Articles | Volume 18, issue 20
https://doi.org/10.5194/acp-18-14813-2018
https://doi.org/10.5194/acp-18-14813-2018
Research article
 | 
16 Oct 2018
Research article |  | 16 Oct 2018

Impact of physical parameterizations and initial conditions on simulated atmospheric transport and CO2 mole fractions in the US Midwest

Liza I. Díaz-Isaac, Thomas Lauvaux, and Kenneth J. Davis

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Liza I. Díaz-Isaac on behalf of the Authors (27 Jul 2018)  Manuscript 
ED: Referee Nomination & Report Request started (09 Aug 2018) by Mathias Palm
RR by Anonymous Referee #2 (29 Aug 2018)
ED: Publish as is (13 Sep 2018) by Mathias Palm
AR by Liza I. Díaz-Isaac on behalf of the Authors (14 Sep 2018)  Manuscript 
Download
Short summary
Atmospheric inversions rely on the accurate representation of the atmospheric dynamics in order to produce reliable surface fluxes. In this work, we evaluate the sensitivity of a state-of-the-art mesoscale atmospheric model to the different physics parameterizations and forcing. We conclude that no model configuration is optimal across an entire region. Therefore, we recommend an ensemble approach or the assimilation of meteorological observations in future inversion studies.
Altmetrics
Final-revised paper
Preprint