the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Estimating the atmospheric concentration of Criegee intermediates and their possible interference in a FAGE-LIF instrument
Anna Novelli
Korbinian Hens
Cheryl Tatum Ernest
Monica Martinez
Anke C. Nölscher
Vinayak Sinha
Pauli Paasonen
Tuukka Petäjä
Mikko Sipilä
Thomas Elste
Christian Plass-Dülmer
Gavin J. Phillips
Dagmar Kubistin
Jonathan Williams
Luc Vereecken
Jos Lelieveld
Abstract. We analysed the extensive dataset from the HUMPPA-COPEC 2010 and the HOPE 2012 field campaigns in the boreal forest and rural environments of Finland and Germany, respectively, and estimated the abundance of stabilised Criegee intermediates (SCIs) in the lower troposphere. Based on laboratory tests, we propose that the background OH signal observed in our IPI-LIF-FAGE instrument during the aforementioned campaigns is caused at least partially by SCIs. This hypothesis is based on observed correlations with temperature and with concentrations of unsaturated volatile organic compounds and ozone. Just like SCIs, the background OH concentration can be removed through the addition of sulfur dioxide. SCIs also add to the previously underestimated production rate of sulfuric acid. An average estimate of the SCI concentration of ∼ 5.0 × 104 molecules cm−3 (with an order of magnitude uncertainty) is calculated for the two environments. This implies a very low ambient concentration of SCIs, though, over the boreal forest, significant for the conversion of SO2 into H2SO4. The large uncertainties in these calculations, owing to the many unknowns in the chemistry of Criegee intermediates, emphasise the need to better understand these processes and their potential effect on the self-cleaning capacity of the atmosphere.
- Article
(1990 KB) - Full-text XML
-
Supplement
(1836 KB) - BibTeX
- EndNote