Articles | Volume 17, issue 23
https://doi.org/10.5194/acp-17-14457-2017
https://doi.org/10.5194/acp-17-14457-2017
Research article
 | 
06 Dec 2017
Research article |  | 06 Dec 2017

Modeling the contributions of global air temperature, synoptic-scale phenomena and soil moisture to near-surface static energy variability using artificial neural networks

Sara C. Pryor, Ryan C. Sullivan, and Justin T. Schoof

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Sara C. Pryor on behalf of the Authors (01 Nov 2017)  Author's response   Manuscript 
ED: Publish as is (04 Nov 2017) by Qiang Fu
AR by Sara C. Pryor on behalf of the Authors (05 Nov 2017)
Download
Short summary
The air temperature and water vapor content are increasing globally due to the increased concentration of "heat-trapping" (greenhouse) gases. But not all regions are warming at the same rate. This analysis is designed to improve understanding of the causes of recent trends and year-to-year variability in summertime heat indices over the eastern US and to present a new model that can be used to make projections of future events that may cause loss of life and/or decreased human well-being.
Altmetrics
Final-revised paper
Preprint