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Abstract. The static energy content of the atmosphere is in-
creasing on a global scale, but exhibits important subglobal
and subregional scales of variability and is a useful parame-
ter for integrating the net effect of changes in the partitioning
of energy at the surface and for improving understanding of
the causes of so-called “warming holes” (i.e., locations with
decreasing daily maximum air temperatures (T ) or increas-
ing trends of lower magnitude than the global mean). Further,
measures of the static energy content (herein the equivalent
potential temperature, θe) are more strongly linked to excess
human mortality and morbidity than air temperature alone,
and have great relevance in understanding causes of past
heat-related excess mortality and making projections of pos-
sible future events that are likely to be associated with neg-
ative human health and economic consequences. New non-
linear statistical models for summertime daily maximum and
minimum θe are developed and used to advance understand-
ing of drivers of historical change and variability over the
eastern USA. The predictor variables are an index of the daily
global mean temperature, daily indices of the synoptic-scale
meteorology derived from T and specific humidity (Q) at
850 and 500 hPa geopotential heights (Z), and spatiotempo-
rally averaged soil moisture (SM). SM is particularly impor-
tant in determining the magnitude of θe over regions that have
previously been identified as exhibiting warming holes, con-
firming the key importance of SM in dictating the partition-
ing of net radiation into sensible and latent heat and dictating
trends in near-surface T and θe. Consistent with our a pri-
ori expectations, models built using artificial neural networks
(ANNs) out-perform linear models that do not permit interac-
tion of the predictor variables (global T , synoptic-scale mete-

orological conditions and SM). This is particularly marked in
regions with high variability in minimum and maximum θe,
where more complex models built using ANN with multi-
ple hidden layers are better able to capture the day-to-day
variability in θe and the occurrence of extreme maximum θe.
Over the entire domain, the ANN with three hidden layers ex-
hibits high accuracy in predicting maximum θe > 347 K. The
median hit rate for maximum θe > 347 K is> 0.60, while the
median false alarm rate is ≈ 0.08.

1 Motivation and objectives

Extreme heat is associated with significant societal and envi-
ronmental impacts, and a number of prior studies have elabo-
rated on the drivers of extreme air temperatures (T ) and made
projections of extreme T and the associated human health
impacts and socioeconomic consequences (Sanderson and
Ford, 2017; de’Donato et al., 2015; O’Neill and Ebi, 2009;
Garcia-Herrera et al., 2010). Previous studies have sought
to quantify the predictability of extreme T as a function of
lead-time and variables describing teleconnections to remote
sea surface temperature anomalies (McKinnon et al., 2016)
and/or local soil moisture (Brabson et al., 2005). Physiolog-
ical stress is maximized under the co-occurrence of elevated
T and specific humidity (q) (Zhang et al., 2014). Thus to
understand spatiotemporal variability in heat-related mortal-
ity and/or morbidity there is a need to consider integrative
variables derived from both T and q, such as equivalent po-
tential temperature (θe) computed herein using the following
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approximation:

θe = T

(
1000
P

)Rd/Cpd

+
L(T )

Cpd
q, (1)

where T is air temperature (K), P is atmospheric pressure
(hPa), Rd is specific gas constant for air (Jkg−1 K−1), Cpd is
specific heat for dry air (Jkg−1 K−1), L(T ) is latent heat of
vaporization (f (T )) (Jkg−1), and q is specific humidity of
water vapor (kgkg−1) (Bolton, 1980).

Potential temperature is the temperature an unsaturated air
parcel would have if brought adiabatically to a standard pres-
sure. Thus, potential temperature is conserved for an unsatu-
rated air parcel if it remains unsaturated as it rises and sinks.
Equivalent potential temperature is conserved under vertical
motion even if there is phase change of water vapor contained
within the air. Hence, the use of metrics such as θe permits
more accurate depictions of near-surface energy budgets and
surface heating trends for use in climate change detection
studies (Davey et al., 2006). Equivalent potential tempera-
ture rather than equivalent temperature is used here to allow
comparison of values from other reanalyses (or other model
output) that use a different discretization of terrain elevation.

When considering the local surface energy balance (Eq. 2),
near-surface T is responsive only to changes in the sensible
heat flux from or to the surface, while θe responds to changes
in both the sensible and latent heat flux terms:

S (1−α)+Rli−Rlo =H +LE+G, (2)

where S is incoming solar radiation, α is albedo, Rli is
counter-radiated longwave radiation from the atmosphere,
Rlo is outgoing longwave radiation from the surface, H is
sensible heat flux, LE is latent heat flux, and G is ground
heat flux.

Accordingly, the total static energy of the near-surface at-
mosphere (and thus θe) has significantly increased since the
1970s due to the increase in net radiation (left-hand side of
Eq. 2) (Peterson et al., 2011) and in response to increased T
and the associated response in q (Ribera et al., 2004; Wil-
lett et al., 2007). However, climate modes (such as El Niño–
Southern Oscillation, ENSO, the North Atlantic Oscillation,
NAO, and Pacific–North American mode, PNA) cause inter-
annual variability in global (Huang et al., 2017) and regional
(Llamedo et al., 2017) T and q anomalies, and there is sub-
stantial regional and subregional variability in absolute mag-
nitude of static energy and temporal trends therein (Fall et al.,
2010; Pryor and Schoof, 2016; Pryor et al., 2016).

The following is a précis of the scales and processes we
seek to explore and include in our new statistical downscal-
ing models for summertime daily maximum and minimum
equivalent potential temperature (θe).

– Global-scale forcing due to enhanced greenhouse gas
concentrations and internal climate variability (e.g.,
ENSO; Mann et al., 1998)). As T increases, the atmo-
spheric water vapor content responds in proportion to

the saturation vapor pressure (Willett et al., 2007; Allen
and Ingram, 2002). Thus, both components (T and q) of
static energy (θe) are enhanced in years and seasons with
high global mean air temperatures. Previous research
has indicated that variability in equivalent temperature
(Te, i.e., the temperature computed from Eq. (1) but ex-
cluding the correction for bringing the air parcel adi-
abatically to a reference pressure of 1000 hPa) in the
North Atlantic is strongly linked to NAO (Ribera et al.,
2004), and the probability of heat waves across the US
is linked to hemispheric waves (Teng et al., 2013) and
thus the PNA (Trenberth, 1990).

– Synoptic-scale forcing (Grotjahn et al., 2016). Much
of the eastern USA broke records for heat indices dur-
ing the summer of 2012 in part due to persistent anti-
cyclonic conditions (Peterson et al., 2013), and many
heat watch warnings employ a synoptic-typing-based
methodology (Sheridan and Kalkstein, 2004). Further,
variability and temporal trends in summertime moist
static energy and dew point temperatures (Td) in the
Midwestern USA appear to be linked to enhanced hor-
izontal atmospheric moisture advection due in part to
northward expansion of the southeast summertime an-
ticyclone (Kalkstein et al., 1998; Rogers et al., 2007;
Pryor and Schoof, 2016; Ford and Schoof, 2017).

– Local–regional changes in water availability and en-
ergy partitioning at the surface. These changes are due
to factors such as land cover change and soil moisture
modification as a result of irrigation of cropland (Davey
et al., 2006; Pryor et al., 2016).

Observed tendencies in T , q and θe are naturally a prod-
uct of a combination of these drivers (Horton et al., 2016).
The expression of internal climates modes (e.g., ENSO, PNA
and NAO) influences the frequency and intensity of different
synoptic-scale phenomena (Sheridan, 2003; Weaver, 2013)
and has been found to be partly responsible for an increase
in the number of oppressively hot days in many urban areas
across the USA over recent decades (Sheridan et al., 2009).
Further, there are important feedbacks between the land–
atmosphere coupling, the synoptic-scale circulation patterns
and boundary-layer structure (Lee et al., 2016). Thus, for ex-
ample, extremely high Td (and by association elevated q)
in the Midwestern USA is associated with (a) development
and propagation of low pressure from the High Plains to the
upper Great Lakes, (b) healthy crops and sufficient surface
soil moisture, and (c) restricted vertical mixing (Bentley and
Stallins, 2008).

The objectives of this research are as follows:

1. to use nonlinear (machine learning) models applied to
a three-tiered suite of predictors: (a) an index of the
daily global mean temperature, (b) indices of the con-
ditions on a synoptic scale based on principal compo-
nents analysis (PCA) of upper-air variables, and (c) soil
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moisture estimates, to investigate spatiotemporal varia-
tions in θe and enhance understanding of the causes of
variability and change in θe over the eastern USA.

2. to examine whether the performance of the artificial
neural networks (ANNs) used to predict daily maximum
and minimum θe is enhanced by inclusion of additional
hidden layers in the ANNs.

2 Data and methods

2.1 Study region

The eastern USA (Fig. 1a) is the focus of this research be-
cause of the following reasons.

– It is home to over 200 million people (based on the 2013
census).

– It is characterized by high summertime Te (and θe), and
in situ data have indicated trends in Te exceed those
in T alone (Schoof et al., 2015). Further, the region is
largely congruent with an area of coherence for extreme
T events in prior research (McKinnon et al., 2016).

– It encompasses major urban areas that have experienced
a number of past extreme heat events associated with
substantial excess mortality and morbidity (see sum-
mary in Vanos et al., 2015 and also Anderson and Bell,
2011). Further, a range of reanalyses exhibit a consistent
signal of increasing frequency of both dry (i.e., high T
but low q) and humid (i.e., combined high T and q)
heat wave days over the study region during the period
1981–2015 (Schoof et al., 2017).

– It exhibits strong spatial gradients in terms of the nature
of land cover and rate of change of both land manage-
ment and soil moisture (SM) (Fig. 1a and g; Pryor et al.,
2016; Pryor and Schoof, 2016; Ellenburg et al., 2016).
For example, over the period 1950–2000 the region as
a whole experienced rapid population growth (though
this was not spatially uniform), expansion of area clas-
sified as exurban, an overall reduction of land in agri-
culture (though again this was highly heterogeneous in
space) and an increase in the intensity of water manage-
ment (including expansion of irrigation) (Brown et al.,
2005).

– Parts of it (focused on the southern Great Plains, i.e., the
southern and westernmost portion of the current study
area) were identified in the global land–atmosphere cou-
pling experiments (GLACEs) as exhibiting atypically
strong atmosphere–surface coupling in some global cli-
mate models. Further, soil moisture makes a large con-
tribution to subseasonal forecast skill for air tempera-
tures and precipitation in this region (Koster et al., 2006,
2011; Dirmeyer and Halder, 2017; Guo et al., 2006).

– It also incorporates two areas of reduced daily max-
imum T during multiple consecutive years extending
over part or all of the 20th century (i.e., warming holes).
One is located along the border of Iowa (IA), Nebraska
(NE) and South Dakota (SD), and one is centered on
Mississippi (MS) and Alabama (AL) (locations shown
in Fig. 1h). The lack of warming in both regions has
been attributed to changing land-surface characteristics
and enhanced soil moisture availability (Kalnay and
Cai, 2003; Pan et al., 2009; Ellenburg et al., 2016).
In the case of MS and AL, up to 60 % of the vari-
ance of summer temperatures has been ascribed to soil
moisture (and thus an increase in the LE at the sur-
face at the expense of H , Eq. 2) and cloud cover (re-
ducing the net radiation) (Ellenburg et al., 2016). How-
ever, additional factors may account for these warm-
ing holes including large-scale climate modes such as
the Interdecadal Pacific Oscillation and the associated
sea surface temperature anomalies in the tropical Pacific
(Meehl et al., 2015), as well as aerosol radiative forcing
(Leibensperger et al., 2012; Yu et al., 2014).

2.2 Data set

All variables used herein derive from the MERRA-2 reanal-
ysis data set (Molod et al., 2015; Reichle et al., 2017a). This
minimizes uncertainty in models linking our predictors to
near-surface static energy resulting from the use of differ-
ent data sets to derive the predictor suite and/or the response
variables (daily minimum and maximum θe). The MERRA-2
reanalysis product assimilates an unprecedented array of re-
mote sensing and in situ data streams, but does not assimilate
in situ observations of near-surface T or q. MERRA-2 out-
put is available at a resolution of 0.625◦ ×∼ 0.5◦ (longitude
by latitude). We use MERRA-2 output for all summer days
(June, July and August: JJA) during 1980–2015 to compute
the following variables.

1. A globally averaged daily mean air temperature com-
puted using hourly 2 m T from all MERRA-2 grid cells.
This predictor (Fig. 1b) is intended to represent the
long-term tendency in global mean temperatures and in-
terannual or interdecadal variability caused by internal
climate modes (Huang et al., 2017).

2. Indices of synoptic-scale meteorology. Air temperature
(T850) and specific humidity (q850) at 850 hPa along
with 500 hPa geopotential heights (Z500) in the domain
(25.5–50◦ N, 97.5–65◦W) for 20:00 UTC (i.e., 16:00
Eastern Daylight Time, 15:00 Central Daylight Time)
are converted to z scores (that indicates how many stan-
dard deviations an individual value is from the mean)
and used in a rotated PCA to generate daily principal
component scores (PCs) that represent the proximity of
each day to the major modes of synoptic-scale variabil-
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Figure 1. (a) The study domain used herein (25.5◦–50◦ N, 97.5◦–65◦W) and five consolidated land use and land cover (LULC) classes as
represented at a resolution of 0.05◦× 0.05◦ from the MODIS land cover data set for 2014 (MCD12C). (b) A box plot of daily global mean
JJA temperature values (K) (1980–2015) as computed from the MERRA-2 output. (c) Mean summertime (JJA, 1980–2015) maximum θe
and (d) minimum θe (K) as computed from hourly T and q at 2 m and surface pressure (P) in each MERRA-2 grid cell. Standard deviation
of daily (e) maximum θe and (f) minimum θe (K) (JJA, 1980–2015). (g) Mean soil moisture estimates (1980–2015) from MERRA-2 used
as a predictor in the ANN and computed as follows: the daily mean value for total profile soil moisture content (PRMC) for each grid cell
is averaged over a spatial area of 3× 3 grid cells centered on the grid cell of interest, and used to compute a 90-day running JJA mean soil
moisture (m3 m−3). Panel (h) shows the location of states that are explicitly referred to herein.

ity. These predictors (i.e., the PCs) are intended to rep-
resent variability in the synoptic-scale circulation (e.g.,
presence of anticyclonic conditions likely to be asso-
ciated with subsidence and thus retarded vertical mix-
ing) and also large-scale advection of static energy. A
total of 15 components are retained based on a scree
plot analysis (Cattell, 1966) and are subject to Varimax
rotation (Richman, 1986). Daily PC scores for all 15
PCs are used as predictors in the statistical models, to
allow each day to exhibit partial membership of multi-
ple synoptic types. Spatial fields of the three variables
sampled once per day are used in the PCA due to the
high temporal autocorrelation present in these variables,
and 20:00 UTC is selected to approximately coincide
with the timing of the afternoon peak in surface T over
the eastern USA. Figure 2 shows centroids of synop-
tic modes of variability as defined using the PCA (so-
called key days) as represented by the spatial patterns
of T850, q850 and Z500 computed as the mean conditions
on the 7 days that exhibit highest PC scores on each PC.
As shown, many of the synoptic types thus identified
are readily interpretable as representing a diversity of
zonal vs. meridional circulation (cf. type 9, 5 and 6), and

some are characterized by conditions known to be asso-
ciated with strong southerly low-level advection of high
T and q into the region (e.g., types 1, 3, and 15) (Pryor
and Schoof, 2016; Weaver, 2013). Further, most types
exhibit a high degree of similarity with other synoptic-
scale classifications derived for the region (e.g., type 7 is
very similar to one that is associated with summertime
precipitation over the southeastern USA, Diem, 2006).

3. An index of soil moisture. This predictor is included to
represent the availability of moisture at the atmosphere–
surface boundary. Due to its spatial heterogeneity, fol-
lowing previous research (Ford and Schoof, 2016), we
use a time-integrated and spatially integrated metric of
SM. Specifically we use a 90-day running mean esti-
mate of antecedent SM (i.e., the value for 1 June is an
average of values from approx. 1 March to 1 June) over
3×3 grid cells centered on the grid cell in question (i.e.,
integrated over an area of approximately 30 000 km2,
see Fig. 1g). MERRA-2 SM has been evaluated rela-
tive to in situ measurements of surface and root-zone
SM and exhibits an unbiased root mean square error
(RMSE) of 0.05 m3 m−3 and a variance explanation
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Figure 2. Summary of the conditions under each of the PCA-derived synoptic modes of variability. The panels show the “mode centroid”
(i.e., mean of the 7 days that exhibit highest PC scores for the type). The color depicts T850 (K), the solid black lines show Z500 (gpm:
geopotential meters) and the red lines depict q850 (g kg−1). The PC number is shown in the lower left of each panel and the panels are
arranged so that the first mode of variability is shown in the upper left panel, the fifth PC is shown in the second row in the left-most panel
and so forth. To aid legibility, the panels in this figure denote the study region as a rectangle, with state outlines excluded, thus also shown in
the lower right of this figure is a map depicting the state outlines for the same domain as shown in the other panels but using a plate carrée
projection (i.e., the equirectangular projection) used in Figs. 1, 4–7.

(R2) value of the average root-zone SM anomaly of 0.56
(Reichle et al., 2017a). Further, since the MERRA-2
system applies bias correction to the precipitation es-
timates used in the land surface model (Reichle et al.,
2017b), this may result in enhanced accuracy of SM
estimates. However, it should be noted that there are
relatively few direct measurements of SM and thus the
evaluation of MERRA-2 is focused on agricultural lo-
cations.

4. An estimate of (i) daily maximum θe and (ii) daily min-
imum θe in each grid cell (see Fig. 1c and d). The daily
minimum and maximum values are used as the predic-
tands in the downscaling and are derived using Eq. (1)
applied to hourly T at 2 m, q at 2 m and surface pres-
sure (P ). The domain used to compute the gridded fields
of the predictands (daily minimum and maximum θe) is
truncated by one grid cell on each boundary of the do-
main used to generate the predictors to accommodate
the spatial averaging used to generate the SM predic-
tor. The range of grid-cell θe estimates are consistent
with those derived from station observations within the
study region (Pryor and Schoof, 2016), and in accor-
dance with a priori expectations both daily maximum θe

and minimum θe exhibit primarily latitudinal variabil-
ity (Fig. 1c and d). Mean maximum θe decreases from
values of ∼ 350 K (∼ 80 ◦C) in the south of the domain
to approximately 320 K (∼ 50 ◦C) in the north. MO and
IA exhibit anomalously high mean maximum θe com-
pared with grid cells at the same latitudes (Fig. 1c) re-
flecting, in part, the advection of air with high T and q
from the south by the Great Plains low level jet (GPLLJ)
(Weaver, 2013; Pryor and Schoof, 2016; Schoof et al.,
2015) and the presence of abundant SM (Fig. 1g) (Al
Bitar et al., 2017).

There are also important spatial patterns of the day-to-
day variability of daily maximum θe and minimum θe that
provide key context for considering the performance of dif-
ferent transfer functions (i.e., statistical models linking in-
dices of the global mean T , synoptic-scale meteorology and
soil moisture (the predictors) to the response variables; max-
imum θe and minimum θe). The variance (and standard de-
viation) of daily maximum θe values (i.e., a measure of the
dispersion of individual days around the mean values of min-
imum and maximum θe shown in Fig. 1c and d) is largest over
IA and southern Minnesota (MN) (Fig. 1e), while the vari-
ance of minimum θe is greatest over Illinois (IL) (Fig. 1f).
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In both cases the day-to-day variability as measured by the
standard deviation is∼ 10 K. The standard deviation of daily
maximum θe and minimum θe decreases with decreasing lati-
tude and both variables exhibit the lowest variability over the
southern portions of the study domain (e.g., Florida (FL) has
a standard deviation < 5 K) (Fig. 1e and f).

Thus the time series of predictors (1) and (2) (global mean
T and the 15 PC scores) are common to models built for all
grid cells, but predictor (3) (SM) and the response variables
(predictands, daily maximum θe and minimum θe) are grid-
cell specific.

2.3 Methods

Artificial neural network architectures are potentially highly
useful in developing statistical models for response variables
such as θe because ANNs do not require any assumptions
about the form of the relationship between individual pre-
dictors and between predictors and predictands (minimum
and maximum θe) and can treat complex and nonlinear term
interactions. ANNs are data-driven self-adaptive multi-layer
perceptrons that model relationships between input variables
and dependent output variables. Term interactions are de-
scribed using mathematical functions encoded within hid-
den layers and weights that connect all nodes within the net-
work layers including the input (predictors) and output (pre-
dictand) layers to perform the nonlinear mapping between
the input and output variables (Gardner and Dorling, 1998).
The number of hidden layers within the ANN determines the
degree of nonlinearity that can be modeled. Hence, if the
data are linearly separable, no hidden layers are required.
Our a priori expectation is that the different predictors of
daily maximum and minimum θe will interact in complex,
nonlinear ways. Thus, we apply ANN to develop models re-
lating the global mean T , PC scores of the synoptic-scale
meteorology and antecedent SM to daily maximum or mini-
mum θe in each grid cell. Because we seek to examine spa-
tial variability in model performance, we build and test the
ANNs at the grid-cell level and then examine the result-
ing spatial coherence of model skill. A range of different
learning algorithms can be employed in ANN. Herein the
neural networks are constructed within MATLAB using the
Levenberg–Marquardt back-propagation algorithm (in which
the sum of the squares of the deviations between the observa-
tions and model predictions is minimized) (Papageorgiou and
Poczeta, 2017). Although there is no single “best-practice”
regarding the number of hidden layers to use with ANN,
there is evidence that a single hidden layer is sufficient for
the large majority of problems (Toth et al., 2000). To test the
dependence of model skill on the number of hidden layers,
three independent models are constructed for each MERRA-
2 grid cell using the following:

1. no hidden layers, i.e., a linear regression model with no
interaction between the predictors;

2. ANN with a single hidden layer;

3. ANN with three hidden layers.

To examine the importance of SM in determining the down-
scaling model skill, a fourth ANN model (with three hidden
layers) is also built for each grid cell and each of the two pre-
dictands (daily maximum and minimum θe) that excludes SM
from the input variables. Lastly, it is challenging to determine
which measures of SM are most appropriate to use within sta-
tistical downscaling models. Therefore, in addition to devel-
oping models using the MERRA-2 variable “PRMC”, which
is the “total profile soil moisture content” (m3 m−3; that is
summed across all six soil layers and represents the total wa-
ter potentially available for evapotranspiration to the atmo-
sphere), a fifth ANN model (with three hidden layers) is also
built that uses the variable “GWETTOP” that describes the
SM content in the upper 5 cm of the soil (unitless) (Reichle
et al., 2017a) and thus best represents the SM that is readily
available for evaporation into the overlying atmosphere.

Table 1 summarizes the model abbreviations used herein.
A schematic of the downscaling model architecture and data
flows is given in Fig. 3. For each model (and thus each grid
cell) 70 % of the data set is randomly selected to be used
for training of the models, 15 % is used for internal valida-
tion and 15 % is withheld and used as an independent sam-
ple for model testing. We use two primary metrics of model
performance: RMSE and Pearson correlation coefficient (r)
between observed and predicted daily minimum and maxi-
mum θe in each grid cell on each day in the test data set (i.e.,
independent observations), summarized at both the grid-cell
level and also averaged over all 1962 MERRA-2 grid cells
that have some land areas within them (i.e., a domain av-
erage). The correlation coefficient is thus used as a relative
measure of model performance, while RMSE provides an ab-
solute measure of degree of agreement between the model
“predictions” and the observed values (i.e., it is the typical
value of the prediction error). Given the importance of ex-
treme heat to human health, we further examine the ability
of the models to capture the occurrence of very high θe. In
this analysis we set a threshold of 347 K (73 ◦C) to indi-
cate extreme maximum θe (based on information provided
in (Buzan et al., 2015) for the eastern USA) and a thresh-
old of 337 K for minimum θe. A contingency table approach
is used to evaluate the accuracy of the model predictions of
extreme θe using the hit rate (HR) (Wilks, 2011):

HR=
No. of hits

No. of hits+No. of misses
, (3)

where “No. of hits” is the number of days in the indepen-
dent data set in which the observations and predictions both
indicate exceedance of the threshold, and “No. of misses” is
the number of days when the observations indicate an ex-
ceedance of the threshold but the model prediction does not.
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Table 1. Domain-averaged model performance statistics (root mean square error (RMSE) and the mean Pearson correlation coefficient r) vs.
independent test data for daily maximum equivalent potential temperature (maximum θe) and daily minimum equivalent potential temperature
(minimum θe) during JJA, 1980–2015. The results are shown for the five model formulations expressed in terms of the number of hidden
layers in the ANN (where 0 hidden layers indicates results for a multiple linear regression model with no term interactions), the presence or
absence of soil moisture as a predictor, and whether the SM is total columnar (PRMC) or surface only (WGETTOP). The total number of
grid cells considered herein is 1960.

Abbreviation
used herein

Model
architecture

Soil moisture
predictor

Maximum θe Minimum θe

〈RMSE〉
(K)

〈r〉 No. of grid cells
with r > 0.8,
RMSE < 5 K,
and both criteria
met

〈RMSE〉
(K)

〈r〉 No. of grid cells
with r > 0.8,
RMSE < 5 K,
and both criteria
met

MLR Multiple linear
regression

PRMC 4.05 0.849 1575, 1727, 1370 4.39 0.836 1537, 1665, 1311

ANN-HL1-
SM

ANN with
one hidden layer

PRMC 4.03 0.850 1602, 1754, 1394 4.34 0.839 1572, 1750, 1370

ANN-HL3-
SM

ANN with
three hidden layers

PRMC 3.97 0.855 1621, 1798, 1482 4.29 0.844 1588, 1782, 1450

ANN-HL3 ANN with three
hidden layers,
but excluding SM

None 4.10 0.846 1549, 1675, 1300 4.33 0.843 1580, 1765, 1427

ANN-HL3-
TOP

ANN with three
hidden layers

WGETTOP 3.97 0.856 1623, 1802, 1476 4.29 0.844 1604, 1782, 1432

Figure 3. Schematic of the ANN model architecture (model naming convention), data flow, predictors and predictands.

The false alarm rate (FAR) of each individual grid cell is
as follows:

FAR=
No. of false alarms

No. of false alarms+No. of correct nonevents
, (4)

where “No. of false alarms” is the number of days in the in-
dependent data set where the observations did not indicate
exceedance of the threshold but the prediction was for an ex-
ceedance, and “No. of correct nonevents” is the number of
days when the observations and predictions both indicate the
threshold is not exceeded.

3 Results

For both daily maximum θe and daily minimum θe, the worst
model performance statistics (highest RMSE as a fraction of
the temporal variability θe, and lowest r) are associated with
the linear models that do not include parameter interactions
(i.e., MLR) (Table 1 and Figs. 4 and 5). Nevertheless, out-
put from all model architectures for minimum θe and max-
imum θe exhibit high correlation coefficients (r > 0.8) with
independent data over most of the study domain. Correla-
tion coefficients exceed 0.8 for 84 % of grid cells for ANN-
HL3-SM (ANN with three hidden layers) applied to maxi-
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Figure 4. Précis of the downscaling model performance for daily maximum θe (max. θe). The upper panels show scatter plots of observed
and predicted maximum θe for all grid cells and all days within the test (independent) data, along with a red 1 : 1 line. The columns show
results for four model configurations: multiple linear regression (MLR, left), ANN with one hidden layer (ANN-HL1-SM, second column),
ANN with three hidden layers (ANN-HL3-SM, third column) and ANN with three hidden layers but excluding information regarding the
soil moisture (ANN-HL3, right column). The second row shows the Pearson correlation (r) of predicted and observed maximum θe values
in the independent data for the four different models, while the third row shows the mean root mean square error (RMSE) (K) computed for
independent data from each grid cell for the four models. Results for ANN-HL3-TOP are virtually identical to those for ANN-HL3-SM and
thus are not shown.

Figure 5. Précis of the downscaling model performance for daily minimum θe (min. θe). The upper panels show scatter plots of observed
and predicted minimum θe for all grid cells and all days within the test (independent) data, along with a red 1 : 1 line. The columns show
results for four model configurations: multiple linear regression (MLR, left), ANN with one hidden layer (ANN-HL1-SM, second column),
ANN with three hidden layers (ANN-HL3-SM, third column) and ANN with three hidden layers but excluding information regarding the
soil moisture (ANN-HL3, right column). The second row shows the Pearson correlation (r) of predicted and observed minimum θe values
in the independent data for the four different models, while the third row shows the mean root mean square error (RMSE) (K) computed for
independent data from each grid cell for the four models. Results for ANN-HL3-TOP are virtually identical to those for ANN-HL3-SM and
thus are not shown.
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mum θe and 81 % for minimum θe. Further, 92 % of grid cells
for ANN-HL3-SM exhibit RMSE< 5 K for maximum θe and
91 % exhibit RMSE< 5 K for minimum θe (Table 1, Figs. 4
and 5). The ANN-HL3-SM model also exhibits the high-
est number of grid cells that have both a RMSE < 5 K and
a r > 0.8 for both maximum θe and minimum θe (Table 1).
Grid cells with the highest RMSE for minimum θe and maxi-
mum θe also generally have the highest variance (i.e., largest
day-to-day variability). For example, grid cells in IA exhibit
the highest variance and highest RMSE for maximum θe
(Figs. 1e and 4), and grid cells within IL are generally charac-
terized by large RMSE and variance of minimum θe (Figs. 1f
and 5). Thus, while noting the RMSE (i.e., typical prediction
error) is largest over IA for maximum θe (∼ 5 K), it is less
than half the standard deviation computed from the day-to-
day variability in maximum θe (∼ 10 K).

Generally all models exhibit slightly worse performance
across both measures (r and RMSE) for minimum θe than
maximum θe at the grid-cell level and integrated over all land
grid cells (Table 1 and Figs. 4 and 5). The reduced model
skill for minimum θe may reflect use of output at 20:00 UTC
values of the predictors used in the synoptic classification
due to our particular focus on daytime maximum θe.

Although performance differences between the five model
architectures for daily maximum θe and daily minimum θe
are comparatively modest when averaged over the entire do-
main (Table 1), there are important regional variations in
the performance of the different model functional forms.
Over two-thirds of all grid cells (1332 of 1962) exhibit
lower RMSE in the ANN model with three hidden layers
and including SM (i.e., ANN-HL3-SM) than in any of the
other models (e.g., MLR). The enhancement of model per-
formance as measured by a decrease in RMSE for the more
complex model of maximum θe and minimum θe is particu-
larly marked in the west-central region of the domain (over
parts of Missouri (MO) and Iowa (IA), close to or within
one of the “warming holes”) (Figs. 4 and 5). This is a re-
gion where a substantial fraction of T variance is explained
by thermal and moisture advection by the GPLLJ (Weaver,
2013), where modeled land–atmosphere coupling is partic-
ularly intense (Koster et al., 2006, 2011) and where there
are strong longitudinal gradients of SM (Fig. 1g). The lowest
correlations between predicted and observed minimum and
maximum θe values occur over east Texas (TX) for all model
formulations although the RMSE of model predictions are
not particularly high in this area (Figs. 4 and 5). The low
RMSE may reflect the small day-to-day variability in mini-
mum and maximum θe over this region (Fig. 1e and f), pos-
sibly due to the proximity to the ocean, while the low r may
indicate that the synoptic types derived herein are not able
to represent mesoscale features such as dry lines that play
a key role in dictating day-to-day variability in θe over this
subregion. It is also worthy of note that this area was ex-
cluded from the eastern US in terms of the area of coherence
for extreme T over the eastern USA (McKinnon et al., 2016)

and that eastern TX is on the southwestern boundary of the
study domain. These two factors may indicate that the syn-
optic types derived herein do not fully represent the range
of meteorological conditions associated with θe variability in
the lower central Great Plains.

Interpreting weights from complex ANNs is very chal-
lenging in the context of predictor relevance and the values
(and sign) of the weights vary in space and with the com-
plexity of the model architecture (number of hidden layers).
However, it is worthy of note that the weights on the index
of global temperatures (and thus expression of internal cli-
mate modes) in ANN-HL3-SM are uniformly close to zero
across the grid cells in the interior of the continent, but are
of large magnitude in land grid cells close to the Gulf of
Mexico (i.e., the south of the domain) and around the Great
Lakes. Given this index is strongly influenced by global sea
surface temperatures (SSTs), the implication is that this pre-
dictor contains important information about the SST and thus
potentially evaporation from the Great Lakes and the Gulf of
Mexico, leading to higher q.

Consistent with prior research that has indicated the im-
portance of atmosphere–surface interactions (Cai et al.,
2014) and specifically soil moisture (Pryor et al., 2016;
Seneviratne et al., 2010) in surface energy partitioning and
thus near-surface T and q regimes and static energy, exclu-
sion of SM from the ANN with three hidden layers (i.e.,
ANN-HL3) decreases model performance relative to ANN-
HL3-SM and increases the RMSE for maximum θe in 70 %
of grid cells. The regions for which this impact is most
strongly manifest are close to or within the “warming holes”
described above and/or are located downstream of regions
of significant county-level irrigation and anthropogenic en-
hancement of SM (Pryor et al., 2016; DeAngelis et al., 2010)
(Fig. 1g), indicating the potential for anthropogenic enhance-
ment of SM to strongly influence static energy and human
heat stress in these regions. For example, RMSE for max-
imum θe is increased in models excluding SM in all grid
cells within MO, and all but one grid cell each in IA and IL
(Fig. 4). This finding is also replicated in the second region of
weak or negative air temperature trends described above and
centered on MS and AL (Ellenburg et al., 2016). The RMSE
is lower in ANN-HL3-SM than ANN-HL3 over all but one
grid cell in these two states. Thus this analysis strongly sup-
ports prior assertions that SM plays a key role in dictating
the surface energy balance and in the suppression of daily
maximum T , while increasing maximum θe.

The statistical (downscaling) models show similar dy-
namic range to independent observations, although there is
some evidence that the models underestimate the total vari-
ance in maximum θe leading to underestimation of extreme
maximum θe, as is evident from the flattening of the scat-
ter plots for very high values of daily maximum θe (see the
upper row of panels in Fig. 4). To examine this further we
conduct an analysis of the HR and FAR for maximum θe in
excess of 347 K. This threshold is exceeded by daily max-
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Figure 6. (a) Map of the fractional frequency of occurrence of maximum θe > 347 K in each grid cell based on the independent (test) data
set. (b) Histogram of hit rate (HR) and false alarm rate (FAR) for all grid cells and (e) spatial map for correct identification of maximum θe >
347 K for all grid cells where this threshold is exceeded by > 8 % of days in the independent data based on output from the multiple linear
regression model (MLR). (c, f) As in panels (b) and (e) but for output from the ANN model with three hidden layers and including SM
(ANN-HL3-SM). (d, g) As in panels (b) and (e) but for output from the ANN model with 3 hidden layers excluding SM (ANN-HL3).

imum θe derived from the MERRA-2 reanalysis on an av-
erage of ∼ 15 % of summer days when all eastern US grid
cells are considered, but naturally exhibits a higher frequency
of exceedance (of up to 75 % of days) along the southeast-
ern portion of the TX gulf coast and is observed on nearly
50 % of days over coastal portions of the Gulf coast states
and FL (Fig. 6a). Conversely, it is seldom or never observed
within grid cells in the north of the domain (Fig. 6a). To
ensure a sufficiently robust sample size on which to com-
pute the HR for extreme maximum θe we consider only grid
cells where more than 40 days in the independent data sam-
ple (i.e., 8 %) exceed this threshold. The mean HR values for
the linear model (MLR), the ANN with three hidden layers
(ANN-HL3-SM) and the ANN with three hidden layers but
excluding SM (ANN-HL3) computed over all these grid cells
are 59, 60 and 56 %, respectively (Fig. 6b–d), indicating that
over the entire study domain the role of SM and predictor
interactions in explaining the occurrence of extreme maxi-
mum θe is modest. All model forms perform least well in
terms of predicting the occurrence of maximum θe > 347 K
over eastern TX and South Carolina (SC) (Fig. 6e–g). How-
ever, the model excluding SM exhibits a particularly poor
performance (i.e., low HR) in these regions. The causes of
the poor model performance in eastern TX and SC are cur-
rently not fully understood, although it is worthy of note that
data from MERRA-2 grid cells in SC exhibit a relatively low
overall frequency of exceedance of this threshold and are also
characterized by comparatively low 99th percentile θe in an
analysis of heat indices derived from the Community Land
Model v4.5 (Buzan et al., 2015). Grid cells along the Gulf
coast and over the states of MO, IA and IL exhibit high HR

for prediction of extreme maximum θe and substantial im-
provement in HR is noted in IA, IL and MO (Fig. 6e–g) in
the ANN-HL3-SM relative to the other model forms. This is
consistent with strong spatial gradients in SM (Fig. 1e), find-
ings of the GLACE projects of strong atmosphere–surface
coupling (Koster et al., 2006, 2011), and analyses for sta-
tions in IL that also show a strong dependence of high Te
on soil moisture (Ford and Schoof, 2016). To contextualize
the HR presented above it is important to note that they are
associated with comparatively low false alarm rates (FAR).
Indeed, FAR for the occurrence of minimum θe > 342 K or
maximum θe > 347 K are very modest for all model formu-
lations (Figs. 6 and 7). For example, over 94 % of grid cells
indicate FAR for maximum θe > 347 K that are below 0.25
for the ANN-HL3-SM models. Thus, the relatively high HR
reported herein are not being artificially inflated by unreal-
istically high predictions of the occurrence of extreme θe.
The inclusion of SM as a predictor enhances HR in regions
previously identified as exhibiting high variance in extreme
θe without a concomitant increase in FAR (Figs. 6 and 7).
It should be acknowledged that even the ANN with three
hidden layers and soil moisture (ANN-HL3-SM) exhibits
a modal grid-cell HR of 0.6–0.7, and thus misses a sub-
stantial fraction of extreme θe. Nevertheless, these HR and
FAR are indicative of positive relative operating character-
istics (ROC) (i.e., plots of the true positive rate greatly ex-
ceeds false positive rates) (Wilks, 2011). Further, HR and
FAR computed for maximum θe and minimum θe are com-
parable to (or better than) seasonal re-forecasts of summer-
time T at 2 m over the land areas of southern Europe devel-
oped using the European Centre for Medium-Range Weather
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Forecasts (ECMWF) seasonal ensemble forecasting system
(Weisheimer et al., 2011).

In contrast to the results for prediction of extreme max-
imum θe the model architecture has virtually no impact on
HR for minimum θe > 337 K, and neither does the inclusion
of SM in the model. In all cases the domain-averaged HR
= 59 % and no region exhibits consistent improved or de-
graded performance for ANN-HL3-SM or ANN-HL3 over
MLR (Fig. 7). This finding is consistent with the overall re-
sults for models of minimum θe that exhibit only modest de-
creases in model performance (increased RMSE and lower r)
when SM is excluded from the predictor suite (Table 1 and
Fig. 5). Consistent with the interpretation of the surface en-
ergy balance (Eq. 2) this re-emphasizes that SM more di-
rectly impacts near-surface T and q during the daytime under
conditions of positive net radiation.

Differences in model performance between ANNs condi-
tioned on total SM and using wetness only in the top soil
layer (upper 5 cm) are very small when averaged across the
domain (Table 1) and indeed for virtually all grid cells. Only
26 grid cells exhibited a1|RMSE|> 0.5 K for models using
PRMC vs. those using GWETTOP (out of a total of 1962),
while 155 exhibited an increase in RMSE> 0.5 K when SM
was excluded from the model. Thus, although the weights
within the ANNs differ for use of the two SM parameters,
the overall model skill is unchanged by use of the two SM
estimates, possibly due to the spatial and temporal averaging
applied herein,or uncertainty in reanalysis-derived SM vari-
ables.

4 Summary and conclusions

Very few statistical downscaling analyses focus on inte-
grative variables such as θe that explicitly incorporate co-
variability of T and q, but such variables have direct appli-
cations to climate change impact analyses (such as analysis
of heat waves; Buzan et al., 2015). Further, this is an applica-
tion of climate downscaling where statistical approaches may
be particularly useful given evidence that even when nested
within observed lateral boundary conditions regional climate
models (RCMs) have difficulty in capturing the joint prob-
ability distributions of T and q and thus in accurately rep-
resenting either the probability distribution of static energy
or the spatiotemporal variability therein (Pryor and Schoof,
2016). Analyses of θe are also essential to advancing fun-
damental understanding of changes in the total static energy
content of the lower atmosphere, and may reveal important
information of relevance to both model performance analy-
ses and attribution studies of global change.

The goal of this work is to develop a hierarchy of statisti-
cal models with increasing complexity and use them to de-
termine the degree to which increased complexity enhances
the skill of model predictions of θe and to attribute variability
in minimum and maximum θe over eastern North America.

Prior to discussing the results from application of this analy-
sis framework to output from the MERRA-2 reanalysis, it is
worthy of note that previous research on regional heat wave
characteristics over the contiguous US using a suite of reanal-
yses indicated some important differences in the magnitude
of derived equivalent temperature (Te) between the reanaly-
sis products (Schoof et al., 2017) as well as in the strength
of land–atmosphere coupling between the reanalysis prod-
ucts (Ferguson et al., 2012). Thus, there would be value in
applying this framework to additional observationally con-
strained data sets to evaluate (1) the degree to which the find-
ings of a key role of SM to determining the model skill for
daily maximum θe in specific subregions are generalizable
and spatially consistent between reanalyses, and further if the
predictability of θe exhibits sensitivity to the spatiotemporal
averaging used in deriving the SM predictors; (2) if use of
a reanalysis product (or forecast model) that does not employ
bias correction of precipitation amounts would substantially
alter the ANN model structure; and (3) if the partial trun-
cation of the upper percentiles of daily maximum θe in the
model predictions is also a generalizable finding when our
model framework is applied to different data sets.

Consistent with our a priori expectations, models built us-
ing ANN out-perform those that do not permit interaction
of the predictor variables. Domain-averaged RMSE for min-
imum and maximum θe is smallest in the more complex
models (i.e., for ANN-HL3-SM, RMSE< 4 and< 4.3 K, re-
spectively, cf. mean maximum θe ≈ 333 K and mean mini-
mum θe ≈ 321 K). Particularly in regions with high variabil-
ity in minimum and maximum θe, the more complex mod-
els with multiple hidden layers are better able to capture the
day-to-day variability in θe. Correlation coefficients exceed
0.8 for 84 % of grid cells for ANN-HL3-SM applied to maxi-
mum θe and 81 % for minimum θe. Further, 92 % of grid cells
for ANN-HL3-SM exhibit a RMSE < 5 K for maximum θe
and 91 % for minimum θe.

The primary purposes of this research are to enhance un-
derstanding of the causes of variability and change in θe
over the eastern USA and to propose a new downscaling
approach to allow projections of daily minimum and max-
imum θe using variables commonly available from reanal-
yses and global and regional climate models. However, al-
though prognostic thermal physiological models are required
to make accurate assessments of human heat stress, the ANN
models developed here may also have utility in assessments
of possible climate change impacts on human health. Fur-
ther, these analyses also may have applications to short-term
forecasting of human-health-relevant heat events (McKinnon
et al., 2016; Weisheimer et al., 2011), since the methodolog-
ical framework developed herein could be applied to ob-
served antecedent SM, and modeled forecasts of the global
mean T and conditions on a synoptic scale over the eastern
USA. Many of the heat watch-warning systems implemented
across the United States currently employ a synoptic typing
methodology (Sheridan and Kalkstein, 2004), but the perfor-
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Figure 7. (a) Map of the fractional frequency of occurrence of minimum θe > 337 K in each grid cell based on the independent (test) data
set. (b) Histogram of hit rate (HR) and false alarm rate (FAR) for all grid cells and (e) spatial map for correct identification of minimum θe >
337 K for all grid cells where this threshold is exceeded by > 8 % of days in the independent data based on output from the multiple linear
regression model (MLR). (c, f) As in panels (b) and (e) but for output from the ANN model with three hidden layers and including SM
(ANN-HL3-SM). (d, g) As in panels (b) and (e) but for output from the ANN model with 3 hidden layers excluding SM (ANN-HL3).

mance of such systems may be aided by implementation of
other variables and/or analysis methodologies such as those
used herein. The ANN-HL3-SM models developed herein
exhibit relatively high skill in predicting the occurrence of
extreme minimum and maximum θe, and indeed out-perform
the simpler models. The ANN with three hidden layers that
includes SM as a predictor (i.e., ANN-HL3-SM) exhibits
a domain-averaged median hit rate for maximum θe > 347 K
that is> 0.60, while the median FAR is≈ 0.08. Results from
the ANN models further indicate that maximum θe and the
occurrence of extreme maximum θe appear to be consider-
ably more sensitive to SM than minimum θe, which in turn
appears to exhibit a stronger dependence on the precise pre-
vailing synoptic-scale conditions based on the ANN weights.

Our results imply there are large spatial gradients in the
importance of the predictors we used herein. For example, in
the northeastern portions of our study region inclusion of SM
as a predictor has considerably lower impact on model skill
for either maximum θe or minimum θe (Figs. 4–7). Global
T substantially contributes to model skill near the Gulf coast
and close to the Great Lakes but is less important over the
remainder to the eastern USA, while SM exhibits the great-
est importance in subregions previously noted as exhibiting
warming holes. Our framework has greater skill for maxi-
mum θe than minimum θe. It is possible that inclusion of ad-
ditional predictors could lead to enhanced model skill, partic-
ularly for extreme high values of maximum θe or minimum θe
that are of greatest importance to human health, and/or that
our methodology could be evolved to allow derivation of per-
sistence indices (e.g., the occurrence of consecutive nights
with high minimum θe).

We can not conclusively discount contributions from other
phenomena (e.g., aerosol forcing, cloud cover) to the occur-
rence of warming holes (areas with declining or no-trends in
T ) (Meehl et al., 2015), and these features may be a com-
plex response to multiple drivers. However, results presented
herein are consistent with past work that has indicated the
importance of soil moisture in determining partitioning of
the surface energy budget, and thus the spatiotemporal pat-
terns of θe over the central and eastern USA (Koster et al.,
2006, 2011; Pryor and Schoof, 2016; Pryor et al., 2016; Ford
and Schoof, 2016, 2017; McKinnon et al., 2016). Indeed,
SM is particularly important in determining the surface en-
ergy partitioning and the magnitude of θe over regions that
have previously been identified as exhibiting warming holes,
and for all grid cells the RMSE for models including SM as
a predictor is smaller than the temporal variability of θe as
measured using the standard deviation of the daily θe values.
Specifically, only a model including SM is able to predict
the occurrence of extreme (and highly health-relevant) val-
ues of θe over the western portion of Midwestern states such
as IA, MO, IL and also in MS and AL.This research thus
implies that SM has played and may continue to play a key
role in dictating the presence and intensity of warming holes
that have been previously noted in analyses of near-surface
air temperature data (from both in situ measurements and re-
analysis products).

Data availability. The MERRA-2 data used herein are available
from http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset2.pl (NASA,
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