Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 17, issue 2
Atmos. Chem. Phys., 17, 1453–1469, 2017
https://doi.org/10.5194/acp-17-1453-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 1453–1469, 2017
https://doi.org/10.5194/acp-17-1453-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 31 Jan 2017

Research article | 31 Jan 2017

Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the F-BEACh 2014 field study

Martin Brüggemann et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Martin Brüggemann on behalf of the Authors (30 Nov 2016)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (04 Dec 2016) by Alexander Laskin
RR by Anonymous Referee #3 (16 Dec 2016)
RR by Anonymous Referee #2 (18 Dec 2016)
ED: Reconsider after minor revisions (Editor review) (20 Dec 2016) by Alexander Laskin
AR by Martin Brüggemann on behalf of the Authors (29 Dec 2016)  Author's response    Manuscript
ED: Publish as is (08 Jan 2017) by Alexander Laskin
Publications Copernicus
Download
Short summary
Using complementary mass spectrometric techniques during a field study in central Europe, characteristic contributors to the organic aerosol mass were identified. Besides common marker compounds for biogenic secondary organic aerosol, highly oxidized sulfur species were detected in the particle phase. High-time-resolution measurements revealed correlations between these organosulfates and particulate sulfate as well as gas-phase peroxyradicals, giving hints to underlying formation mechanisms.
Using complementary mass spectrometric techniques during a field study in central Europe,...
Citation
Altmetrics
Final-revised paper
Preprint