Articles | Volume 17, issue 7
Atmos. Chem. Phys., 17, 4585–4597, 2017
https://doi.org/10.5194/acp-17-4585-2017
Atmos. Chem. Phys., 17, 4585–4597, 2017
https://doi.org/10.5194/acp-17-4585-2017
Research article
06 Apr 2017
Research article | 06 Apr 2017

Uncertainty and variability in atmospheric formation of PFCAs from fluorotelomer precursors

Colin P. Thackray and Noelle E. Selin

Related authors

A tool for air pollution scenarios (TAPS v1.0) to enable global, long-term, and flexible study of climate and air quality policies
William Atkinson, Sebastian D. Eastham, Y.-H. Henry Chen, Jennifer Morris, Sergey Paltsev, C. Adam Schlosser, and Noelle E. Selin
Geosci. Model Dev., 15, 7767–7789, https://doi.org/10.5194/gmd-15-7767-2022,https://doi.org/10.5194/gmd-15-7767-2022, 2022
Short summary
Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions
Minghao Qiu, Corwin Zigler, and Noelle E. Selin
Atmos. Chem. Phys., 22, 10551–10566, https://doi.org/10.5194/acp-22-10551-2022,https://doi.org/10.5194/acp-22-10551-2022, 2022
Short summary
Understanding mercury oxidation and air–snow exchange on the East Antarctic Plateau: a modeling study
Shaojie Song, Hélène Angot, Noelle E. Selin, Hubert Gallée, Francesca Sprovieri, Nicola Pirrone, Detlev Helmig, Joël Savarino, Olivier Magand, and Aurélien Dommergue
Atmos. Chem. Phys., 18, 15825–15840, https://doi.org/10.5194/acp-18-15825-2018,https://doi.org/10.5194/acp-18-15825-2018, 2018
Short summary
Evaluating simplified chemical mechanisms within present-day simulations of the Community Earth System Model version 1.2 with CAM4 (CESM1.2 CAM-chem): MOZART-4 vs. Reduced Hydrocarbon vs. Super-Fast chemistry
Benjamin Brown-Steiner, Noelle E. Selin, Ronald Prinn, Simone Tilmes, Louisa Emmons, Jean-François Lamarque, and Philip Cameron-Smith
Geosci. Model Dev., 11, 4155–4174, https://doi.org/10.5194/gmd-11-4155-2018,https://doi.org/10.5194/gmd-11-4155-2018, 2018
Short summary
Maximizing ozone signals among chemical, meteorological, and climatological variability
Benjamin Brown-Steiner, Noelle E. Selin, Ronald G. Prinn, Erwan Monier, Simone Tilmes, Louisa Emmons, and Fernando Garcia-Menendez
Atmos. Chem. Phys., 18, 8373–8388, https://doi.org/10.5194/acp-18-8373-2018,https://doi.org/10.5194/acp-18-8373-2018, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Ozone depletion events in the Arctic spring of 2019: a new modeling approach to bromine emissions
Maximilian Herrmann, Moritz Schöne, Christian Borger, Simon Warnach, Thomas Wagner, Ulrich Platt, and Eva Gutheil
Atmos. Chem. Phys., 22, 13495–13526, https://doi.org/10.5194/acp-22-13495-2022,https://doi.org/10.5194/acp-22-13495-2022, 2022
Short summary
High-resolution inverse modelling of European CH4 emissions using the novel FLEXPART-COSMO TM5 4DVAR inverse modelling system
Peter Bergamaschi, Arjo Segers, Dominik Brunner, Jean-Matthieu Haussaire, Stephan Henne, Michel Ramonet, Tim Arnold, Tobias Biermann, Huilin Chen, Sebastien Conil, Marc Delmotte, Grant Forster, Arnoud Frumau, Dagmar Kubistin, Xin Lan, Markus Leuenberger, Matthias Lindauer, Morgan Lopez, Giovanni Manca, Jennifer Müller-Williams, Simon O'Doherty, Bert Scheeren, Martin Steinbacher, Pamela Trisolino, Gabriela Vítková, and Camille Yver Kwok
Atmos. Chem. Phys., 22, 13243–13268, https://doi.org/10.5194/acp-22-13243-2022,https://doi.org/10.5194/acp-22-13243-2022, 2022
Short summary
Four-dimensional variational assimilation for SO2 emission and its application around the COVID-19 lockdown in the spring 2020 over China
Yiwen Hu, Zengliang Zang, Xiaoyan Ma, Yi Li, Yanfei Liang, Wei You, Xiaobin Pan, and Zhijin Li
Atmos. Chem. Phys., 22, 13183–13200, https://doi.org/10.5194/acp-22-13183-2022,https://doi.org/10.5194/acp-22-13183-2022, 2022
Short summary
Changing ozone sensitivity in the South Coast Air Basin during the COVID-19 period
Jason R. Schroeder, Chenxia Cai, Jin Xu, David Ridley, Jin Lu, Nancy Bui, Fang Yan, and Jeremy Avise
Atmos. Chem. Phys., 22, 12985–13000, https://doi.org/10.5194/acp-22-12985-2022,https://doi.org/10.5194/acp-22-12985-2022, 2022
Short summary
Modelling the growth of atmospheric nitrous oxide using a global hierarchical inversion
Angharad C. Stell, Michael Bertolacci, Andrew Zammit-Mangion, Matthew Rigby, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Xin Lan, Manfredi Manizza, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, Dickon Young, and Anita L. Ganesan
Atmos. Chem. Phys., 22, 12945–12960, https://doi.org/10.5194/acp-22-12945-2022,https://doi.org/10.5194/acp-22-12945-2022, 2022
Short summary

Cited articles

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B., Fiore, A. M., Li, Q., Liu, H., Mickley, L. J., and Schultz, M.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23096, 2001.
Butt, C. M., Young, C. J., Mabury, S. A., Hurley, M. D., and Wallington, T. J.: Atmospheric chemistry of 4 : 2 fluorotelomer acrylate (C4F9CH2CH2OC(O)CH  =  CH2): kinetics, mechanisms and products of chlorine atom and OH radical initiated oxidation, J. Phys. Chem. A, 113, 3155–3161, 2009.
Cheng, H. and Sandu, A.: Uncertainty quantification and apportionment in air quality models using the polynomial chaos method, Environ. Model. Softw., 24, 917–925, 2009.
Chiappero, M. S., Malanca, F. E., Arguello, G. A., Wooldridge, S. T., Hurley, M. D., Ball, J. C., Wallington, T. J., Waterland, R. L., and Buck, R. C.: Atmospheric chemistry of perfluoroaldehydes (CxF2x + 1CHO) and fluorotelomer aldehydes (CxF2x + 1CH2CHO): Quantification of the important role of photolysis, J. Phys. Chem. A, 110, 11944–11953, 2006.
Conder, J. M., Hoke, R. A., de Wolf, W., Russell, M. H., and Buck, R. C.: Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds, Environ. Sci. Technol., 42, 995–1003, 2008.
Download
Short summary
PFCAs are toxic contaminants that can form in the atmosphere when precursor chemicals are released and degrade. We calculate the capacity of different atmospheric environments to form PFCAs this way. Different environments have very different capacities to form PFCAs, with the atmosphere far from sources of pollution being much better able to make the more toxic PFCAs. While the chemistry involved has uncertainties, they are small compared to the differences between environments.
Altmetrics
Final-revised paper
Preprint