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Abstract. Atmospheric transport model errors are one of the main contributors to the uncertainty affecting CO2 inverse flux 

estimates. In this study, we determine the leading causes of transport errors over the US Upper Midwest with a large set of 

simulations generated with the Weather Research and Forecasting (WRF) mesoscale model. The various WRF simulations are 10 

performed using different meteorological driver datasets and physical parameterizations including planetary boundary layer 

(PBL) schemes, land surface models (LSMs), cumulus parameterizations and microphysics parameterizations. All the different 

model configurations were coupled to CO2 fluxes and lateral boundary conditions from the CarbonTracker inversion system 

to simulate atmospheric CO2 mole fractions. PBL height, wind speed, wind direction, and atmospheric CO2 mole fractions are 

compared to observations during a month of the summer of 2008, and statistical analyses were performed to evaluate the 15 

impact of both physics parameterizations and meteorological datasets on these variables. All of the physical parameterizations 

and the meteorological initial and boundary conditions contribute 3 to 4 ppm to the model-to-model variability in daytime PBL 

CO2 except for the microphysics parameterization which has a smaller contribution. PBL height varies across ensemble 

members by 300 to 400 m, and this variability is controlled by the same physics parameterizations.  Daily PBL CO2 mole 

fraction errors are correlated with errors in the PBL height. We show that specific model configurations systematically 20 

overestimate or underestimate the PBL height averaged across the region with biases closely correlated with the choice of 

LSM, PBL scheme, and CP. Domain average PBL wind speed is overestimated in nearly every model configuration. Both 

PBLH and PBL wind speed biases show coherent spatial variations across the Midwest, with PBLH overestimated averaged 

across configurations by 300-400 m in the west, and PBL winds overestimated by about 1 m/s on average in the east.  We find 

model configurations with lower biases averaged across the domain, but no single configuration is optimal across the entire 25 

region and for all meteorological variables. We conclude that model ensembles that include multiple physics parameterizations 

and meteorological initial conditions are likely to be necessary to encompass the atmospheric conditions most important to the 

transport of CO2 in the PBL, but that construction of such an ensemble will be challenging due to ensemble biases that vary 

across the region. 
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1 Introduction 

The increase in atmospheric carbon dioxide (CO2) mole fraction is a primary factor that is changing the radiation budget and 

causing significant changes in the Earth's climate (IPCC, 2013). Atmospheric mole fractions have increased primarily due to 

fossil fuel combustion and land use change. Not all CO2 emitted remains in the atmosphere because the terrestrial biosphere 

absorbs about 30% of the emissions (Le Queré et al., 2015). Terrestrial ecosystems in the temperate northern latitudes are 5 

identified as a substantial sink (Tans et al., 1990; Ciais et al., 1995; Gurney et al., 2002; Sarmiento et al., 2010; Pan et al., 

2011; Le Queré et al., 2015). However, the specific magnitudes and distributions of terrestrial sources and sinks are still 

uncertain. Accurate and precise quantification of these fluxes is an important step towards a successful prediction of future 

atmospheric CO2 and climate change mitigation.  

One method used to estimate the terrestrial fluxes is the “top-down” or atmospheric inverse method. Atmospheric inversions 10 

use simulations of atmospheric CO2 to estimate carbon fluxes (i.e., prior fluxes) by adjusting these fluxes so that simulated 

CO2 is optimally consistent with observed CO2 mole fractions (e.g., Enting, 1993; Bousquet et al., 2000; Chevallier et al., 

2010).  Uncertainties in the inverse method can be caused by sparse atmospheric data (Gurney et al., 2002), uncertain prior 

flux estimates (Huntzinger et al., 2012), limited spatial resolution in biospheric and atmospheric models, and transport model 

errors (Stephen et al., 2007; Gerbig et al., 2008; Pickett-Heaps et al., 2011; Díaz Isaac et al., 2014). Despite progress in top 15 

down methodologies, these sources of uncertainty have hindered the accuracy and precision of inverse estimates of sources 

and sinks from terrestrial ecosystems at continental scales (Le Quéré et al., 2015).  

Current atmospheric inversion systems are limited to the optimization of surface fluxes. However, the model-data mismatches 

used to optimize the fluxes contain the contributions of both flux and transport errors. Therefore, the atmospheric inversions 

may attribute atmospheric CO2 model-data mismatches to surface fluxes. In a Bayesian framework, the atmospheric inversion 20 

assumes (1) atmospheric transport model errors are unbiased and (2) the random errors are known. Incorrectly prescribed 

errors (i.e., random and systematic) will be propagated into the state space by the optimization process, generating biased 

inverse (i.e. posterior) fluxes (Tarantola, 2005). The atmospheric inverse system will be reliable only if both the atmospheric 

transport random errors are quantified rigorously and the transport model is unbiased.   

To date, relatively few studies have focused on atmospheric transport errors. The Atmospheric Tracer Transport Model 25 

Intercomparison Project (TransCom) has been dedicated to quantifying atmospheric transport errors and their impact on CO2 

fluxes through model inter-comparisons (Gurney et al., 2002; Baker et al., 2006; Stephen et al., 2007; Patra et al., 2008; Peylin 

et al., 2013). As inter-comparison exercises, TransCom studies were not always limited to varying atmospheric transport, but 

at times also varied the number of observations, the inverse methodologies, and the prior fluxes that were used. Some of these 

studies have concluded that only an atmospheric transport model capable of representing synoptic and mesoscale atmospheric 30 

dynamics will be able to extract high-resolution information from atmospheric observations (Law et al., 2008; Patra et al., 

2008). Following these recommendations, the spatial resolution of transport models used to simulate atmospheric CO2 mole 

fractions has increased to capture local-scale variability in continental observations (e.g. Ahmadov et al., 2009). Díaz Isaac et 
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al. (2014) showed significant differences in the atmospheric CO2 model-data mismatches when comparing a lower-resolution 

global transport model to a high-resolution regional transport model, but using identical surface fluxes, suggesting that changes 

in the transport model resolution could lead to large differences in inverse surface flux estimates.  

A critical problem in atmospheric transport resides in the representation of vertical mixing, which significantly impacts the 

interpretation of near-surface CO2 mole fractions and the resulting inverse CO2 flux estimates (Denning et al., 1995; Stephens 5 

et al., 2007). As a result, several studies have been dedicated to the evaluation of mixed layer (ML) depth (Yi et al., 2004; 

Gerbig et al., 2008; Kretschmer et al., 2012). An overestimation of the ML depth by an atmospheric model, for example, will 

cause an overestimation of the CO2 surface flux magnitude. The misrepresentation of vertical mixing by TransCom’s 

atmospheric models shown by Stephens et al. (2007) led Gerbig et al., (2008) to evaluate uncertainty in ML depth using a 

regional model and find random errors on the order of several ppm in ML CO2 mole fractions in summertime over western 10 

Europe.  Sarrat et al., (2007) used an inter-comparison of five mesoscale models and identified discrepancies in the ML depth 

that was potentially impacting the atmospheric CO2 mole fractions. These studies have attributed the differences between 

simulated and observed mixed ML height to flaws in planetary boundary layer (PBL) schemes and land surface models 

(LSMs). The accurate representation of the ML depth, however, is a necessary but most likely insufficient step for accurate 

and precise simulation of CO2 mole fractions in the lower troposphere.  Mixing between the ML and the rest of the atmosphere 15 

is also an important factor in the relationship between surface fluxes of CO2 and ML CO2 mole fractions.  It is likely that 

parameterizations other than the PBL and LSM will influence ML CO2 mole fractions. 

Inter-comparison of physical parameterization schemes using the Weather Research and Forecasting (WRF; Skamarock et al., 

2005) mesoscale model has been explored to understand the impact of physics parameterizations on the CO2 mole fractions 

(Kretschmer et al., 2012; Yver et al., 2013; Lauvaux and Davis, 2014; Feng et al., 2016). These studies have found that 20 

parameterization choices can result in systematic errors of several ppm in atmospheric PBL CO2 that can lead to biased surface 

flux estimates. These studies performed pseudo-data experiments or used a small number of observations, and focused mostly 

on the impact of different PBL physics schemes. There is agreement among the studies that misrepresentation of vertical 

mixing causes biases in ML CO2 mole fractions, and that these biases directly affect inverse flux estimates. Vertical mixing, 

however, is not solely affected by the PBL parameterization. Therefore, investigations of vertical mixing of CO2 remain 25 

incomplete. Additional parameterizations that impact the transport of air masses both horizontally and vertically should be 

evaluated. 

In this work, we study uncertainty in an atmospheric transport model using a multi-physics approach not limited to the 

evaluation of the PBL schemes and LSMs. This evaluation will include different LSMs, cumulus parameterizations (CP), 

microphysics parameterizations (MP), and initial and boundary conditions used by the WRF model. We will evaluate model 30 

performance using observations of atmospheric transport variables, PBL depth, wind speed and wind direction, expected to be 

most important to ML CO2 mole fractions. We aim to quantify the uncertainty of the atmospheric transport model and 

propagate these errors into the CO2 mole fractions. We will focus on the following questions: How do different physical 

parameterization schemes affect ML CO2 mole fractions? Are some physics parameterizations more effective/accurate than 
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others at simulating atmospheric conditions important to interpreting CO2 mole fraction observations in the PBL? What are 

the nature and magnitude of random and systematic errors in the WRF model, and how does this depend on model 

configuration? We will address these questions by exploring atmospheric transport model performance over a large, densely 

instrumented region, the US Midwest, site of the Mid-Continental Intensive (MCI) study (Ogle et al., 2006). Evaluating the 

atmospheric transport during summer, the most biologically active time of the year, is a first step toward a more rigorous and 5 

complete atmospheric inversion that quantifies random transport errors more accurately, and minimizes transport biases. This 

work will expand our ability to assess, understand, and reduce transport errors in future atmospheric inversions. 

2 Methods 

2.1 Region 

The region selected for our study is the Midwest region of the United States (Figure 1). The Midwest of U.S. was chosen 10 

because the first multi-year (2007-2009) campaign with a high-density CO2 measurement network was deployed in this region 

(Ogle et al., 2006, Miles et al., 2012). This field campaign, part of the North American Carbon Program (NACP), was called 

the Mid-Continental Intensive (MCI) and encompassed the agricultural belt in the north-central U.S. The MCI campaign is 

unique for its density of well-calibrated (Richardson et al., 2012) atmospheric CO2 mole fraction measurements intended to 

constrain the region’s carbon budget. We describe the operational rawinsonde and GHG tower networks over the region in 15 

Section 2.2.4. These networks provided significant observational constraint on both transport and GHG mole fractions, which 

allow us to evaluate and quantify the atmospheric transport errors in this study. 

2.2 Atmospheric model setup 

The atmospheric transport model used in this study to generate our 45-member physics ensemble is the Weather Research and 

Forecasting (WRF) model version 3.5.1 (Skamarock et al., 2005) and a modified chemistry module for CO2 (called WRF-20 

ChemCO2, Lauvaux et al., 2012). The atmospheric column in each simulation is described with 59 vertical levels, with 40 of 

them within the first 4-km of the atmosphere. Two nested domains were used. The coarse domain (d01) uses a horizontal grid 

spacing of 30-km and the nested or inner domain (d02) uses 10-km grid spacing (Figure 1). Because of limited computational 

time and the resolution of the CO2 surface fluxes described on section 2.6, we decided to keep our highest resolution of the 

model up to 10-km.  The coarse domain covers most of the United States and parts of Canada and the nested domain is centered 25 

over Iowa and covers the Midwest region of United States. The nesting method employed is the "one-way" nesting in which 

the outer domain constrains the inner domain through nudging of the boundary conditions that drive the meteorology once the 

outer domain simulation has finished (Soriano et. al., 2002). No feedback from the inner domain to the coarse domain was 

allowed. For our sensitivity study, only the inner domain (d02) has been analyzed as it covers the area of interest.  

 30 
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2.3 Ensemble configuration 

Similar to any domain-limited atmospheric model, transport errors arise from initial and boundary conditions and the different 

physics parameterizations. Therefore, we have built an ensemble of 45-members using different physical parameterization 

schemes and large-scale initial and boundary conditions from reanalysis products (see Table 1). WRF offers multiple options 

for the LSM, PBL, cumulus, and microphysics schemes. The members in our multi-physics ensemble all use the same radiation 5 

schemes (both longwave and shortwave) but the land surface, surface layer, boundary layer, cumulus, and microphysics 

schemes are varied for both the inner and the outer domain. In addition, we have initialized the meteorological boundary and 

initial conditions with different datasets. Table 2 shows the different options used in this study. 

2.4 Physics parameterization schemes 

a. Land surface models (LSMs) 10 

The land surface models (LSMs), which ingest land-surface properties, soil, and surface conditions from driver data, simulate 

the conditions at the land surface, including surface energy fluxes. The partitioning of these fluxes affects the structure and 

depth of the PBL through the turbulence parameterization, hence modifying the near-surface in situ CO2 mole fractions. To 

evaluate the sensitivity of modelled mole fractions to the surface conditions, three LSM schemes are chosen for this study: the 

5-layer soil thermal diffusion model (Dudhia, 1996), the Noah land surface model (Chen and Dudhia, 2001), and the Rapid 15 

Update Cycle (RUC) (Smirnova, 2000). These LSMs differ in several aspects, from the description of soil properties to the 

physical processes driving the land-surface interactions. The thermal diffusion model uses a simple thermal diffusion equation 

to transfer thermal energy from the ground to the atmosphere, describing the belowground profile with 5 soil layers (Dudhia, 

1996). This LSM also includes snow-covered land and constant soil moisture values for a given land use type and season. The 

Noah LSM scheme uses time-dependent soil temperature and moisture for four soil layers, canopy conductance and moisture, 20 

and snow cover prediction (Chen and Dudhia, 2001). The RUC LSM scheme includes six soil layers and includes the effects 

of vegetation, canopy water, and snow (Smirnova, 2000). This scheme also includes parameterizations for snow and frozen 

soil (Smirnova, 2000).  

b. Planetary boundary layer (PBL) schemes  

The planetary boundary layer (PBL) is directly influenced by frictional drag, sensible heat flux, and evapotranspiration, all of 25 

which are responsible for generating turbulent eddies. The PBL schemes parameterize turbulent vertical fluxes of heat, 

momentum, and moisture within the PBL and throughout the atmosphere. The three PBL schemes used in this study are the 

Yonsei University (YSU) (Hong et al., 2006) PBL scheme, the Mellor-Yamada-Janjic (MYJ) (Janjic, 2002) PBL scheme, and 

the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme (Nakanishi & Niino, 2004). These three PBL schemes differ in 

the treatment of turbulent diffusion. The YSU scheme is a first order scheme that includes non-local eddy diffusivity 30 

coefficients to compute turbulent fluxes. The YSU scheme explicitly calculates entrainment at the top of the PBL as a function 

of the surface buoyancy flux. The MYJ and MYNN 2.5 PBL schemes are local closure schemes that include a prognostic 
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equation for turbulent kinetic energy (TKE) and a level 2.5 turbulence closure approximation to determine eddy transfer 

coefficients. The MYJ scheme implicitly calculates the entrainment layer while the MYNN uses a more explicit representation 

of entrainment at the top of the PBL (Román-Cascón et al., 2012).  The MYNN 2.5 is a variation of the MYJ PBL scheme that 

includes a nonlocal component of the turbulent mixing that reduces potential cold biases and increases PBL depths. The MYJ 

PBL scheme used in this study has been slightly modified to allow for very low turbulence regimes (e.g. nocturnal stable 5 

conditions) with a decreased minimum value for TKE.  
c. Cumulus parameterizations  

The cumulus parameterization (CP) schemes are used with the aim of representing the vertical fluxes due to unresolved updraft 

and downdrafts and compensating motion outside the clouds. In this study we use two different cumulus parameterization 

schemes, Kain-Fritsch (KF) (Kain, 2004), Grell-3D (G3D) (Grell and Devenyi, 2002). The KF scheme is deep and shallow 10 

convection sub-grid scheme, which uses a simple cloud model that simulates moist updrafts and downdrafts along with 

detrainment and entrainment effects. The G3D cumulus scheme is based on the Grell (1993) scheme and G3D is a scheme for 

higher resolution domains allowing for subsidence and neighboring columns. The G3D uses a large ensemble of closure 

assumptions and parameters that are used in numerical models and implements statistical techniques to determine the optimal 

value for feedback to the entire model (Pei et al., 2014). The cumulus parameterization is theoretically only valid for coarse 15 

grid resolutions (e.g., greater than 10-km) and should not be used when the model has a higher resolution (e.g., less than 5-

km) and will resolve cumulus convection (Skamarock et al., 2005). Therefore, we are in a ‘grey-zone’ (5-10 km), where it is 

unclear if cumulus parameterization should be used or not. For that reason, we also ran simulations that do not use a cumulus 

parameterization scheme in the nested domain.  

d. Microphysics parameterizations 20 

Microphysics parameterizations (MP) describe cloud and precipitation processes. In this study we use two MP schemes: the 

WRF Single-Moment 5-class (WSM5) scheme (Hong et al., 2004) and the Thompson scheme (Thompson et al., 2004). The 

WSM5 scheme is a single moment parameterization that includes five species: water vapor, cloud water, cloud ice, rain, and 

snow, which are all treated independently. The Thompson scheme is a double moment scheme, which predicts the mole fraction 

of five hydrometeors species, the number concentration of ice phase hydrometeors, and rain. 25 

2.5 Meteorological initial and boundary conditions 

Two meteorological datasets provide the initial and lateral boundary conditions for our regional model. For initialization, WRF 

interpolates the coarse-resolution analysis products onto the model grid and calculates the values of the parent domain lateral 

boundaries. The inner grid uses the boundary conditions of the parent domain. In this study, we compare two different 

meteorological datasets: the North America Regional Reanalysis (NARR) (Mesinger et al., 2006), and the Final Operational 30 

Global Analysis (FNL). The NARR dataset was developed at the Environmental Modeling Center (EMS) of the National 

Centers for Environmental Prediction (NCEP). NARR uses a high resolution NCEP Eta Model with a horizontal grid spacing 

of 32 km and includes 45 vertical levels. NARR provides both initial and boundary conditions at 3-hourly intervals. The NCEP 



7 
 

FNL analysis data has a horizontal grid spacing of 1°×1° and is prepared operationally every six hours. The FNL is prepared 

with the same model that NCEP uses in the Global Forecast System (GFS). The initial conditions in the WRF simulations are 

reset every 5 days to avoid the growth of model errors in the absence of data assimilation. The WRF model spin-up takes about 

18 hours, so we use model results after 18 hours of the first day of each 5-day simulation segment. We compared model-model 

differences over the 5 days and found no significant trend over the 5-day periods once removing the first 18 hours of spin-up. 5 

2.6 CO2 surface fluxes 

For this study, we used the summer 2008 posterior surface fluxes from the data assimilation system CarbonTracker1 version 

CT2009 (Peters et al., 2007; with updates documented at http://carbontracker.noaa.gov).  This system produces CO2 flux 

estimates by integrating daily daytime averaged CO2 mole fractions from continuous hourly observations and then minimizing 

the differences between the observed and modeled atmospheric CO2 mole fractions. The Transport Model 5 (TM5) offline 10 

atmospheric tracer transport model (Krol et al., 2005) driven by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) operational forecast model, propagates the surface fluxes to generate 3D mole fractions of CO2 across the globe.     

The CO2 surface fluxes are represented by different sub-components, which include: fossil fuel emissions, biomass burning, 

terrestrial biosphere exchange, and ocean-atmosphere exchanges. The annual fossil fuel emissions used in CT2009 are from 

the Carbon Dioxide Information and Analysis Center (CDIAC) (Boden et al., 2009). These fossil fuel fluxes are mapped onto 15 

a 1°×1° grid and are then distributed into country totals according to the spatial patterns from the EDGAR-4 inventories 

(Olivier and Berdowski, 2001). Biomass burning is based on the Global Fire Emission Database version 2 (GFEDv2). The 

dataset consists of 1°×1° gridded monthly burned areas, fuel loads, combustion completeness, and fire emissions. Prior 

terrestrial biosphere flux estimates come from the Carnegie-Ames Stanford Approach (CASA) global biogeochemical model 

(van der Werf et al., 2006; Giglio et al., 2006) with three-hour variability imposed by temperature and incoming radiation 20 

(Olsen and Randerson, 2004). The CASA biosphere model produces net primary production (NPP) and heterotrophic 

respiration fluxes with a monthly time resolution at 0.5°×0.5° spatial resolution. The long-term ocean fluxes and uncertainties 

are derived from inversions reported in Jacobson et al., (2007). Ocean inverse flux estimates are composed of preindustrial 

(natural), anthropogenic flux inversions, and an additional level of biogeochemical interpretations (Gloor et al., 2003; Gruber, 

Sarmiento and Stocker, 1996). Similar to most CO2 inverse systems, the fossil fuel and fire emissions are specified (i.e. remain 25 

constant) and only the oceanic and terrestrial biosphere fluxes are optimized.	

2.7 Dataset 

Our interest is to explore and quantify atmospheric transport errors over the Midwest U.S. using observations that we have 

over this region. Therefore, we will evaluate the errors over the inner domain (d02) of our models. Figure 1 shows the location 

of all the stations that provide atmospheric CO2 mole fractions and the meteorological observation sites that will be used. 30 

                                                             
1 CarbonTracker CT2009, http://carbontracker.noaa.gov 
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Meteorological data were obtained from the University of Wyoming’s online data archive 

(http://weather.uwyo.edu/upperair/sounding.html) for the 14 rawinsonde stations shown in Figure 1. In-situ atmospheric CO2 

mole fraction data are provided by gas analysers operating continuously on seven communication towers (Figure 1) (Miles et 

al., 2012). Five of these towers were part of an experimental network, deployed from 2007 to 2009 (Richardson et al., 2012; 

Miles et al., 2012, 2013; http://dx.doi.org/10.3334/ORNLDAAC/1202). The other two towers (Park Falls-WLEF and West 5 

Branch-WBI) are part of the Earth System Research Laboratory/Global Monitoring Division (ESRL/GMD) tall tower network 

(Andrews et al., 2014; https://www.esrl.noaa.gov/gmd/ccgg/insitu/). Each of these towers sampled air at multiple heights, 

ranging from 11 m AGL to 396 m AGL.  

2.8 Data selection 

Most atmospheric inversions that use continental PBL observations only use daytime CO2 mole fractions from continuous 10 

observations (Law et al., 2003), with the exception of mountain sites whose nighttime data is thought to sample free 

tropospheric conditions (Brooks et al., 2012). Only daytime measurements are assimilated due to the difficulty in simulating 

strong vertical gradients in the nocturnal boundary layer.  Vertical gradients are minimized during daytime under well-mixed 

boundary layer conditions (Bakwin et al., 1998). Therefore, both models and observations will be evaluated during daytime. 

We analyzed CO2 mole fractions collected from sampling levels at or above 100m AGL, which is the highest observation level 15 

available across the entire MCI network (Miles et al., 2012). This ensures that the observed mole fractions reflect the influence 

of regional CO2 fluxes and are minimally influenced by near-surface gradients of CO2 in the atmospheric surface layer (ASL) 

due to local CO2 fluxes (Wang et al., 2007). Both observed and simulated CO2 mole fractions are averaged from 1800 to 2200 

UTC (12:00-16:00 LST), the daytime period when the boundary layer should be convective and the CO2 profile well mixed 

(e.g., Davis et al., 2003; Stull, 1988). This averaged mole fraction will be referred to hereafter as the daily daytime average 20 

(DDA).  

In this study, we will also evaluate the PBL wind speed (hereafter wind speed), PBL wind direction (hereafter wind direction), 

and PBL height (PBLH) from the different rawinsonde stations. Similar to the CO2 mole fractions, we want our meteorological 

observations to be within the well-mixed layer. Therefore, we use the wind speed and wind direction observed approximately 

300 m above ground level (AGL). CO2 mole fraction observations were sampled at about 100m, however, the availability of 25 

meteorological observations at this height is too low to collect a sufficient number of data for our statistical evaluation. The 

observed PBLH was estimated using the virtual potential temperature gradient with a threshold of 0.2 K/m. We want our 

simulated meteorological variables to be close to the observational level, therefore we use wind speed and wind direction from 

level 11 (~350 m) of the model. The WRF model provides an estimate of the PBLH, but the methodology used to diagnose 

these values varied with the PBL scheme used in the simulation. To remain consistent, we decided to calculate the PBLH in 30 

WRF with the same potential temperature gradient method that is used for the rawinsonde data. Rawinsonde stations across 

this region collect data at 1200 UTC and 0000 UTC, but our model-data evaluation will be done for daytime conditions only. 
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Therefore, both the modeled results and data will be evaluated in the late afternoon (i.e., 0000 UTC) corresponding to well 

mixed conditions. 

2.9 Evaluation methodology or analyses of the models 

Comparison to measurements of wind speed, wind direction, PBLH, and DDA CO2 mole fractions are used to inform the 

performance of each model configuration. Modeled data are extracted from the simulations using the nearest grid points to the 5 

locations of our observations. Each model configuration is evaluated from June 18 to July 21, 2008 for the meteorological 

variables and from June 26 to July 22, 2008 for the CO2 mole fractions. Summer in the U.S. Midwest corresponds to the peak 

of the growing season for both crops and most non-agricultural ecosystems (except grasslands). We focus here on the growing 

season because the large biogenic fluxes make this period the most important time of year for understanding the relationship 

between fluxes and CO2 mole fractions. We first explore meteorological variables, and the sensitivity of CO2 to atmospheric 10 

transport but without comparison to observations, to avoid confounding the impact of transport with errors from CO2 surface 

fluxes and CT2009 global CO2 mole fractions.  Finally, we compare to CO2 observations with the knowledge that the results 

include both transport and CO2 flux errors. 

a. Analyses of physics parameterization and reanalyses impact 

The daily mean of root mean square difference (RMSD) among ensemble members is used to isolate the atmospheric transport 15 

variability and evaluate the impact of the physics parameterizations on both CO2 mole fractions and PBL dynamics. The RMSD 

does not consider the observations as we take the square root of the average difference between model configuration and the 

ensemble mean,  

 

𝑅𝑀𝑆𝐷 =
&
' ()*+,*

-'
).&

/
/
012                             (1) 20 

where pji is the predicted variable for ensemble member j and day i, µi is the mean of the ensemble for day i, N is the total 

number of days, and n is the number of members. The RMSD was estimated for the different physics parameterization used 

(i.e., LSM, PBL schemes, CP, MP) and reanalysis. A different set of ensembles were created for each of the physics 

parameterization, where the model configuration remained identical except for the tested physics parameterization and the 

different set of members were to compute the ensemble mean.  The RMSD of the simulated CO2 mole fractions was used to 25 

explore if other physics parameterizations have a significant impact on CO2 mole fractions compared to the PBL 

parameterizations. To explore which parameterizations impact the PBL dynamics we applied the RMSD to the three selected 

meteorological variables (i.e., PBLH, wind speed, and wind direction), assuming these variables contribute the most to the 

representations of the CO2 mole fraction distributions in the PBL. The RMSD for the meteorological variables were then 

averaged across all of the rawinsonde sites. The RMSD of the CO2 mole fractions was estimated using the simulated CO2 mole 30 

fraction at each communication tower and then averaged across the tower sites to match the model-data residual. 
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b. Analyses of model-data residuals 

A series of statistical analyses are used to assess the performance of the different model configurations for the three 

meteorological variables wind speed, wind direction and PBLH. The different metrics used include the root mean square error 

(RMSE) and mean bias errors (MBE), 

𝑅𝑀𝑆𝐸 = 	 2
/

𝑝0 − 𝑜0 8/
012 ,          (2) 5 

𝑀𝐵𝐸 = 	 2
/

𝑝0 − 𝑜0/
012 ,                         (3) 

where oi is the observed variable for day i, pi is the predicted variable for day i, and N is the total number of days. The RMSE 

represents the magnitude of the model error without regard to the long-term mean (Wilks, 2011). The MBE describes the 

model-observations difference averaged errors over the entire period (Wilks, 2011), and identifies model bias. These two 

metrics are critical to inverse flux estimates as biases can arise from day-to-day (which we will refer as random) or longer-10 

term (systematic) errors in the transport model. We acknowledge that the propagation of meteorological errors to mole 

fractions, and mole fractions errors to surface fluxes is complex, but these metrics provide valuable insight into model 

performance. Each of these statistics (i.e., RMSE and MBE) was estimated for each model and each rawinsonde site using the 

late afternoon (0000 UTC) soundings.  

Finally, we compare modelled and simulated PBL CO2. We use our different model configurations, which all share the exact 15 

same surface fluxes and identical boundary conditions to explore the impact of the transport errors on CO2 mole fractions. We 

present the impact of model configurations on the DDA CO2 mole fraction model-data mismatches (or residuals) with Taylor 

Diagrams and correlation between model-data residuals in meteorological variables and DDA CO2 mole fractions.  The Taylor 

diagram relies on three nondimensional statistics: the variance ratio (model variance normalized by the observed variance), 

the correlation coefficient, and the normalized centered root-mean-square (CRMS) difference (Taylor, 2001). The variance 20 

ratio or normalized standard deviation (NSD) indicates the difference in amplitude between the model and the observation. If 

this ratio is less than 1.0, then the model tends to underestimate the amplitude compared to the observation. The correlation 

coefficient measures the similarity in the temporal variations between the model and the observation, regardless of the 

amplitude. This correlation coefficient has a range of -1.0 ≤ R ≤ 1.0 and is insensitive to systematic errors. As R approaches 

1.0, the model approaches agreement with the observation. The CRMS is normalized by the observed standard deviation and 25 

quantifies the ratio of the amplitude of the variations between the model and the observation. The CRMS is also insensitive to 

systematic errors. Temporal correlations between the modeled-observed residual in meteorological variables and CO2 mole 

fractions are used to determine the impact that meteorological errors have on the PBL CO2 mole fractions. This model-data 

correlation will be done between each CO2 observing site and rawinsonde site, therefore we will be able to observe if any 

correlation is dependent on the distance between sites. The model-data residual includes both flux and transport errors, 30 

therefore, these errors will not show the accuracy of the transport model. Nevertheless, each simulation uses the same CO2 
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flux and boundary conditions that allows us to use the model-data residuals as an indicator of the differences between model 

configurations.  

3. Results 

3.1 Impact of physics parameterizations on atmospheric CO2 mole fractions   

The daily mean of root mean square difference (RMSD) of the simulated CO2 mole fraction was used to explore the sensitivity 5 

of CO2 mole fractions to model physics parameterization and meteorological reanalysis. The RMSD was computed for 

different parameterizations schemes (i.e., LSM, PBL, CP and MP) and for two reanalysis products (i.e., NARR and FNL).  For 

each group of parameterizations, the model configuration remained identical except for the tested parameterization scheme. 

For example, to evaluate the impact of LSM schemes on CO2 mole fractions, three LSM schemes were used while preserving 

the exact same physical schemes for the PBL, CP, MP, and the re-analysis data. Figure 2 shows the results of these experiments. 10 

CO2 mole fraction RMSD is greatest for the LSM, followed by the PBL scheme and CP.  The microphysics parameterization 

has the least impact on CO2 mole fractions. Only two microphysics parameterizations are tested in this ensemble but additional 

tests using only two options for all the different physic parameterizations produced similar results.  

We also explore how much the variability in PBL winds and depth are influenced by physics parameterizations. Figure 3 shows 

the RMSD of PBL wind speed and direction, and PBLH over the entire simulation period. The results for all three 15 

meteorological variables are similar to those for CO2 mole fractions. Reanalysis has a greater impact on wind speed (Figure 

3b) and wind direction (Figure 3c) than it does on PBLH (Figure 3a). It is worth noting that the PBLH RMSD (Figure 3a) 

shows the same RMSD ranking (i.e. relative importance of the physics) as for CO2 mole fraction RMSD (Figure 2).  

Based on the evaluation of the CO2 mole fraction, wind speed, wind direction, and PBLH RMSD, the LSM has the greatest 

impact on PBL CO2 transport, followed closely by the PBL scheme, CP and reanalysis. All the parameterization schemes, 20 

including the reanalysis data source, have a significant impact on each of these variables. The RMSDs were significant values 

compared to typical spatial and temporal differences (for PBL CO2, see Miles et al., (2012)) and for mean PBL properties 

(PBLH, winds), confirming the importance of model parameterization on these variables. 

3.2 Meteorological day-to-day variability 

Figure 4 shows a time series of the 0000 UTC observed and simulated wind speed (Figure 4a), wind direction (Figure 4b) and 25 

PBLH (Figure 4c) from June 18 to July 21, 2008 at the Chanhassen, MN (MPX) rawinsonde site. Across the study region, we 

found maximum monthly average model-data differences across sites and configurations of 9 m/s for wind speed, 153 degrees 

in wind direction and 2000 m for PBLH. These values confirm the large spread among model results and sites over the 

simulation time period. Other sites have similar characteristics to Figure 4. The ensemble shows less variability (i.e., relative 

spread of the ensemble compared to the observed variability) for the wind speed and wind direction compared to the PBLH. 30 

The time series at each rawinsonde site shows that for certain days, all ensemble are biased (i.e., all the members either 
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overestimate or underestimate) as compared to observed wind speed and wind direction (e.g. DOY 181 and 201, respectively). 

The time series of the PBLH, however, shows that simulated PBLH can vary significantly across the different physics 

configurations and that the ensemble encompasses the observed PBLH over the time period.   

3.3 Characterization of transport errors  

3.3.1 Root mean square error (RMSE) 5 

Figure 5 shows the regionally and monthly averaged RMSE of wind speed (Figure 5a), wind direction (Figure 5b), and PBLH 

(Figure 5c) for the different model configurations. For both wind speed and wind direction, we found small to no differences 

in the regional RMSE as a function of model configuration. Although the regional RMSE for both wind speed and wind 

direction are fairly constant, the two variables have the same two model configurations with the highest RMSE. These two 

configurations share the same LSM scheme (RUC) and the same PBL scheme (MYJ) (models 14 and 23 see Figure 5a,b and 10 

Table 1).  Differences among configurations are larger in the regional RMSE of the PBLH (Figure 5c), with configuration 

RMSEs ranging from 680m to 1149m. The model configurations that show the highest PBLH RMSE include the same LSM 

(RUC) and PBL parameterization scheme (YSU) (models 4, 13, 22 and 34 see Figure 5c and Table 1). Although the 

configurations that show the highest RMSE are not always the same across the different variables, these configurations share 

the same LSM (RUC). The two model configurations that showed the lowest RMSE for both wind speed and wind direction 15 

both used MYNN 2.5 as their PBL parameterization. Many configurations show low RMSE for the PBLH and all the 

configurations with low RMSE use either the MYJ scheme or the MYNN 2.5 scheme. However, no single configuration 

performs best at the regional scale for all of the meteorological variables.  

 We computed the ensemble mean of the monthly averaged RMSE at each of the rawinsonde sites for wind speed (Figure 6a), 

wind direction (Figure 6b) and PBLH (Figure 6c). We did not find any regional patterns in wind speed (Figure 6a) and wind 20 

direction (Figure 6b). However, PBLH shows that the highest RMSEs are located in the west of the domain, with an RMSE 

400 m or higher than the sites in the East.   

 Figure 7 shows the monthly average RMSE of wind speed (Figure 7a-c), wind direction (Figure 7d-f), and PBLH (Figure 7g-

i) for each model configuration at specific rawinsonde sites. We computed the RMSE for all the different sites (not shown) 

and we found the highest RMSE in the model configurations that included RUC and Thermal diffusion as the LSM and at 25 

some sites when these LSMs are combined with YSU as a PBL scheme. Although the RMSE was computed at each of the 

rawinsonde sites, we show only three sites located in three different regions of the domain: LBF in the west (Figure 7a, d, g), 

MPX which is close to the center of the domain (Figure 7b, e, h), and APX in the eastern part of the domain (Figure 7 c, f, i). 
Similar to the regional RMSE (Figure 5), both LBF and MPX show that the LSM RUC leads to the highest RMSE for the three 

meteorological variables. However, this pattern is not found at APX, where other configurations show the highest RMSE for 30 

wind speed, wind direction and PBL height. Across simulations and meteorological variables, RMSEs vary but no 

configuration shows a lower value across all sites.  
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3.3.3 Mean bias Error (MBE) 

The average over-or-underestimation of the model configurations is assessed by computing the regional monthly average MBE 

for wind speed (Figure 8a), wind direction (Figure 8b) and PBLH (Figure 8c). In this study, a positive MBE means the model 

configuration is systematically higher than the observation. We found remarkable variations in the regional MBE both as a 

functions of different model configurations and across the meteorological variables. The regionally averaged PBL wind speed 5 

bias for any single ensemble member ranges from -0.2 to 1.2 m/s, relative to the mean regional midday wind speed of 6.2 m/s, 

showing that the bias of any single ensemble member ranges from less than 5% to nearly 20% of the regional mean PBL wind 

speed (Figure 8a). All configurations that use YSU (e.g., models 1, 4, 7, 10 see Figure 8a and Table 1) have greater regional 

wind speed biases than the rest of the PBL schemes. The regional MBE for wind direction varies according to model 

configuration. Models using YSU as PBL schemes tent to show a systematic positive bias in the wind direction (e.g., models 10 

1, 4, 7, 10 see Figure 8b and Table 1), whereas models that use MYJ as PBL scheme show a negative bias (e.g., models 2, 5, 

8, 11 Figure 8b and Table 1). Similar to the wind direction, the regional PBLH bias is correlated with model configuration. 

Any model configuration that uses YSU shows a positive bias, larger than the rest of the PBL schemes (e.g., models 1, 4, 7, 

11 see Figure 8c and Table 1). The model configurations that do not include cumulus parameterizations (white filled bars; 

Figure 8c) also show positive biases, with one exception, regardless of the choice of LSM or PBL scheme used. The wind 15 

speed analysis shows that the two model configurations with the smallest regional MBE (± 0.1 m/s) share the same LSM 

(Thermal Diffusion) and PBL (MYNN 2.5) parameterization. For wind direction, two of the three model configurations with 

the lowest MBE (± 0.1 degrees) use the same LSM (Noah) and PBL (YSU) parameterization. All 15 model configurations 

with the lowest MBE for PBLH (± 100 m or less) share the same PBL parameterizations (MYJ and MYNN 2.5). Although the 

configurations that provide the lowest regional MBE is not the same across all variables, we found that the lowest biases for 20 

the three variables were produced by model 18 (see Table1). This model configuration is driven by the NARR reanalysis 

product, and used Thermal Diffusion as LSM, MYNN as PBL scheme, Grell-3D as CP and WSM 5-class as MP.  

The spatial structures of the MBE over a month are evaluated by estimating the ensemble mean of the MBE at each rawinsonde 

site (Figure 9).  The ensemble mean of the MBE reveals a spatial pattern in the wind speed (Figure 9a) and PBLH (Figure 9c). 

The map of wind speed MBE (Figure 9a) shows that the ensemble is positively biased in the eastern region of the domain. 25 

However, sites in the western region of the domain show that the ensemble average has either negative or near-zero wind speed 

MBEs. The PBLH MBE map (Figure 9c) also shows a clear spatial pattern, with the highest values, nearly all positive, at sites 

located in the western part of the domain, whereas the sites in the eastern part of our domain show a smaller MBE and no 

distinct regional sign. PBL wind direction does not show any spatial pattern in the ensemble mean of the MBE (Figure 9b). 

We found that our ensemble of simulations can produce an MBE range from rawinsonde site to rawinsonde site of ±1.5 m/s 30 

in wind speed, ±20 degrees for wind direction, and ± 400 m for PBLH. 
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The MBE analysis was performed for all the sites (not shown), for this statistic we found that all the model configurations 

show a positive wind speed MBE (overestimation) for the majority of the rawinsonde sites, whereas, wind direction and PBLH 

shows both positive and negative (underestimation) MBE across the different configuration at the different rawinsonde sites. 

Some of the positive and negative biases are associated to specific LSMs and PBL schemes. Figure 10 show the MBE of three 

sites that are representative of regional patterns. The three sites shown are located in three different regions of the domain: 5 

ABR in the west (Figure 10a, d, g), DVN which is close to the center of the domain (Figure 10b, e, h), and BNA in the eastern 

part of the domain (Figure 10c, f, i). Most of the model configurations shows positive wind speed MBE (overestimation) for 

the majority of the rawinsonde sites (e.g., Figure 10b-c), however, one site shows both positive and negative MBE for the 

different model configurations (e.g., Figure 10a). Overall we found that 10 out of the 14 rawinsonde sites show all the model 

configurations with a positive wind speed bias; these sites were located in the eastern and center areas of the domain. However, 10 

the MBEs for wind direction (e.g., Figure 10d-f) and PBLH (e.g., Figure 10g-i) are highly variable across the rawinsonde sites. 

At the majority of the sites, the simulations had both positive and negative biases. Although wind speed and wind direction do 

not show any of the simulations with a systematic behaviour across the sites, PBLH MBE showed some simulations with 

systematic bias across the different sites.  The highest positive biases were found in configurations that use RUC as the LSM 

and YSU as the PBL scheme in the western region of the domain (e.g., Figure 10g, red bars). This is unlike the eastern region 15 

of the domain, where the highest biases were dominated by configurations that use Thermal Diffusion as the LSM and YSU 

as the PBL scheme (e.g., Figure 10i, white bar with green border). These results indicate that wind speed MBEs are strongly 

impact by other components of the model (e.g., reanalysis data set) or that the WRF transport model carries a systematic bias 

that will show up regardless of the configuration used. However, PBLH bias is highly controlled by two components of the 

model, the LSM and the PBL parameterization scheme. Overall, the spatial patterns show that no configurations can avoid 20 

spatial biases across the region.  

3.4 Sensitivity of CO2 mole fractions to model configuration 

Figure 11 shows simulated and observed atmospheric DDA CO2 mole fraction for Centerville (Figure 11a) and Kewanee 

(Figure 11b) from June 26 to July 21, 2008. For this period, both sites show large residuals that are not encompassed by the 

ensemble spread (RMSD) for several periods (e.g. DOY 182-183 at Centerville or DOY 185-186 at WBI). This result suggests 25 

that transport model errors from our ensemble only represent a fraction of the total uncertainty in our modelling system. In this 

study we use CarbonTrakcer fluxes which is a global inversion system and does not aim to represent regional fluxes. Therefore, 

Additional errors can be due to incorrect CO2 surface fluxes and boundary conditions.  

Over the region, most of the sites show that the ensemble generally underestimates the atmospheric CO2 mole. We note here 

that this ensemble has not been calibrated, therefore the ensemble spread is unlikely to serve as quantification of WRF transport 30 

errors or total error in simulated PBL CO2, but this sensitivity test could have resulted in an ensemble spread that is much 
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larger than the model-data differences. Our results suggest that the spread of this physics ensemble underestimates total model-

data error in PBL CO2. 

To evaluate the performance of the different models over the month, we computed the correlation coefficient, the NSD and 

the CRMS difference (Taylor, 2001) for each of the in-situ sites. These results are presented as Taylor Diagrams (Figure 12) 

using the DDA observed and simulated CO2 mole fractions. Nearly all ensemble members overestimate the temporal variability 5 

at in PBL CO2 (e.g., Figure 12a) and at some sites all members overestimate the temporal variability (e.g., Figure 12b). The 

correlation between simulated and observed CO2 mole fraction can vary from 0.8 to 0.1, indicating a wide range of model 

performances at site-level. Interestingly, some of the models that show a high correlation between the modeled and observed 

DDA CO2 mole fractions are the model configurations with the highest PBLH bias (see Figure 8c, model 4 and 22).   

The correlation between meteorological and CO2 mole fraction model-data differences is evaluated using the MBE for each 10 

model at the different rawinsonde and CO2 tower sites. These correlations (Figure 13) reveal that to first order, errors in 

simulated PBLH govern model-data differences in PBL CO2 mole fraction. Both wind speed (Figure 13a) and wind direction 

(Figure 13b) shows low correlations, whereas PBLH (Figure 13c) show consistently positive correlation with the CO2 mole 

fraction errors across all sites.  We did not find any relationship between error correlation and distance (see Figure A1 in 

Appendix). These results suggest that the bias errors in the in situ CO2 mole fractions are directly related to the MBE in PBLH. 15 

The sign of the correlation (overpredicted PBLH correlated with overpredicted PBL CO2) is expected given net uptake of CO2 

by the regional biosphere. 

4. Discussion 

The evaluation of the RMSD of daytime PBL CO2 mole fractions shows that all the physics parameterizations have a significant 

impact on the simulated values, with only the microphysics parameterization showing a lesser impact (Figure 2). Previous 20 

research has focused on the potential impact of PBL schemes on CO2 mole fractions (e.g. Kretschmer et al., 2012, 2014; 

Lauvaux and Davis 2014). Results from our study indicate that other physics parameterizations including the LSM and CP 

generate errors of similar magnitude in simulated daytime PBL CO2 mole fractions (Figure 2).  The PBLH is also sensitive to 

all of these physical parameterizations (Figure 3a), and there is a high correlation between PBLH errors and CO2 mole fraction 

errors (see Figure 13c). In this sense, our results agree with previous research that assumes that the misrepresentation of the 25 

PBLH plays an important role in PBL CO2 errors (Stephens et al., 2007; Gerbig et al., 2008; Kretschmer et al., 2012). We 

show, however, that multiple elements of the modeling system, not just the PBL parameterization, influence PBLH.  Further, 

although PBL wind speed (Figure 13a) and wind direction (Figure 13b) errors are not clearly correlated with PBL CO2 errors, 

this does not imply that these errors are unimportant.  Figure 2 also shows that the reanalysis has an impact on atmospheric 

CO2 mole fractions, which indicates that even if the wind speed and wind direction errors do not show a high correlation with 30 

atmospheric CO2 errors (Figure 13a-b), these two variables can contribute to the errors in CO2 mole fractions. Indirectly, we 

demonstrated that the reanalysis directly impacts CO2 mole fractions by changing wind speed and direction in WRF (Figure 

3b-c), whereas PBLH errors are primarily driven by physical schemes (surface and PBL schemes). The relationship between 
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PBL winds and CO2 mole fraction is dependent on the local spatial distribution of CO2 surface fluxes and could easily show 

no clear correlation when averaged over time and space. However, we know errors in these two variables can impact the 

distribution and magnitude of the inverse CO2 fluxes over the region (Deng et al., 2017, Lauvaux and Davis, 2014). 

The square root of the model errors (RMSE) of wind speed and wind direction show similar magnitudes in the errors regardless 

of the model configuration that we use. Additionally, we found over the region a systematic positive bias (MBE; 5 

overestimation) of wind speed for the majority of the model and sites. These results specially the ones from wind speed lead 

us to consider other elements of the models as a contributor of the errors. Past literature has stated and shown that the WRF 

mesoscale model has a tendency to produce high wind speed over land (Cheng and Steenburgh, 2005; Roux et al., 2009; Zhang 

et al., 2009; Yerramilli et al., 2010; Jimenez and Dudhia, 2012). Some studies have attributed this high wind speed bias to the 

smoothed representation of the topography (Jimenez and Dudhia, 2012; Santos-Alamillos et al., 2013). Biases of 10 

approximately 3 m/s have been attributed to this misrepresentation of topography. Fovell and Cao (2014) argue that the 

misrepresentation of the terrain, or possibly the vegetation, can produce a biased roughness length that can lead to wind speed 

biases of about 2 m/s. There are other factors that contribute to wind speed errors such as the reanalysis product (Figure 3.b). 

We recommend further analysis of the WRF model and its driver and input data to better understand PBL wind speed random 

and systematic errors.  15 

The PBLH biases across the region shows that YSU PBL schemes tends to produce higher PBLH than MYJ PBL schemes. 

This is consistent with previous studies (Hu et al., 2010, Coniglio et al., 2013; Milovac et al., 2016) that have found local PBL 

schemes (MYJ and MYNN) producing shallower PBLHs compared to nonlocal PBL schemes (YSU).  As explained in 

Coniglio et al., (2013), the MYJ scheme produces cool and moist conditions near the ground and hence low vertical mixing, 

whereas the YSU scheme produces warm and dry conditions in the PBL resulting in deep mixing. Since daytime PBLH is 20 

closely linked to the surface energy balance, an additional analysis was performed using the sensible heat fluxes observed at 

eddy covariance stations from the AmeriFlux network (Boden et al. 2013; http://ameriflux.lbl.gov). The sensible heat flux was 

averaged from 1200 to 2300 UTC and we computed the MBE of the sensible heat flux for the eddy covariance stations close 

to the rawinsonde sites. The MBE was estimated at all the eddy covariance stations available over the region (not shown) and 

we found that the highest positive sensible heat MBE were found on simulations that used YSU as PBL scheme and RUC or 25 

Thermal Diffusion as LSM. Figure 14, shows PBLH MBE of two rawinsonde sites (Figure 14a,b) and the sensible heat MBE 

of two eddy covariance stations (Figure 14c,d) close to each of these rawinsonde sites. We found that model configurations 

that use YSU as the PBL scheme in combination with RUC (Figure 14c,d, red bars) or Thermal Diffusion (Figure 14a,b, green 

bars) as the LSM have the highest positive bias for sensible heat flux (Figure 14c,d), consistent with the positive biases in 

PBLH associated with these configurations. 30 

We also found a spatial pattern in PBLH bias averaged over all model configurations (Figure 9c), where the West region of 

the domain shows a large positive bias and with no persistent bias in the East part of the domain. This spatial gradient may be 

associated with the representation of warmer and drier areas in the west and cooler and moister areas in the eastern portion of 

the domain (Molod et al., 2015). This spatially-structured PBLH bias could be associated with the choice of LSM since high 
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biases are dominated by members using Thermal Diffusion scheme (e.g., Figure 10i, white bar with green border) in the East 

region of the domain and by members using RUC (e.g., Figure 10g, red bars) in the West.  Although, both RUC and Thermal 

Diffusion LSM tend to show a higher PBLH bias when the configuration includes YSU as PBL scheme, ensemble mean biases 

are larger in the West because RUC LSM produce higher positive bias compare to Thermal Diffusion LSM. Also, we showed 

in Figure 14 how these two LSMs tends to overestimate the sensible heat. These results suggest that the different LSMs could 5 

misrepresent the surface energy budget in spatially coherent ways over the region, causing spatially coherent biases in the 

PBLH. Cumulus parameterization also played an important role in the PBLH, as the ensemble members that did not include a 

cumulus parametrization produce high positive biases.  This could be explained by the lack of parameterized subgrid-scale 

convection that could, in reality, limit PBL growth. While we were not able to find an optimal configuration across all the 

sites, we did find, similar to Coniglio et al. (2013) and Milovac at el. (2016), that the MYNN PBL scheme produced the 10 

smallest PBLH biases averaged over the region. 

This ensemble helped us to understand and evaluate atmospheric transport errors due to physics parameterization and 

reanalysis, and to understand how these transport errors are propagated into simulated PBL CO2 mole fractions. However, it 

is important to note several limitations of this study: (1) we explore fewer microphysics and reanalysis options (only two) 

compared to the number of PBL, cumulus, and LSM with three options for each, (2) this evaluation was performed over a 15 

limited period of time and location, (3) the range of parameterizations available for this sensitivity study is ad hoc and 

uncalibrated, and (4) the cumulus parameterizations utilized do not include parameterized transport of CO2. We also note that 

some of the parameterizations (i.e. RUC LSM) were only run using the FNL reanalysis product, which may cause some under-

estimation of the variability as this LSM contributes significantly to the errors of all the meteorological variables. Also, as 

noticed in recent studies, the Grell-Freitas convection scheme produced more reliable simulations of the atmospheric dynamics 20 

(Gao et al., 2017; Gbode et al., 2018). Therefore, we recommend the use of newly developed schemes for future studies as 

model schemes are made available in new model versions. The impact of CP on CO2 mole fractions requires more evaluation, 

because our convective scheme is not coupled with the tracers (i.e., CO2 mole fractions), however, we can still use the 

convective schemes to evaluate its impact on wind fields and PBLH. Consequently, we cannot yet quantify the impact of the 

lack of parameterized cumulus transport of CO2 transport on our findings. We also note that models were compared only to 25 

rawinsonde data, the only type of observation that had both the temporal and vertical resolution needed to evaluate the models 

within the PBL. More observations with higher temporal, spatial and vertical resolution will be an asset for future evaluation 

of transport models, focusing on intensive campaigns over multiple seasons. Our meteorological results, however, are broadly 

consistent with past literature. The biases found in this study are a concern, since atmospheric inversions assume atmospheric 

transport errors are unbiased. Since this bias exist across the different meteorological variables studied here, future selection 30 

of a least biased model may need to weight the impact of each meteorological variable on CO2 or to optimize the atmospheric 

transport model through a data assimilation technique.  A calibrated transport ensemble may be the most efficient approach to 

generating an unbiased representation of atmospheric transport and associated errors. 
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 5 Conclusion 

In this study, we evaluated and quantified the atmospheric transport errors across a highly instrumented area, the Mid-Continent 

Intensive region of the Midwest U.S., for the period June 18 to July 21 of 2008. Transport errors were quantified independently 

of flux errors and propagated into CO2 mole fractions using a multi-physics and multi-reanalysis ensemble. Each model 

configuration was coupled to the same surface fluxes from CarbonTracker CT2009. We conclude that all physics 5 

parameterization except for microphysics have a significant impact on both CO2 mole fractions and meteorological variables. 

We also found that PBLH and CO2 mole fractions have similar sensitivities to the different physics schemes. The relationship 

between the two variables is reinforced by the high correlations between PBLH errors and CO2 mole fraction errors. Among 

the multiple configurations evaluated here, we intended to find the configuration best suited to represent the atmospheric 

transport over the region. However, we show no single model configuration was free from bias for every meteorological 10 

variable (PBLH, wind speed and wind direction) and these biases vary across the domain. Some of the physics parameterization 

schemes tested in this study, such as RUC LSM, YSU and MYJ PBL schemes, showed systematic biases over the entire region, 

whereas the MYNN PBL scheme shows the most reasonable performance on average across the region. 

The model configurations gave us additional insights into the magnitudes of the atmospheric transport errors that can be 

encountered over this region. However, multiple challenges remain. We showed that bias errors vary spatially across the region. 15 

If these errors persist in the transport used for a regional inversion, these biases will be propagated into the inverse fluxes. 

Finally, no optimal model configuration was found for the entire region. Therefore, we conclude that both random and 

systematic errors will remain if any one model configuration is used. An ensemble approach, possibly combined with data 

assimilation, could better minimize biases and characterize the spatio-temporal structures of the atmospheric transport errors 

for future regional inversion system.  20 

 

Appendix A 

 
Figure A1. Tower and rawinsonde sites specific spatial correlation coefficient between ensemble mean MBE of (a) wind speed, (b) 
wind direction and (c) PBLH and ensemble mean MBE of DDA CO2 mole fractions versus their distance. The abscissa shows the 25 
distance between the rawinsonde and tower sites, while the ordinate shows the spatial correlation. A line of best fit is plotted in black. 
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Code availability. The code is accessible under request by contacting the corresponding author (lzd120@psu.edu). 
 

Data availability. Meteorological data were obtained from the University of Wyoming’s online data archive 

(http://weather.uwyo.edu/upperair/sounding.html) for the 14 rawinsonde stations. Tower Atmospheric CO2 Concentration data 

set is available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak 5 

Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAC/1202. The other two towers (Park Falls-WLEF and West 

Branch-WBI) are part of the Earth System Research Laboratory/Global Monitoring Division (ESRL/GMD) tall tower network 

(Andrews et al., 2014; https://www.esrl.noaa.gov/gmd/ccgg/insitu/). The WRF model results are accessible under request by 

contacting the corresponding author (lzd120@psu.edu). 
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Table 1. Different model configurations used in this study. 

Model Number Reanalysis LSM 
Scheme 

PBL 
Scheme 

Cumulus 
Scheme 

Microphysics 
Schemes 

1 
 

NARR Noah YSU Kain-Fritsch WSM 5-class 
2 

 

NARR Noah MYJ Kain-Fritsch WSM 5-class 
3 

 

NARR Noah MYNN Kain-Fritsch WSM 5-class 
4 

 

FNL RUC YSU Kain-Fritsch WSM 5-class 
5 

 

FNL RUC MYJ Kain-Fritsch WSM 5-class 
6 

 

FNL RUC MYNN Kain-Fritsch WSM 5-class 
7 

 

NARR Thermal Dif. YSU Kain-Fritsch WSM 5-class 

8 
 

NARR Thermal Dif. MYJ Kain-Fritsch WSM 5-class 
9 

 

NARR Thermal Dif. MYNN Kain-Fritsch WSM 5-class 
10 

 

NARR Noah YSU Grell-3D WSM 5-class 
11 

 

NARR Noah MYJ Grell-3D WSM 5-class 
12 

 

NARR Noah MYNN Grell-3D WSM 5-class 
13 

 

FNL RUC YSU Grell-3D WSM 5-class 
14 

 

FNL RUC MYJ Grell-3D WSM 5-class 
15 

 

FNL RUC MYNN Grell-3D WSM 5-class 
16 

 

NARR Thermal Dif. YSU Grell-3D WSM 5-class 
17 

 

NARR Thermal Dif. MYJ Grell-3D WSM 5-class 
18 

 

NARR Thermal Dif. MYNN Grell-3D WSM 5-class 
19 

 

NARR Noah YSU Kain-Fritsch Thompson 
20 

 

NARR Noah MYJ Kain-Fritsch Thompson 
21 

 

NARR Noah MYNN Kain-Fritsch Thompson 
22 

 

FNL RUC YSU Kain-Fritsch Thompson 
23 

 

FNL RUC MYJ Kain-Fritsch Thompson 
24 

 

FNL RUC MYNN Kain-Fritsch Thompson 
25 

 

NARR Thermal Dif. YSU Kain-Fritsch Thompson 
26 

 

NARR Thermal Dif. MYJ Kain-Fritsch Thompson 
27 

 

NARR Thermal Dif. MYNN Kain-Fritsch Thompson 
28 

 

NARR Noah YSU Grell-3D Thompson 
29 

 

NARR Noah MYJ Grell-3D Thompson 
30 

 

NARR Noah MYNN Grell-3D Thompson 
31 

 

NARR Noah YSU No CP WSM 5-class 
32 

 

NARR Noah MYJ No CP WSM 5-class 
33 

 

NARR Noah MYNN No CP WSM 5-class 

34 
 

FNL RUC YSU No CP WSM 5-class 
35 

 

FNL RUC MYJ No CP WSM 5-class 
36 

 

FNL RUC MYNN No CP WSM 5-class 
37 

 

NARR Thermal Dif. YSU No CP WSM 5-class 
38 

 

NARR Thermal Dif. MYJ No CP WSM 5-class 
39 

 

NARR Thermal Dif. MYNN No CP WSM 5-class 
40 

 

FNL Noah YSU Kain-Fritsch WSM 5-class 
41 

 

FNL Noah MYJ Kain-Fritsch WSM 5-class 
42 

 

FNL Noah MYNN Kain-Fritsch WSM 5-class 
43 

 

FNL Thermal Dif. YSU Kain-Fritsch WSM 5-class 
44 

 

FNL Thermal Dif. MYJ Kain-Fritsch WSM 5-class 
45 

 

FNL Thermal Dif. MYNN Kain-Fritsch WSM 5-class 
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Table 2. WRF physical parameterizations included in the sensitivity analysis. 

Parameter Options 

Land Surface Model  Noah (Chen and Dudhia, 2001) 
Rapid Update Cycle (RUC; Smirnova, 2000) 
5-layer Thermal Diffusion (Dudhia, 1996) 

Planetary Boundary Layer (PBL) 
scheme  

Yonsei University (YSU; Hong et al., 2006)  
Mellor-Yamada-Janjic (MYJ; Janjic, 2002)  
Mellor-Yamada-Nakanishi-Niino Level 2.5 (MYNN2.5; 
Nakanishi & Niino, 2004) 

Surface Layer  MM5 similarity/YSU PBL scheme 
Eta Similarity/MYJ PBL scheme 
MYNN surface layer/MYNN PBL scheme 

Cumulus  Kain-Fritsch (KF; Kain, 2004)  
Grell-3Devenyi (G3D; Grell and Devenyi, 2002)  
No cumulus parameterization 

Microphysics WSM 5-class (Hong et al., 2004) 
Thompson et al., (2004) 

Shortwave/Longwave  
radiation physics 

Dudhia/Rapid Radiative Transfer Model (RRTM) 

Initial & Boundary Conditions North America Regional Reanalysis (NARR) 
Global Final Analysis (FNL) 
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Figure 1: Geographical domain used by the WRF-ChemCO2 physics ensemble. The parent domain (d01) is resolved at 30-km in the 
horizontal, the inner domain (d02) at 10-km.  The color shading represents modeled terrain height in meters above sea level. The 
inner domain covers the study region and includes the rawinsonde sites (red circles) and the CO2 towers (blue triangles) locations.   
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Figure 2. Sensitivity of CO2 mole fractions as a function of model physics parameterizations (i.e., land surface model (LSM), 
planetary boundary layer scheme (PBL), cumulus parameterization (CP), microphysics parameterization (MP) and Reanalyses). 
The root mean square difference (RMSD) of the CO2 mole fractions simulated at each site and for each model ensemble member 
was computed by varying only the type of physics parameterization noted, and keeping all other model elements constant.  RMSD 5 
was averaged across sites and across model ensembles. 
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Figure 3. Root mean square difference (RMSD) of the PBLH (a), wind speed (b) and wind direction (c) for the different physics 
parameterizations (i.e., land surface model (LSM), planetary boundary layer scheme (PBL), cumulus parameterization (CP), 
microphysics parameterization (MP) and Reanalyses).  The RMSDs were computed in the same way for these variables as for PBL 
CO2 in Figure 2. 5 
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Figure 4. Observed (black line) and simulated (colored lines, see Table 1) PBL (300 m AGL) wind speed (a), wind direction (b) and 
PBLH (c) at time 0000 UTC from day of the year (DOY) 169 to 203 of 2008 at the Chanhassen, Minneapolis (MPX) rawinsonde site. 
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Figure 5. Regional averages of the monthly average of wind speed (a), wind direction (b) and PBLH (c) RMSE for the different 
models (see Table 1 for model configurations). 
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Figure 6. Ensemble mean of monthly averaged RMSE of wind speed (a), wind direction (b) and PBLH (c). 
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Figure 7. Monthly average wind speed (a-c), wind direction (d-f) and PBLH (g-i) RMSE for rawinsonde sites LBF (first row), MPX 
(second row) and APX (third row). Models are sorted from the smallest to the highest RMSE.  Model configurations are ordered by 
RMSE and identified by color (see Table 1). 

 5 

 

 

 

 



36 
 

 

Figure 8. Regional average of the monthly average of PBL wind speed (a), PBL wind direction (b) and PBLH (c) bias for the different 
model configurations (identified by number and color - see Table 1). 
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Figure 9. Ensemble mean of the mean bias error (MBE) for PBL wind speed (a), PBL wind direction (b) and PBLH (c). 
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Figure 10. Monthly average wind speed (a-c), wind direction (d-f) and PBLH (g-i) MBE for rawinsonde sites ABR (first row), DVN 
(second row) and BNA (third row). Models are sorted from the negative to the positive bias. Model configurations are ordered by 
MBE and identified by color (see Table 1). 
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Figure 11. Observed (black stars) and simulated (colored lines) DDA CO2 mole fraction (ppm) at Centerville (RCV) (a) and WBI 
(b).  
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Figure 12. Taylor Diagram comparing observations versus simulations at (a) Mead (RMM) and (b) West Branch (WBI), using DDA 
CO2 mole fractions from 100 m AGL. Black dots at (1, 1) represent the observations. 
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Figure 13. Tower and rawinsonde site specific spatial correlation coefficients between ensemble mean MBE of (a) wind speed, (b) 
wind direction and (c) PBLH and ensemble mean MBE of DDA CO2 mole fractions. The abscissa shows the different CO2 tower 
sites, while the ordinate shows rawinsonde sites. 
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Figure 14. Monthly averaged PBLH MBE for rawinsonde sites (a-b) and sensible heat MBE for eddy covariance sites (c-d). The two 
rawinsode sites MPX (a) and OAX (b) are close to the eddy covariance sites USKUT (c) and USNe3 (d), respectively.  Model 
configurations are identified by color (see Table 1). 
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