Articles | Volume 18, issue 20
https://doi.org/10.5194/acp-18-14787-2018
https://doi.org/10.5194/acp-18-14787-2018
Research article
 | 
15 Oct 2018
Research article |  | 15 Oct 2018

Surface fluxes of bromoform and dibromomethane over the tropical western Pacific inferred from airborne in situ measurements

Liang Feng, Paul I. Palmer, Robyn Butler, Stephen J. Andrews, Elliot L. Atlas, Lucy J. Carpenter, Valeria Donets, Neil R. P. Harris, Ross J. Salawitch, Laura L. Pan, and Sue M. Schauffler

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Liang Feng on behalf of the Authors (29 Jun 2018)  Manuscript 
ED: Referee Nomination & Report Request started (20 Jul 2018) by Timothy J. Dunkerton
RR by Anonymous Referee #2 (13 Aug 2018)
RR by Anonymous Referee #1 (31 Aug 2018)
ED: Publish subject to technical corrections (05 Sep 2018) by Timothy J. Dunkerton
AR by Liang Feng on behalf of the Authors (20 Sep 2018)  Author's response   Manuscript 
Download
Short summary
We infer surface fluxes of bromoform (CHBr3) and dibromoform (CH2Br2) from CAST and CONTRAST aircraft observations over the western Pacific, using a tagged version of the GEOS-Chem global 3-D atmospheric chemistry model and a Maximum A Posteriori inverse model. Using the aircraft data, we estimate the regional fluxes about 20–40 % smaller than the prior inventories by Ordóñez et al. (2012). We find no evidence to support a robust linear relationship between CHBr3 and CH2Br2 oceanic emissions.
Altmetrics
Final-revised paper
Preprint