Articles | Volume 17, issue 10
Atmos. Chem. Phys., 17, 6291–6303, 2017
https://doi.org/10.5194/acp-17-6291-2017
Atmos. Chem. Phys., 17, 6291–6303, 2017
https://doi.org/10.5194/acp-17-6291-2017

Research article 23 May 2017

Research article | 23 May 2017

Evaporating brine from frost flowers with electron microscopy and implications for atmospheric chemistry and sea-salt aerosol formation

Xin Yang et al.

Video supplement

Video to complete Figure 3. X. Yang, V. Neděla, J. Runštuk, G. Ondrušková, J. Krausko, Ľ. Vetráková, and D. Heger https://doi.org/10.5446/21430

Video to complete Figure 5. X. Yang, V. Neděla, J. Runštuk, G. Ondrušková, J. Krausko, Ľ. Vetráková, and D. Heger https://doi.org/10.5446/21431

Video to complete Figure 7. X. Yang, V. Neděla, J. Runštuk, G. Ondrušková, J. Krausko, Ľ. Vetráková, and D. Heger https://doi.org/10.5446/21432

A video of visualizing the formation of NaCl crystals on the top of the surface brine layer of FF related to Figure 8. X. Yang, V. Neděla, J. Runštuk, G. Ondrušková, J. Krausko, Ľ. Vetráková, and D. Heger https://doi.org/10.5446/21433

Download
Short summary
A unique environmental electron microscope was used for monitoring the evaporation of salty frost flowers. We observe a cohesive villous brine surface layer facilitating the formation of NaCl microcrystals at temperatures below −10°C as the brine oversaturation is achieved. This finding confirms the increased surface area and thus also the enhanced heterogeneous reactivity; however, no support for the easiness of fragmentation to produce aerosols can be provided.
Altmetrics
Final-revised paper
Preprint