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 1 

 1 

Assessment of the available rate coefficients for the SCI + SO2 reaction 2 

The disagreement between the rate coefficient for the SCI + SO2 reaction obtained by 3 

Mauldin III et al. (2012) and Berndt et al. (2012), 5.0  10
-13

 cm
3
 molecule

-1
 s

-1
, and the one 4 

obtained by a number of other groups (Welz et al., 2012;Taatjes et al., 2013;Liu et al., 5 

2014b;Sheps et al., 2014;Stone et al., 2014;Chhantyal-Pun et al., 2015;Newland et al., 6 

2015a;Newland et al., 2015b;Foreman et al., 2016;Zhu et al., 2016), 3.3  10
-11

 cm
3
 molecule

-
7 

1
 s

-1
, is not straightforward to explain.  8 

A first factor is that Mauldin III et al. (2012) and Berndt et al. (2012) measure the rate of 9 

formation of H2SO4 rather than the loss of SCI by SO2.  Theoretical and experimental results 10 

(Carlsson et al., 2012;Ahrens et al., 2014) indicate that SO3 is the main product of the SCI + 11 

SO2 reaction, with a yield near 100% at all reaction conditions considered. Barring secondary 12 

chemistry removing SO3 prior to its reaction with H2O to form H2SO4, which seems unlikely 13 

under their reaction conditions, the H2O4 yield should match the SCI loss. Earlier theoretical 14 

work by Vereecken et al. (2012) suggested that the secondary ozonide (SOZ) formed as an 15 

intermediate from the reaction between larger SCI and SO2 could stabilize and undergo 16 

bimolecular reaction without formation of SO3;  the loss of SOZ would then reduce SO3 17 

formation, explaining the difference in the rate coefficients for the different experiments. 18 

However, more recent theoretical work (Kuwata et al., 2015) found additional low-lying 19 

pathways that make collisional stabilization of the SOZ unlikely. Experiments by Carlsson et 20 

al. (2012) and Ahrens et al. (2014) observed high yields of SO3 close to unity suggesting that 21 

the SOZ is not lost under the conditions used, i.e. in chambers with high concentrations of 22 

reactants and in the absence of water.  23 



 2 

A second factor is that the reaction conditions used by Mauldin III et al. (2012) and Berndt et 1 

al. (2014) differ from the other studies, i.e. they were performed either at ambient air 2 

conditions or with lower concentrations of reagents and in the presence of water, while the 3 

remaining experiments were typically performed under lower pressures, without efficient 4 

colliders present. The mechanism of the SCI+SO2 reaction as obtained by several authors 5 

(Vereecken et al., 2012;Kuwata et al., 2015;Jiang et al., 2010;Kurtén et al., 2011) all indicate 6 

a barrierless formation of a pre-reactive complex or cycloadduct. This type of reactions 7 

typically show faster rate coefficients at higher pressures due to lower redissociation of the 8 

adduct; this is corroborated by the theoretical study on the pressure dependence by Kuwata et 9 

al. (2015) who finds no pressure dependence up to 10132.5 hPa and an increase in the 10 

effective rate coefficient for higher pressures. Experimental studies of the pressure 11 

dependence (Liu et al., 2014b;Huang et al., 2015;Chhantyal-Pun et al., 2016) do not show 12 

extensive pressure dependence up to 300 Torr, and all show a positive pressure dependence, 13 

in line with the currently accepted reaction mechanism. The Carlsson et al. (2012) 14 

experiments at 1013.51 hPa likewise can be fitted using a faster CI + SO2 rate coefficient of 1 15 

x 10
-11

 cm
3
 molecule

-1
 s

-1
. This suggests that the reaction conditions used by Mauldin III et al. 16 

and Berndt et al. would likely lead to faster rate coefficients, especially for larger SCI as used 17 

in Mauldin III et al. due to the lower redissociation rate and hence higher thermalization yield 18 

of the intermediates.  19 

A third factor is that the Mauldin III et al. examine SCI formed from larger terpenoids, rather 20 

than the smaller SCI examined in the remaining studies. A larger SCI should mean a longer 21 

lifetime for the SOZ intermediate, especially as this longer lifetime makes collisional 22 

thermalization more efficient. Hence the large SOZ might indeed live long enough to react in 23 

bimolecular reactions prior to dissociation to SO3, contrary to smaller SOZ. Unfortunately, 24 

SOZ chemistry has not been studied in detail; for the current case the reaction with e.g. H2O 25 
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could be a potential loss process. A prerequisite for this scavenging to be effective is that no 1 

H2SO4 precursor should be formed. This scavenging of the SOZ intermediate would however 2 

not apply to the experiments of Berndt et al., which examined CH3CHOO and (CH3)2COO 3 

Criegee intermediates, similar in size to those used in the studies yielding higher rate 4 

coefficients. For SCI of this size, the RRKM master equation analysis of (Kuwata et al., 2015) 5 

predicts very fast SOZ decomposition. 6 

Finally, an alternative explanation could be based on analysis of the studies by Mauldin III et 7 

al. (2012) and Berndt et al. (2012). In their experiments, the rate of the SCI+SO2 reaction is 8 

derived relative to the total loss rate of SCI, LSCI, as it governs the steady-state concentration 9 

of SCI with negligible SO2 present. This LSCI has a value on the order of ~ 3 to 5 s
-1

 in both 10 

experiments. Since these studies, a large body of experimental and theoretical data has 11 

become available, regarding the reactivity of SCI towards many coreactants present in the 12 

reaction mixture (Taatjes et al., 2013;Ouyang et al., 2013;Ahrens et al., 2014;Buras et al., 13 

2014;Liu et al., 2014a;Stone et al., 2014;Sheps et al., 2014;Welz et al., 2014;Lewis et al., 14 

2015). From this new data, we should consider that a total loss rate of about 4 s
-1

 is an 15 

underestimate. In a previous study by Novelli et al. (2014) a value of LSCI = 40 s
-1

 under 16 

atmospheric conditions was proposed. A re-analysis of the study by Mauldin III et al. (2012) 17 

using LSCI = 40 s
-1 

and the measured yield of SCI for -pinene of 0.1 (Donahue et al., 2011), 18 

results in a rate coefficient for the -pinene-derived SCI + SO2 reaction of 2.6  10
-11

 cm
3
 19 

molecule
-1

 s
-1

. Likewise, for the other compounds examined in the two studies (Berndt et al., 20 

2012;Mauldin III et al., 2012), the derived rate of SCI+SO2 would shift significantly towards 21 

the higher values obtained in the other studies (Welz et al., 2012;Taatjes et al., 2013;Liu et al., 22 

2014b;Sheps et al., 2014;Stone et al., 2014). One must consider, though, that the study by 23 

Berndt et al. (2012) included a measurement of kloss, based on the observed H2SO4 formation 24 

from the steady state SCI in the absence of SO2. Hence, this second explanation is only viable 25 
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if another source of H2SO4 exists in the system; this has already been suggested by Newland 1 

et al. (2015a) based on their SO2 oxidation experiments.  2 

Still, as these considerations for the lower values by Mauldin III et al. (2012) and Berndt et al. 3 

(2012) are merely speculative, we will consider both 3.3  10
-11

 cm
3
 molecule

-1
 s

-1
 and 5  10

-
4 

13
 cm

3
 molecule

-1
 s

-1
 as possible rate coefficients for the SCI + SO2 reaction in the current 5 

budget analysis. 6 

 7 

SCI time series 8 

Time series of SCI were derived for two field campaigns, HUMPPA-COPEC 2010 and HOPE 9 

2012, obtained based on different source data, i.e. the sulfuric acid budget, the speciated VOC 10 

concentrations measured, and the unexplained OH reactivity. 11 

The time series for the HUMPPA-COPEC 2010 campaign (Figures SI-2, SI-4, and SI-7) are 12 

fairly well defined, at least in view of intrinsic uncertainty of the underlying data; as detailed 13 

in the main text, this is the campaign with the highest expected SCI concentrations. Fig SI-2, 14 

using the H2SO4 budget as data source, shows a less pronounced diurnal cycle, but figure SI-4 15 

and SI-7 both show a clear diurnal cycle of the predicted SCI concentration, as well as some 16 

daily differences. These plots both link [SCI] to VOC concentrations, and the SCI 17 

concentration follows the diel variation of these VOCs, as expected from the ozonolysis 18 

chemistry as a source of SCI. Our analysis is not able to account for different yields or 19 

lifetimes of SCI as a function of VOC speciation differences from day to night, due to lack of 20 

data. In principle this could superimpose an additional SCI concentration diel variation, but 21 

we anticipate this to be minor considering that the VOC speciation does not change drastically 22 

between day and night.  Both plots also show clear daily differences.  23 
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The [SCI] time series for the HOPE 2012 campaign are characterized mostly by their 1 

statistical noise. As discussed in the main paper, the SCI concentration during this campaign 2 

was expected to be low, and the SCI concentration estimates are typically derived from a 3 

small difference between large numbers, each with their own statistical noise, leading to 4 

highly variable data with very large relative uncertainties even when the absolute numbers 5 

remain small. Under these conditions, neither diurnal cycles, day-to-day variations, nor even 6 

minimum and peak values carry strong significance, and no meaningful in-depth analysis can 7 

be done beyond stating that the concentrations are predicted to be low indeed. 8 

Across all SCI time series, we find that the minimum and maximum values of the predicted 9 

SCI concentration remains within a relatively modest factor of the median and the average 10 

[SCI], only exceeding a factor of 5 for a handful of data points. Considering the uncertainties 11 

already incurred through the analysis methodology itself, and the variability and uncertainties 12 

on the source data underlying these studies, secondary effects such as day-to-day variability, 13 

diurnal cycles, or multi-day variations have only a moderate to small impact on the overall 14 

uncertainty of the CI estimates proposed in the main paper, where we indicate uncertainties 15 

that exceed an order of magnitude. 16 

 17 

Sensitivity study on the unexplained OH reactivity SCI estimate 18 

The estimate of SCI from the unexplained OH reactivity data contains larger uncertainties 19 

compared to the previous estimates as the rate coefficient for ozonolysis of unsaturated 20 

compounds varies by up to three orders of magnitude. In addition, the rate coefficient between 21 

OH and unsaturated compounds, depending on whether these are unsaturated NMHC or 22 

OVOC, primary emissions, or secondary oxidation products, varies by an order of magnitude. 23 

A sensitivity study was done on the SCI estimates from the unexplained OH reactivity to 24 
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attempt to account for this uncertainty in rate coefficients. It is possible to calculate a lower 1 

limit for the SCI concentration by using the highest rate coefficient between OH and 2 

unsaturated compounds, 1.0 x 10
-10

 cm
3
 molecule

-1
 s

-1
 (Atkinson et al., 2006) combined with a 3 

slow rate coefficient for the unsaturated compounds and ozone, 1.0 x 10
-17

 cm
3
 molecule

-1
 s

-1 
4 

(Atkinson et al., 2006), leading to a [SCI] = (8.7 ± 8.0) x 10
3
 molecules cm

-3
.  For the upper 5 

limit, a slower rate coefficient for OH and unsaturated OVOC, ~ 3.0 x 10
-11 

cm
3
 molecule

-1
 s

-1
 6 

(Atkinson et al., 2006;Teruel et al., 2006) together with a higher rate coefficient with O3, 1.0 x 7 

10
-16

 cm
3
 molecule

-1
 s

-1
 (Atkinson et al., 2006) results in a concentration of [SCI] = (3.0 ± 3.0) 8 

x 10
5
 molecules cm

-3
. These are the values obtained for the HUMPPA-COPEC 2010 9 

campaign. For the HOPE 2012 campaign, the same assumptions would yield a lower and an 10 

upper limit of (1.0 ± 0.2) x 10
3
 molecules cm

-3
 and (2.9 ± 0.7) x 10

4
 molecules cm

-3
, 11 

respectively. 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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Table SI-1. Average concentrations with 1σ standard deviation of measured unsaturated VOC 1 

during the HUMPPA-COPEC 2010 and HOPE 2012 campaigns, together with the rate 2 

coefficients of the reaction with ozone (IUPAC recommended values) (Atkinson et al., 2006). 3 

Compound  

[molecule cm
-3

] 

Rate coefficient with O3 

[cm
3
 molecule

-1
 s

-1
]  

HUMPPA-

COPEC 2010 
HOPE 2012 

isoprene (1.8 ± 1.8) x 10
9
 (2.2 ± 2.2) x 10

9
 1.0 x 10

-14
 exp(-1995/T) 

α-pinene (2.7 ± 3.0) x 10
9
 (1.5 ± 1.5) x 10

9
 8.1 x 10

-16
 exp(-640/T) 

β-pinene (1.9 ± 6.6) x 10
8
 (9.0 ± 9.0) x 10

8
 1.4 x 10

-15
 exp(-1270/T) 

3-carene (1.7 ± 2.0) x 10
9
 (5.6 ± 4.7) x 10

8
 4.8 x 10

-17, b
 

myrcene (2.6 ± 2.7) x 10
8
 (2.2 ± 1.6) x 10

8
 2.7 x 10

-15
 exp(-520/T) 

limonene n.a. (2.9 ± 2.1) x 10
8
 2.8 x 10

-15
 exp(-770/T) 

sabinene n.a. (9.2 ± 9.6) x 10
8
 8.2 x 10

-17, b
 

γ-terpinene   n.a. (1.0 ± 1.0) x 10
8
 1.5 x 10

-16, b
 

2-methylpropene n.a. (4.2 ± 2.5) x 10
8
 2.7 x 10

-15
 exp(-1630/T) 

but-1-ene n.a. (1.4 ± 4.2) x 10
8
 1.2 x 10

-17, a,b
 

propene n.a. (4.7 ± 3.7) x 10
8
 5.5 x 10

-15
 exp(-1880/T) 

cis-2-butene n.a. (6.1 ± 3.0) x 10
7
 3.2 x 10

-15
 exp(-965/T) 

ethene n.a. (7.3 ± 9.0) x 10
9
 9.1 x 10

-15
 exp(-2580/T) 

a, rate coefficient from Adeniji et al. (1981). 4 

b, at 298 K 5 

1 ppbv = 2.46 x 10
10

 molecules cm
-3

 at 295K and 1013 hPa. 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 
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Table SI-2. Average concentrations with 1σ standard deviation of measured trace gas during 1 

the HUMPPA-COPEC 2010 and HOPE 2012 campaigns, with the rate coefficients of the 2 

reaction with OH (IUPAC recommended values) (Atkinson et al., 2006;Atkinson et al., 2004) 3 

Compound  

[molecule cm
-3

] 
Rate coefficient with OH 

[cm
3
 molecule

-1
 s

-1
]  

HUMPPA-

COPEC 2010 
HOPE 2012 

isoprene (1.8 ± 1.8) x 10
9
 (2.2 ± 2.0) x 10

9
 2.7 x 10

-11
 exp(390/T) 

α-pinene (2.7 ± 3.0) x 10
9
 (1.5 ± 1.5) x 10

9
 1.2 x 10

-11
 exp(440/T) 

β-pinene (1.9 ± 6.6) x 10
8
 (9.0 ± 9.0) x 10

8
 7.4 x 10

-11, a,b
 

3-carene (1.7 ± 2.0) x 10
9
 (5.6 ± 4.7) x 10

8
 8.8 x 10

-11, a,b
 

myrcene (2.6 ± 2.7) x 10
8
 (2.2 ± 1.6) x 10

8
 3.3 x 10

-10, b,c
  

limonene n.a. (2.9 ± 2.1) x 10
8
 3 x 10

-11
 exp(515/T),

d 

sabinene n.a. (9.2 ± 9.6) x 10
8
 1.2 x 10

-10, a,b
 

γ-terpinene   n.a. (1.0 ± 1.0) x 10
8
 1.7 x 10

-10, b
 

MACR (1.0± 0.9) x 10
10

 (1.4 ± 0.9) x 10
9
 8 x 10

-12
 exp(380/T) 

ethanol (3.6 ± 2.2) x 10
10

 (1.8 ± 1.1) x 10
10

 3.2 x 10
-12

 exp(20/T) 

methanol (1.0 ± 1.4) x 10
11

 (9.0 ± 3.4) x 10
10

 9.0 x 10
-13, b

 

ozone (1.1 ± 0.2) x 10
12

 (1.1 ± 0.3) x 10
12

 1.7 x 10
-12

 exp(-940/T) 

SO2 (1.4 ± 1.7) x 10
10

 (2.3 ± 2.2) x 10
9
 2.0 x 10

-12, b
 

H2O2 (1.1 ± 1.0) x 10
10

 n.a. 1.7 x 10
-12, b

 

HO2 (9.0 ± 9.5) x 10
8
 (1.4 ± 8.6) x 10

8
 4.8 x 10

-11
 exp(250/T) 

NO (6.5 ± 7.0) x 10
8
 (3.8 ± 5.0) x 10

9
 1.3 x 10

-11, b
 

NO2 (9.5 ± 5.0) x 10
9
 (3.8 ± 2.4) x 10

10
 1.1 x 10

-11, b
 

CO (3.0 ± 1.2) x 10
12

 (2.8 ± 0.4) x 10
12

 2.1 x 10
-13, b

 

HONO (3.4 ± 3.1) x 10
9
 n.a. 6.0 x 10

-12, b
 

propanal n.a. (5.8 ± 3.0) x 10
9
 4.9 x 10

-12
 exp(405/T) 
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acetaldehyde (1.8 ± 1.0) x 10
10

 (2.9 ± 1.4) x 10
10

 1.5 x 10
-11, b

 

formaldehyde (1.4 ± 1.6) x 10
10

 (2.1 ± 0.4) x 10
10

 8.5 x 10
-12, b

 

acetone (8.2 ± 3.8) x 10
10

 (6.0 ± 2.2) x 10
10

 1.8 x 10
-13, b

 

CH4 (4.4 ± 0.07) x 10
13

 (4.3 ± 0.1) x 10
13

 6.4 x 10
-15, b

 

2-methylpropene n.a. (4.2 ± 2.5) x 10
8
 6.1 x 10

-11, a,b
 

but-1-ene n.a. (1.4 ± 4.2) x 10
8
 3.1 x 10

-11, a,b
 

propene n.a. (4.7 ± 3.7) x 10
8
 2.9 x 10

-11, b
 

cis-2-butene n.a. (6.1 ± 3.0) x 10
7
 6.4 x 10

-11, b
 

ethene n.a. (7.3 ± 9.0) x 10
9
 7.8 x 10

-12, b
 

p-xylene n.a. (7.2 ± 5.2) x 10
8
 2.0 x 10

-11, a,b
 

benzene (2.1 ± 1.9) x 10
9
 (8.0 ± 4.0) x 10

8
 1.2 x 10

-12, a,b
 

ethylbenzene n.a. (2.3 ± 2.1) x 10
8
 7.0 x 10

-12, a,b
 

Toluene (6.1 ± 3.0) x 10
9
 (1.2 ± 0.7) x 10

9
 5.6 x 10

-12, a,b
 

ethane n.a. (1.8 ± 0.3) x 10
10

 4.8 x 10
-11

 exp(250/T), 
a
 

propane n.a. (5.6 ± 3.6) x 10
9
 1.1 x 10

-12, a,b
 

methylpropane (1.8 ± 2.3) x 10
9
 (1.4 ± 0.9) x 10

9
 2.1 x 10

-12, a,b
 

butane (1.8 ± 1.6) x 10
9
 (2.0 ± 1.2) x 10

9
 2.3 x 10

-12, a,b
 

2-methylbutane (1.6 ± 1.2) x 10
9
 n.a. 3.6 x 10

-12, a,b
 

n-pentane (1.0 ± 0.9) x 10
9
 (5.6 ± 5.0) x 10

9
 3.8 x 10

-12, a,b
 

a, rate coefficient from (Atkinson and Arey, 2003). 1 

b, at 298 K. 2 

c, rate coefficient from (Hites and Turner, 2009) 3 

d, rate coefficient from (Braure et al., 2014) 4 

1 ppbv = 2.46 x 10
10

 molecules cm
-3

 at 295K and 1013 hPa. 5 

 6 

 7 

 8 

 9 
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Table SI-3. Average sum of concentrations with 1σ standard deviation of BVOC (isoprene, α-1 

pinene, β-pinene, 3-carene, myrcene, limonene, sabinene, γ-terpinene) and temperature for the 2 

entire HOPE 2012 field campaign excluding the period between 26
th

 to 28
th

 of July 2012.  3 

 Σ[VOC] [molecules cm
-3

] Temperature [ºC] 

HOPE 2012 campaign (5.0 ± 4.0) x 10
9
 16 ± 3.0 

26
th

 to 28
th

 of July 2012 (1.3 ± 0.9) x 10
10

 22 ± 3.0 

1 ppbv = 2.46 x 10
10

 molecules cm
-3

 at 295K and 1013 hPa. 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 



 11 

1 

2 

 3 

Figure SI-1. Time series of trace gases measured during the HOPE 2012 campaign. 4 



 12 

 1 

 2 

 3 

 4 

Figure SI-1, continued 5 



 13 

 1 

 2 

 3 

Figure SI-1, continued 4 



 14 

 1 

Figure SI-1, continued 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

Figure SI-2. SCI time series as calculated from the sulfuric acid budget during the HUMPPA-10 

COPEC 2010 campaign. 11 

 12 
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 1 

Figure SI-3. SCI time series as calculated from the sulfuric acid budget during the HOPE 2 

2012 campaign. 3 

 4 

 5 

Figure SI-4. SCI time series as calculated from the measured unsaturated VOC  during the 6 

HUMPPA-COPEC 2010 campaign. 7 



 16 

 1 

Figure SI-5. SCI time series as calculated from the measured unsaturated VOC  during the 2 

HOPE 2012 campaign. 3 

 4 

 5 

Figure SI-6. Contributions of measured trace gases to the measured OH reactivity during the 6 

HUMPPA-COPEC 2010. 7 

 8 



 17 

 1 

Figure SI-7. SCI time series as calculated from the unexplained OH reactivity during the 2 

HUMPPA-COPEC 2010 campaign. 3 

 4 

Figure SI-8. Contributions of measured trace gases to the measured OH reactivity during the 5 

HOPE 2012. 6 



 18 

 1 

Figure SI-9. SCI time series as calculated from the unexplained OH reactivity during the 2 

HOPE 2012 campaign. 3 

 4 

Figure SI-10. Background OH as a function of temperature during the HOPE 2012 campaign. 5 
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 1 

Figure SI-11. Background OH as a function of the ozone concentration during the HUMPPA-2 

COPEC 2010 campaign. 3 

 4 

Figure SI-12. Background OH signal as a function of ozone concentration during the HOPE 5 

2012 campaign. 6 



 20 

 1 

Figure SI-13. Contribution of measured trace gases to the measured OH reactivity during 2 

HOPE 2012 between the 1
st
 and 3

rd
 of August 2012. 3 

 4 

 5 
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