Articles | Volume 17, issue 13
Research article
13 Jul 2017
Research article |  | 13 Jul 2017

The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic–water particles

James W. Grayson, Erin Evoy, Mijung Song, Yangxi Chu, Adrian Maclean, Allena Nguyen, Mary Alice Upshur, Marzieh Ebrahimi, Chak K. Chan, Franz M. Geiger, Regan J. Thomson, and Allan K. Bertram


Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by James Grayson on behalf of the Authors (21 Mar 2017)  Author's response
ED: Referee Nomination & Report Request started (12 Apr 2017) by Gordon McFiggans
RR by Anonymous Referee #3 (28 Apr 2017)
RR by Anonymous Referee #2 (10 May 2017)
ED: Publish as is (15 May 2017) by Gordon McFiggans
Short summary
The viscosities of four polyols and three saccharides mixed with water were determined. The results from the polyol studies suggest viscosity increases by 1–2 orders of magnitude with the addition of an OH functional group to a carbon backbone. The results from the saccharide studies suggest that the viscosity of highly oxidized compounds is strongly dependent on molar mass and oligomerization of highly oxidized compounds in atmospheric SOM could lead to large increases in viscosity.
Final-revised paper