Articles | Volume 17, issue 7
https://doi.org/10.5194/acp-17-4585-2017
https://doi.org/10.5194/acp-17-4585-2017
Research article
 | 
06 Apr 2017
Research article |  | 06 Apr 2017

Uncertainty and variability in atmospheric formation of PFCAs from fluorotelomer precursors

Colin P. Thackray and Noelle E. Selin

Related authors

The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): Mercury modeling to support international environmental policy
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Terry Keating, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-65,https://doi.org/10.5194/gmd-2024-65, 2024
Revised manuscript under review for GMD
Short summary
A tool for air pollution scenarios (TAPS v1.0) to enable global, long-term, and flexible study of climate and air quality policies
William Atkinson, Sebastian D. Eastham, Y.-H. Henry Chen, Jennifer Morris, Sergey Paltsev, C. Adam Schlosser, and Noelle E. Selin
Geosci. Model Dev., 15, 7767–7789, https://doi.org/10.5194/gmd-15-7767-2022,https://doi.org/10.5194/gmd-15-7767-2022, 2022
Short summary
Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions
Minghao Qiu, Corwin Zigler, and Noelle E. Selin
Atmos. Chem. Phys., 22, 10551–10566, https://doi.org/10.5194/acp-22-10551-2022,https://doi.org/10.5194/acp-22-10551-2022, 2022
Short summary
Understanding mercury oxidation and air–snow exchange on the East Antarctic Plateau: a modeling study
Shaojie Song, Hélène Angot, Noelle E. Selin, Hubert Gallée, Francesca Sprovieri, Nicola Pirrone, Detlev Helmig, Joël Savarino, Olivier Magand, and Aurélien Dommergue
Atmos. Chem. Phys., 18, 15825–15840, https://doi.org/10.5194/acp-18-15825-2018,https://doi.org/10.5194/acp-18-15825-2018, 2018
Short summary
Evaluating simplified chemical mechanisms within present-day simulations of the Community Earth System Model version 1.2 with CAM4 (CESM1.2 CAM-chem): MOZART-4 vs. Reduced Hydrocarbon vs. Super-Fast chemistry
Benjamin Brown-Steiner, Noelle E. Selin, Ronald Prinn, Simone Tilmes, Louisa Emmons, Jean-François Lamarque, and Philip Cameron-Smith
Geosci. Model Dev., 11, 4155–4174, https://doi.org/10.5194/gmd-11-4155-2018,https://doi.org/10.5194/gmd-11-4155-2018, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A CO2–Δ14CO2 inversion setup for estimating European fossil CO2 emissions
Carlos Gómez-Ortiz, Guillaume Monteil, Sourish Basu, and Marko Scholze
Atmos. Chem. Phys., 25, 397–424, https://doi.org/10.5194/acp-25-397-2025,https://doi.org/10.5194/acp-25-397-2025, 2025
Short summary
Maximum ozone concentrations in the southwestern US and Texas: implications of the growing predominance of the background contribution
David D. Parrish, Ian C. Faloona, and Richard G. Derwent
Atmos. Chem. Phys., 25, 263–289, https://doi.org/10.5194/acp-25-263-2025,https://doi.org/10.5194/acp-25-263-2025, 2025
Short summary
Derivation of atmospheric reaction mechanisms for volatile organic compounds by the SAPRC mechanism generation system (MechGen)
William P. L. Carter, Jia Jiang, John J. Orlando, and Kelley C. Barsanti
Atmos. Chem. Phys., 25, 199–242, https://doi.org/10.5194/acp-25-199-2025,https://doi.org/10.5194/acp-25-199-2025, 2025
Short summary
Seasonal, regional, and vertical characteristics of high-carbon-monoxide plumes along with their associated ozone anomalies, as seen by IAGOS between 2002 and 2019
Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret
Atmos. Chem. Phys., 24, 13975–14004, https://doi.org/10.5194/acp-24-13975-2024,https://doi.org/10.5194/acp-24-13975-2024, 2024
Short summary
The potential of drone observations to improve air quality predictions by 4D-Var
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024,https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary

Cited articles

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B., Fiore, A. M., Li, Q., Liu, H., Mickley, L. J., and Schultz, M.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23096, 2001.
Butt, C. M., Young, C. J., Mabury, S. A., Hurley, M. D., and Wallington, T. J.: Atmospheric chemistry of 4 : 2 fluorotelomer acrylate (C4F9CH2CH2OC(O)CH  =  CH2): kinetics, mechanisms and products of chlorine atom and OH radical initiated oxidation, J. Phys. Chem. A, 113, 3155–3161, 2009.
Cheng, H. and Sandu, A.: Uncertainty quantification and apportionment in air quality models using the polynomial chaos method, Environ. Model. Softw., 24, 917–925, 2009.
Chiappero, M. S., Malanca, F. E., Arguello, G. A., Wooldridge, S. T., Hurley, M. D., Ball, J. C., Wallington, T. J., Waterland, R. L., and Buck, R. C.: Atmospheric chemistry of perfluoroaldehydes (CxF2x + 1CHO) and fluorotelomer aldehydes (CxF2x + 1CH2CHO): Quantification of the important role of photolysis, J. Phys. Chem. A, 110, 11944–11953, 2006.
Conder, J. M., Hoke, R. A., de Wolf, W., Russell, M. H., and Buck, R. C.: Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds, Environ. Sci. Technol., 42, 995–1003, 2008.
Download
Short summary
PFCAs are toxic contaminants that can form in the atmosphere when precursor chemicals are released and degrade. We calculate the capacity of different atmospheric environments to form PFCAs this way. Different environments have very different capacities to form PFCAs, with the atmosphere far from sources of pollution being much better able to make the more toxic PFCAs. While the chemistry involved has uncertainties, they are small compared to the differences between environments.
Altmetrics
Final-revised paper
Preprint