Articles | Volume 18, issue 20
https://doi.org/10.5194/acp-18-14757-2018
https://doi.org/10.5194/acp-18-14757-2018
Research article
 | 
15 Oct 2018
Research article |  | 15 Oct 2018

A model framework to retrieve thermodynamic and kinetic properties of organic aerosol from composition-resolved thermal desorption measurements

Siegfried Schobesberger, Emma L. D'Ambro, Felipe D. Lopez-Hilfiker, Claudia Mohr, and Joel A. Thornton

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Siegfried Schobesberger on behalf of the Authors (10 Aug 2018)
ED: Publish as is (17 Sep 2018) by Astrid Kiendler-Scharr (deceased)
AR by Siegfried Schobesberger on behalf of the Authors (29 Sep 2018)  Manuscript 
Download
Short summary
Current mass spectrometers allow us to measure the composition of individual organic molecules in aerosol particles, as well as how they evaporate from the particles when those are slowly heated up to 200 °C. We have developed a detailed computer model to simulate the physical and chemical processes that underlie that evaporation and thus help us understand important aerosol properties. Among other factors, we discuss the roles of vapor pressures, and accretion and decomposition reactions.
Altmetrics
Final-revised paper
Preprint