial oscillation to artificial SO<sub>2</sub> injections in two global models U. Niemeier et al. 10.5194/acp-20-8975-2020
- An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO<sub>2</sub> or accumulation-mode sulfuric acid aerosols D. Weisenstein et al. 10.5194/acp-22-2955-2022
- The potential environmental and climate impacts of stratospheric aerosol injection: a review H. Huynh & V. McNeill 10.1039/D3EA00134B
- The Engineering of Climate Engineering D. MacMartin & B. Kravitz 10.1146/annurev-control-053018-023725
- Quantifying the Efficiency of Stratospheric Aerosol Geoengineering at Different Altitudes W. Lee et al. 10.1029/2023GL104417
- Evaluating the efficacy and equity of environmental stopgap measures H. Buck et al. 10.1038/s41893-020-0497-6
- Impact of stratospheric aerosol intervention geoengineering on surface air temperature in China: a surface energy budget perspective Z. Liu et al. 10.5194/acp-22-7667-2022
- Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction R. Russotto & T. Ackerman 10.5194/acp-18-11905-2018
- Volcanic Radiative Forcing From 1979 to 2015 A. Schmidt et al. 10.1029/2018JD028776
- A statistical examination of the effects of stratospheric sulfate geoengineering on tropical storm genesis Q. Wang et al. 10.5194/acp-18-9173-2018
27 citations as recorded by crossref.
- Large Variations in Volcanic Aerosol Forcing Efficiency Due to Eruption Source Parameters and Rapid Adjustments L. Marshall et al. 10.1029/2020GL090241
- Solar radiation modification challenges decarbonization with renewable solar energy S. Baur et al. 10.5194/esd-15-307-2024
- The Climatic Effects of Hygroscopic Growth of Sulfate Aerosols in the Stratosphere K. Krishnamohan et al. 10.1029/2019EF001326
- The impact of recent changes in Asian anthropogenic emissions of SO<sub>2</sub> on sulfate loading in the upper troposphere and lower stratosphere and the associated radiative changes S. Fadnavis et al. 10.5194/acp-19-9989-2019
- Interactive stratospheric aerosol models' response to different amounts and altitudes of SO2 injection during the 1991 Pinatubo eruption I. Quaglia et al. 10.5194/acp-23-921-2023
- Anticipating moral hazard undermines climate mitigation in an experimental geoengineering game T. Andrews et al. 10.1016/j.ecolecon.2022.107421
- An approach to sulfate geoengineering with surface emissions of carbonyl sulfide I. Quaglia et al. 10.5194/acp-22-5757-2022
- Stratospheric transport and tropospheric sink of solar geoengineering aerosol: a Lagrangian analysis H. Sun et al. 10.1038/s41612-024-00664-8
- Impact of Stratospheric Aerosol Injection Geoengineering on the Summer Climate Over East Asia Z. Liu et al. 10.1029/2021JD035049
- Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption H. Brown et al. 10.5194/gmd-17-5087-2024
- Exploring accumulation-mode H<sub>2</sub>SO<sub>4</sub> versus SO<sub>2</sub> stratospheric sulfate geoengineering in a sectional aerosol–chemistry–climate model S. Vattioni et al. 10.5194/acp-19-4877-2019
- Climate system response to stratospheric sulfate aerosols: sensitivity to altitude of aerosol layer K. Krishnamohan et al. 10.5194/esd-10-885-2019
- Risk from responses to a changing climate T. Andrews et al. 10.1016/j.crm.2023.100487
- The impact of stratospheric aerosol heating on the frozen hydrometeor transport pathways in the tropical tropopause layer C. Kroll et al. 10.1088/1748-9326/ad33d0
- Uncertainty and the basis for confidence in solar geoengineering research B. Kravitz & D. MacMartin 10.1038/s43017-019-0004-7
- Sensitivity of the global hydrological cycle to the altitude of stratospheric sulphate aerosol layer U. K H et al. 10.1088/1748-9326/ad5e9d
- Limitations of assuming internal mixing between different aerosol species: a case study with sulfate geoengineering simulations D. Visioni et al. 10.5194/acp-22-1739-2022
- Quantification of tropical monsoon precipitation changes in terms of interhemispheric differences in stratospheric sulfate aerosol optical depth S. Roose et al. 10.1007/s00382-023-06799-3
- Analysis of the global atmospheric background sulfur budget in a multi-model framework C. Brodowsky et al. 10.5194/acp-24-5513-2024
- Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations D. Visioni et al. 10.5194/acp-21-10039-2021
- Differing responses of the quasi-biennial oscillation to artificial SO<sub>2</sub> injections in two global models U. Niemeier et al. 10.5194/acp-20-8975-2020
- An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO<sub>2</sub> or accumulation-mode sulfuric acid aerosols D. Weisenstein et al. 10.5194/acp-22-2955-2022
- The potential environmental and climate impacts of stratospheric aerosol injection: a review H. Huynh & V. McNeill 10.1039/D3EA00134B
- The Engineering of Climate Engineering D. MacMartin & B. Kravitz 10.1146/annurev-control-053018-023725
- Quantifying the Efficiency of Stratospheric Aerosol Geoengineering at Different Altitudes W. Lee et al. 10.1029/2023GL104417
- Evaluating the efficacy and equity of environmental stopgap measures H. Buck et al. 10.1038/s41893-020-0497-6
- Impact of stratospheric aerosol intervention geoengineering on surface air temperature in China: a surface energy budget perspective Z. Liu et al. 10.5194/acp-22-7667-2022
3 citations as recorded by crossref.
- Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction R. Russotto & T. Ackerman 10.5194/acp-18-11905-2018
- Volcanic Radiative Forcing From 1979 to 2015 A. Schmidt et al. 10.1029/2018JD028776
- A statistical examination of the effects of stratospheric sulfate geoengineering on tropical storm genesis Q. Wang et al. 10.5194/acp-18-9173-2018
Discussed (final revised paper)
Discussed (preprint)
Latest update: 17 Sep 2024
Short summary
Many side effects of sulfate geoengineering have to be analyzed before the world can even consider deploying this method of solar radiation management. In particular, we show that ice clouds in the upper troposphere are modified by a sulfate injection, producing a change that (by allowing for more planetary radiation to escape to space) would produce a further cooling. This might be important when considering the necessary amount of sulfate that needs to be injected to achieve a certain target.
Many side effects of sulfate geoengineering have to be analyzed before the world can even...
Altmetrics
Final-revised paper
Preprint