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Response to: 
Interactive comment on “Modeling the contributions of global air temperature, synoptic-
scale phenomena and soil moisture to near-surface static energy variability using 
artificial neural networks” by Sara C. Pryor et al. 
Anonymous Referee #2Received and published: 30 July 2017 
 
Below we list the comments of the reviewer and our responses (in italics below each 
point). At the end of this document we also provide a tracked changes version of the 
manuscript showing the changes we have made in full. 
 
…<Preamble deleted for brevity> … 
 
I am providing below a number of minor issues that should be resolved prior to 
publication. 
 
Abstract: “... measure of static energy... are more strongly linked to excess human 
mortality and morbidity than air temperature alone”- while this statement provides sound 
motivation for the study, the two are only weakly connected in the article’s discussion 
and not at all connected in the results. Connecting this idea back in for the Results and 
Conclusion would be desirable 
Response: Done. We have extensively modified section 4 to include the requested 
linkages back to human health. 
 
Ln 16 model[s] 
Response: Done 
 
Ln17 the “drivers”, should be explicitly named in the abstract: global T2m, synoptic T Q 
at 850 and 500 hPa geopotential, and SMâAˇT all taken from MERRA2. 
Response: Done. Added text: The predictor variables include an index of near-surface 
daily global mean temperature, daily indices of the synoptic scale meteorology derived 
from T and specific humidity (Q) at 850 hPa and 500 hPa geopotential heights (Z), and 
spatiotemporally averaged soil moisture (SM). 
 
Ln 25 “Over the [eastern U.S.], the ANN...alarm rate [is] ∼0.08.” 
Response: Done 
 
Main Body Pg1ln30 “elaborated [on] the drivers...health [and socioeconomic 
impacts](Sanderson...” 
Response: Done 
 
Pg2ln1 “associated with annual [increased] welfare losses of ...”- clarify that $57 billion 
is annual increase due to warming, not annual total. 
Response: We do not refer to welfare losses of $57 billion, so no clarification needed. 
 
Pg2ln3 suggest deleting “Many” 
Response: Done 
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Eq1. There should be references to Bolton, 1980; Bryan, 2008; and/or Davies-Jones, 
2009. Theta-e should be defined in words here, as well. e.g., “potential temperature 
plus the temperature increase that would be caused by latent heat of saturation of 
water contained in air”. Suggest starting from potential temperature definition first, 
then moving to equivalent potential temperature. 
Response: Reference added along with following text; ‘Potential temperature is the 
temperature an unsaturated air parcel would have if brought adiabatically to a standard 
pressure. Thus, potential temperature is conserved for an unsaturated air parcel if it 
remains unsaturated as it rises and sinks. Equivalent potential temperature is conserved 
under vertical motion even if there is phase change of water vapor contained within the 
air. Use of metrics such as θe permits more accurate depictions of near-surface energy 
budgets and surface heating trends (Davey et al., 2006)..’ 
 
Pg2ln14-15 units for each variable need to be added here. 
Response: Done 
 
Pg2ln16 should read [g/g], not g/kg in Q 
Response: Can not find what the reviewer was referring to we did not state units of g/kg, 
but addressed by the above. 
 
Pg2ln18 isn’t T responsive to advection-driven forcing, as well? 
Response: Yes. We have reworded this to clarify that here we are referring to the local 
surface energy balance prior to describing non-local processes in the following 
paragraphs. The rewrite reads; ‘When considering the local surface energy balance (Eq. 
2), near-surface T is responsive only to changes in the sensible heat flux from/to the 
surface, while θe responds to changes in both the sensible and latent heat flux terms.’ 
 
Pg2ln22 “[surface broadband] albedo”. What is the meaning of “counter-radiated”? Is 
it “surface downward”? 
Response: Yes, “counter-radiated longwave radiation from the atmosphere” is ‘surface 
downward’ but I believe ‘counter-radiated longwave radiation from the atmosphere’ is in 
common usage in atmospheric science and thus should be clear to the readership of 
ACP. 
 
Pg2ln27 “although [heat extremes] such as ... (Garcia-Herrara et al., 2010)... 
(Vanos et al., 2015)”. Other references are required here to strengthen assertion being 
made. Vanos et al., 2015 covers Midwest only. References list needs to be expanded to 
cover SE, NE U.S. cases, as well. 
Response: The following paper that we also cite does cover cities drawn from the entire 
contiguous USA: Anderson, G. B., and Bell, M. L.: Heat waves in the United States: 
Mortality risk during heat waves and effect modification by heat wave characteristics in 
43 U.S. communities, Environmental Health Perspectives, 119, 210-218, 2011. 
 
Pg2ln31 is Peterson et al., 2011 reference for 2m static energy? Please clarify level to 
which “lower atmosphere” refers. 
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Response: This is an excellent point. Peterson et al. 2011 refer to ‘surface atmospheric 
energy ‘ (in the title of their article) but do not specify the height they draw T, Q and wind 
speeds from in order to compute the components of the atmospheric energy budget. I 
suspect (based on NWS protocols in the USA) that T and Q are LIKELY to be drawn 
from 2-m, but wind speeds are more likely to be taken at 10-m. However, the reviewer is 
correct, the lack of specificity on the part of those authors led me to state “lower 
atmosphere” in the absence of more specific information. I have changed this to near-
surface to be consistent with the authors to whose work we are referring.  
 
Pg3ln2 Davey et al., 2006 reference expected after Eq. 1 
Response: Done 
 
Pg3ln3 statistical models are ill-suited for pursuits of physical, process-level under- 
standing 
Response: Respectfully, this is only partly true. Statistical relationships MAY not be 
reflective of an underlying physical process. HOWEVER, the fundamental basis of all 
big-data analytics and deep-learning (statistical) data analysis methods is that one can 
extract high-level, complex abstractions as data representations through a hierarchical 
learning process. This implies there are repeatable associations that are manifesting 
causal mechanisms. Nevertheless, we have removed the word ‘mechanistic’ from 
‘enhance mechanistic understanding’. 
 
Pg3ln6 suggest using the more common equivalent term of “summary” 
Response: I can not find what the reviewer was referring to … Pg3 line 6 read; ‘the 
summer of 2012 in part due to persistent anticyclonic conditions (Peterson et al., 2013). 
Further, variability’  
 
Pg3ln34 “extreme [high] Td” 
Response: Done 
 
Pg3ln36 “High Plains to [] the upper Great Lakes”. Restricted vertical mixing = subsi- 
dence? 
Response: This is an interesting point. The authors of the article to which we are 
referring actually DID NOT evaluate subsidence but do report ‘restricted vertical mixing’. 
Thus we have maintained their statement (restricted vertical mixing) and not inferred 
information about an increase in subsidence. 
 
Pg4lns2-4 scale length for (b) and (c) need also to be specified as it is for (a) (i.e., 
global). 
Response: Done 
 
Pg4ln11 technically, Canada should be masked out of Figure 1a. Domain lat-lon ex- 
tents should be provided here, as on pg5ln16 
Response: Although our primary focus is on the eastern USA and perhaps we should 
mask out Canada, we prefer to include grid cells within Canada since there have been 
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heat-wave incidents in Canada (see (Smoyer-Tomic et al., 2003)). I have added the 
domain extent to the caption to Figure 1.   
 
Pg4ln12 “trends in Te” please specify over what period these trends were computed. 
Response: Done (its 1981-2015). 
 
Pg4ln15 could you provide an estimate of the affected population residing in the east- 
ern U.S. domain? 
Response: the eastern US (as defined in our study) has a population of > 200 million 
(we have added this to the text; ‘It is home to over 200 million people (based on the 
2013 census).’ 
 
Pg4ln19 sentence beginning “Therefore,..” is confusing and should be reworded. 
Response: Unfortunately there is no sentence on page 4 line 19 that begins ‘therefore’. 
 
Pg4ln21 it is confusing to bundle land management and SM rates of change in the 
same sentence while they occur on very different time scales. Clarify relative rate of 
change and period of change. 
Response: We believe the reviewer is referring to ‘It exhibits strong spatial gradients in 
terms of the nature of land cover and rate of change of both land management and soil 
moisture.’ They are quite correct, these are complex processes. We have added the 
following: ‘For example, over the period 1950-2000 the region as a whole experienced 
rapid population growth (though this was not spatially uniform), expansion of area 
classified as exurban, an overall reduction of land in agriculture (though again this was 
highly heterogeneous in space) and an increase in the intensity of water management 
(including expansion of irrigation) (Brown et al., 2005).’ 
 
Pg4ln23 specify the “Parts of the region” that are being referenced. Is this the southern 
Great Plains? There is no reason to be non-specific here. The GLACE hotspot and two 
regions of reduced Tmax should be demarcated on Fig 1a, which could be enlarged. 
Response: At least to our knowledge the two references we cite not provide precise 
lat/long coordinates for the regions of strong coupling (though they are shown on maps). 
We note the reviewer did state (later in their review); ‘The central U.S. hotspot of 
GLACE-1 was squarely contained within 27-41N; 106-97W’…  In order to address this 
concern we have elaborated in the text so that it now reads: “Parts of the region 
(focused on the southern Great Plains, i.e. the southern and western-most portion of the 
current study area) were identified in the global land–atmosphere coupling experiments 
(GLACE) as exhibiting atypically strong atmosphere-surface coupling in some global 
climate models. Further, soil moisture makes a large contribution to sub-seasonal 
forecast skill for air temperatures and precipitation in this region (Koster et al., 
2011;Koster et al., 2006).” 
 
Pg4ln26 Guo et al., 2006 and Dirmeyer and Halder (2017) should be added to refer- 
ence list. 
Response: Done 
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Pg4ln27 “The study region”. The preceding three bullets referred to the study region as 
“it”. Why the change here? Also regarding: “maximum T during parts or all of 
the twentieth century”, it is unclear whether “parts” in this context alludes to seasons, 
years, consecutive years, etc. This should be clarified. 
Response: Each bullet now started with it. We have clarified; ‘It also incorporates two 
areas of reduced daily maximum T during multiple consecutive years extending over 
part or all of the twentieth century.’ 
 
Pg4ln29 “lack of warming” The warming hole label was included in the abstract and 
this is probably the appropriate place to introduce the term in the article. 
Response: Done 
 
Pg4ln31 suggest new sentence begins with “... Ellenburg et al., 2016). In the case of 
Mississippi ... (AL), [up to ]...” 
Response: Done 
 
Pg4ln32 specify whether “summer temperature” is JJA T, JJA Tmax, JJA Tmin, etc. 
This section should be more carefully worded and details added to improve clarity of 
meaning. 
Response: Where hourly data are used it is specified (e.g. for T, Q and P). 
 
Pg5ln7 consider adding a note that MERRA-2 uses bias-corrected P to drive the 
land surface model, which lends strong confidence to the SM estimates. The skill 
of MERRA-2 lower-atmospheric fields used in the synoptic airflow classification is yet 
to be well established. 
Response: Yes, excellent suggestion. Done. In terms of the evaluation of MERRA-2 – 
this is clearly NOT our product but NASA scientists have been extensively evaluating 
the reanalysis system and output. What we can assert is that the output from our PCA 
analysis of the synoptic scale meteorology generates reasonable and interpretable 
types. This is why we wrote (and write); ‘As shown, many of the synoptic types thus 
identified are readily interpretable as representing a diversity of zonal versus meridional 
circulation (cf. type 9 and 5 and 6), and some are characterized by conditions known to 
be associated with strong low-level advection of T and q into the region (e.g. types 1, 3, 
and 15) (Pryor and Schoof, 2016;Weaver, 2013). Further, most types exhibit a high 
degree of similarity with other synoptic-scale classifications derived for the region (e.g. 
type 7 is very similar to one that is associated with summertime precipitation over the 
southeastern USA (Diem, 2006)).‘ Naturally, this does not constitute a comprehensive 
evaluation! 
 
Pg5ln16 suggest adding 12 EDT /2 CDT after 20 UTC. 
Response: We have added a note regarding time zones. Thus the text now read; ‘for 
20:00 UTC (i.e. 16:00 Eastern Daylight Time, 15:00 Central Daylight Time)’. Please 
note: Eastern Daylight Time (EDT) is UTC MINUS 4 hr, not 8 hours as the reviewer 
wrote (maybe this is a typographic error).  
 
Pg5ln30 “strong [southerly] low-level advection of [high] T and Q into the region”? 
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Response: Done 
 
Pg5ln36 “[Due to its spatial heterogeneity,] soil moisture is... ” 
Response: Done 
 
Pg6ln3 SM plays much less of a role in the radiation-limited temperate NE forests. 
Response: Yes. 
 
Pg6ln6 I would not agree that MERRA-2 SM has been “extensively” evaluated- it is a 
very new product and only one (biased) reference is provided 
Response: We have removed ‘extensively’. 
 
Pg6ln8 it should be specified that validation occurs only over non-forested sites, where 
in-situ SM is available. 
Response: Very good point – well made. We have added a caveat that reads; 
‘However, it should be noted that there are relatively few direct measurements of SM 
and thus the evaluation of MERRA-2 is focused on agricultural locations.’ 
 
Pg6ln18 was the time difference (2PM EDT, 1PM CDT) accounted for in the compari- 
son? If so, how? 
Response: No. 
 
Pg6ln19 is the GPLLJ the only source of moisture for MO and IA? Sentence is currently 
misleading. 
Response: Fair point we have add ‘in part’ to clarify. 
 
Pg6ln21 “and the presence of abundant SM”. Intent of statement is unclear. SM is 
abundant in the eastern states, as well. 
Response: This is a very interesting point. There are relatively few homogeneous SM 
data sets. IF (and I would emphasize, if) one treats remote sensing SM estimates as 
equally valid over the entire study area then for our study region SM is most abundant in 
the region I was referring to (lower GP) and in the NE, but is less abundant in the 
eastern states. See figure below: 
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Image from: https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA19337. Caption: 
High-resolution global soil moisture map from SMAP's combined radar and radiometer 
instruments, acquired between May 4 and May 11, 2015 during SMAP's commissioning 
phase. The map has a resolution of 5.6 miles (9 kilometers). 
We have added a reference to (Al Bitar et al., 2017) in support of the assertion 
regarding abundant SM so we are not solely relying on the MERRA-2 product (and our 
figure 1). 
 
Pg6ln21 suggest list item (5) should be added, beginning from “There are also 
Important ...” 
Response: Done 
 
Pg6ln25-30 suggest moving these stats out of the data section and into Results. 
Response: We decided against doing so. 
 
Pg6ln30 “over [the] southern ...” 
Response: Done 
 
Pg7ln8 please include commentary on how these predictors were selected. What was 
the logic or metrics employed in the selection process? 
Response: Done (but we do so where the predictors are first introduced – i.e. in the 
bulleted list in section 2.2 not where the reviewer suggested). 
 
Pg7ln24 “readily available to [soil evaporation, as opposed to integrated soil moisture 
profile that constitutes the water availability to evapotranspiration]”. 
Response: We have modified the sentence to read; ‘Therefore, in addition to developing 
models using the MERRA-2 variable ‘PRMC’, which is the ‘Total profile soil moisture 
content’ in m3m-3 (that is summed across all six soil layers and represents the total 
water potentially available for evapotranspiration to the atmosphere), a fifth ANN model 

https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA19337
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(with 3 hidden layers) is also built that uses the variable ‘GWETTOP’ that describes the 
SM content in the upper 5 cm of the soil (unitless) (Reichle et al., 2017), and thus best 
represents the SM that is readily available for evaporation into the overlying 
atmosphere.’ 
 
Pg7ln25 suggest “Table 1 summarizes the acronyms used herein for each of the five 
models considered. A schematic of the model architecture and data flows is provided 
in Fig. 3. 
Response: Done 
 
Pg7ln27 suggest including statement that the 70-15-15 sample subsets were identical 
for all model architectures. 
Response: Done 
 
Pg8ln17 this statement appears at odds with Table 1, which lists ANN-HL3 as having 
the worst model statistics. 
Response: I believe this is a misunderstanding ANN-HL3 excludes SM and indeed has 
highest RMSE. 
 
Pg9ln2 is there any statistical significance to this difference? 
Response: The reviewer is raising an interesting point – can one undertake an 
appropriate non-parametric test, correcting (of course) for multiplicity. We did not, 
instead choosing to draw out spatial consistency as a basis for inferring ‘skill’. 
 
Pg9ln6 “where [modeled] land-atmosphere ... and where strong [longitudinal] gradients 
of SM” 
Response: Done 
 
Ph9ln13 “such [as] dry lines ...” 
Response: Done 
 
Pg9ln24 I question “evaporation from the Great Lakes”. Is Great Lakes evaporation a 
strong predictor of theta-e in the eastern U.S.? Evaporation over the Great Lakes is 
much more substantial in the winter months and drives tremendous lake-effect snow 
bands, but the affected region is isolated. 
Response: Interesting point. As a resident of upstate New York I can confirm the lake-
effect snows are a strong function of ice cover (and hence evaporation) from the Great 
Lakes! However, observationally-derived estimates of evaporation from the Great Lakes 
reported in (Notaro et al., 2015) are certainly ‘non-trivial’ (i.e. approx. an average of 45 
mm in August, relative to over-lake  precipitation receipt of approx. 85 mm for the period 
1980-1999..). But it is an open question as to the impact on downstream theta-e, so we 
have added ‘potentially’. 
 
Pg9ln30 how is water management signal being linked to the present analysis? 
MERRA2 has no accounting of water management. 
Response: Right, its not. 
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Pg9ln32 suggest DeAngelis et al. 2010 in addition to Pryor et al., 2016 reference for 
warming hole 
Response: Done 
 
Pg10ln5 HL3-SM seems to perform the best; 3 hidden layers as opposed to 1. 
Response: Correct 
 
Pg10ln7 “...when all [eastern U.S.] grid cells are considered...” 
Response: Done 
 
Pg10ln12 please clarify that “test period” here is synonymous with “independent 
sample”, or 15% of all JJA days 
Response: Reworded to independent data sample. 
 
Pg10lns5-36. Why can’t these stats on HR and FAR be added to an expanded Table 1 
for each model? 
Response: This is a style consideration. Table 1 is designed to summarize the overall 
performance of the models (and is already quite complex), the HR/FAR naturally reflect 
the performance for extremes. 
 
Pg10ln22 statement on CLM (Buzan et al., 2015) does not appear directly relevant to 
MERRA-specific results being discussed here. It is out of place, given non-MERRA 
results are not specifically called out elsewhere in the paper. I suggest removing this 
statement. 
Response: It is POTENTIALLY interesting at least to some readers to note that; ‘The 
causes of the poor model performance in eastern TX and SC are currently not fully 
understood, although it is worthy of note that data from MERRA-2 grid-cells in SC 
exhibit a relatively low overall frequency of exceedance of this threshold and are also 
characterized by comparatively low 99th percentile θe in an analysis of heat indices 
derived from the Community Land Model v4.5 (Buzan et al., 2015).’ 
 
Pg10ln26 To include MO, IA and IL is a stretch. The central U.S. hotspot of GLACE-1 
was squarely contained within 27-41N; 106-97W. 
Response: Right, the other references we cite do focus more on the eastern states. We 
have reworded to; ‘central and eastern USA’ 
 
Pg10ln32 please quantify “greatly” Is this statistically significant? 
Response: Fair point ‘greatly’ is subjective. I have deleted this word. 
 
Pg11ln1 “HR and FAR are comparable to (or better than) seasonal re-forecasts of 
summertime T at 2-m...” Please clarify were the HR and FAR of T or theta-e-max,min 
compared against the HR and FAR of T2m from ECMWF (ERA-I?)? 
Response: Yes. I have reworded to; ‘Further, HR and FAR computed for max-θe and 
min-θe are comparable to (or better than) seasonal re-forecasts of summertime T at 2-m 
over the land areas of Southern Europe developed using the European Centre for 
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Medium-Range Weather Forecasts (ECMWF) seasonal ensemble forecasting system 
(Weisheimer et al., 2011).‘ 
 
Pg11ln15 the comparison between HL3-SM and HL3-TOP needs to be included and 
thoroughly discussed, esp. for theta-e-max. 
Response: There is a discussion which reads;’ Differences in model performance 
between ANN conditioned on total SM and using wetness only in the top soil layer 
(upper 5 cm) are very small when averaged across the domain (Table 1) and indeed for 
virtually all grid cells. Only 26 grid cells exhibited a Δ|RMSE| > 0.5 K for models using 
PRMC versus those using GWETTOP (out of a total of 1962), while 155 exhibited an 
increase in RMSE > 0.5 K when SM was excluded from the model. Thus, although the 
weights within the ANNs differ for use of the two SM parameters, the overall model skill 
is unchanged by use of the two SM estimates possibly due to the spatial and temporal 
averaging applied herein, or uncertainty in reanalysis-derived SM variables.’ 
 
Pg11ln32 “from the [MERRA-2]...” 
Response: Done 
 
Pg11ln33 suggest “important differences in the magnitude of derived equivalent tem- 
perature (Te)[,as well as in strength of land-atmosphere coupling between the reanaly- 
sis products (e.g., Ferguson et al., 2012; Schoof et al., 2017)]” 
Response: Done 
 
Pg12ln9 sentence beginning “Correlation coefficients exceed...” needs to be reworded 
and probably split into two or more sentences. 
Response: Done 
 
Pg12ln11 sentence beginning “This is true for the simulation...” is confusing. Does this 
imply that the prior sentence holds exactly for max theta e? 
Response: Reworded for clarity to ; ‘ANN-HL3-SM models also exhibit highest skill for 
simulation of extreme min- and max-θe.’ 
 
Pg12ln15 the statement that “min theta-e exhibits a stronger dependence on the pre- 
cise prevailing synoptic scale conditions” is unsupported by the analysis and accom- 
panying discussion. Where has the link between min theta-e predictability and PC 
number been established and probed? 
Response: Very good point. We have re-written this sentence to read; ‘Results from the 
ANN models further indicate that max-θe and the occurrence of extreme max-θe appear 
to be considerably more sensitive to SM than min-θe which in turn appears to exhibit a 
stronger dependence on the precise prevailing synoptic scale conditions based on the 
ANN weights.’ To reflect the assessment I made of the weights. 
 
Pg12ln28 what are the alternative hypotheses in literature for the ‘warming hole’? ref- 
erences here or previously upon the introduction of the term would be useful. 
Response: Done 
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Pg12ln30 I disagree that the statistical modeling exercise documented herein has “en- 
hance[d] mechanistic understanding of the causes of variability and change in theta-e”. 
This claim should be deleted. 
Response: Deleted mechanistic. 
 
Pg12ln35. The authors should comment on lessons learned and insight gleaned. For 
example, the weighting for the global T was stated to be negligible. Then, is their 
recommendation to forgo global T requirements in future ANN pursuits? Similarly, is the 
total integrated column soil moisture necessary or merely the surface layer? Does the 
fact that MERRA2 uses bias-corrected P make any allusions of similar success in full 
forecast models (with biased, model P) unfair and misleading? In addition to those pre- 
dictors tested here, which other predictors would be meaningful to explore/consider? 
Response: Well what we actually state is; ‘However, it is worthy of note that the weights 
on the index of global temperatures (and thus expression of internal climate modes) in 
ANN-HL3-SM are uniformly close to zero across the grid-cells in the interior of the 
continent, but are of large magnitude in land grid cells close to the Gulf of Mexico (i.e. 
the south of the domain) and around the Great Lakes.’ So no we would not suggest 
foregoing global T. 
We have elaborated on ‘next steps’ and the implications of our work by adding text to 
the conclusions. Section 4 now read; 
Very few statistical downscaling analyses focus on integrative variables such as θe that 
explicitly incorporate co-variability of T and q, but such variables have direct 
applications to climate change impact analyses (such as analysis of heat waves (Buzan 
et al., 2015)). Further, this is an application of climate downscaling where statistical 
approaches may be particularly useful given evidence that even when nested within 
observed lateral boundary conditions Regional Climate Models (RCMs) have difficulty in 
capturing the joint probability distributions of T and q and thus in accurately representing 
either the probability distribution of static energy or the spatio-temporal variability therein 
(Pryor and Schoof, 2016). Analyses of θe are also essential to advancing fundamental 
understanding of changes in the total static energy content of the lower atmosphere, 
and may reveal important information of relevance to both model performance analyses 
and attribution studies of global change.  
The goal of this work is to develop a hierarchy of statistical models with increasing 
complexity and use them to determine the degree to which increased complexity 
enhances the skill of model predictions of θe and to attribute variability in min- and max-
θe over eastern North America. Prior to discussing the results from application of this 
analysis framework to output from the MERRA-2 reanalysis it is worthy of note that 
previous research on regional heat wave characteristics over the contiguous US using a 
suite of reanalyses indicated some important differences in the magnitude of derived 
equivalent temperature (Te) between the reanalysis products (Schoof et al., 2017) as 
well as in strength of land-atmosphere coupling between the reanalysis products 
(Ferguson et al., 2012). Thus, there would be value in applying this framework to 
additional observationally constrained data sets to evaluate: (1) The degree to which the 
findings of a key role of SM to determining the model skill for daily maximum θe in 
specific sub-regions are generalizable and spatially consistent between reanalyses, and 
further if the predictability of θe exhibits sensitivity to the spatiotemporal averaging used 
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in deriving the SM predictors. (2) If use of a reanalysis product (or forecast model) that 
does not employ bias-correction of precipitation amounts would substantially alter the 
ANN model structure. (3) If the partial truncation of the upper percentiles of daily 
maximum θe in the model predictions is also a generalizable finding when our model 
framework is applied to different data sets. 
Consistent with our a priori expectations, models built using ANN out-perform those that 
do not permit interaction of the predictor variables. Domain averaged RMSE for min- 
and max-θe is smallest in the more complex models (i.e. for ANN-HL3-SM, RMSE < 4 K 
and < 4.3 K, respectively, c.f. mean max-θe ≈ 333 K and mean min-θe ≈ 321 K). 
Particularly in regions with high variability in min- and max-θe the more complex models 
with multiple hidden layers are better able to capture the day-to-day variability in θe. 
Correlation coefficients exceed 0.8 for 84% of grid cells for ANN-HL3-SM applied to 
max-θe and 81% for min-θe. Further, 92% of grid cells for ANN-HL3-SM exhibit a RMSE 
< 5 K for max-θe and 91% for min-θe.  
The primary purposes of this research are to enhance understanding of the causes of 
variability and change in θe over the eastern USA and to propose a new downscaling 
approach to allow projections of daily minimum and maximum θe using variables 
commonly available from reanalyses and global and regional climate models. However, 
although prognostic thermal physiological models are required to make accurate 
assessments of human heat stress, the ANN models developed here may also have 
utility in assessments of possible climate change impacts on human health. Further, 
these analyses also may have applications to short-term forecasting of human-health 
relevant heat events (McKinnon et al., 2016;Weisheimer et al., 2011), since the 
methodological framework developed herein could be applied to observed antecedent 
SM, and modeled forecasts of the global mean T and conditions at the synoptic scale 
over the eastern USA. Many of the heat watch-warning systems implemented across 
the United States currently employ a synoptic typing methodology (Sheridan and 
Kalkstein, 2004), but the performance of such systems may be aided by implementation 
of other variables/analysis methodologies such as those used herein. The ANN-HL3-SM 
models developed herein exhibit relative high skill in predicting the occurrence of 
extreme min- and max-θe, and indeed out-perform the simpler models. The ANN with 3 
hidden layers and that includes SM as a predictor (i.e. ANN-HL3-SM) exhibits a domain 
averaged median hit rate for max-θe > 347 K is > 0.60, while the median FAR is ≈ 0.08. 
Results from the ANN models further indicate that max-θe and the occurrence of 
extreme max-θe appear to be considerably more sensitive to SM than min-θe which in 
turn appears to exhibit a stronger dependence on the precise prevailing synoptic scale 
conditions based on the ANN weights.  
Our results imply there are large spatial gradients in the importance of the predictors we 
used herein. For example, in the northeastern portions of our study region inclusion of 
SM as a predictor has considerably lower impact on model skill for either max-θe or min-
θe (Figure 4-7). Global T substantially contributes to model skill near the Gulf coast and 
close to the Great Lakes but is less important over the remainder to the eastern USA, 
while SM exhibits greatest importance in sub-regions previously noted as exhibiting 
‘warming holes’. Our framework has greater skill for max-θe than min-θe. It is possible 
that inclusion of additional predictors could lead to enhanced model skill particularly for 
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extreme high values of max-θe or min-θe that are of greatest importance to human 
health, and/or that our methodology could be evolved to allow derivation of persistence 
indices (e.g. the occurrence of consecutive nights with high minimum θe).  
We can not conclusively discount contributions from other phenomena (e.g. aerosol 
forcing, cloud cover) to the occurrence of ‘warming holes’ (areas with declining or no-
trends in T) (Meehl et al., 2015), and these features may be a complex response to 
multiple drivers. However, results presented herein are consistent with past work that 
has indicated the importance of soil moisture (SM) in determining partitioning of the 
surface energy budget, and thus the spatiotemporal patterns of θe over the central and 
eastern USA (Koster et al., 2011;Koster et al., 2006;Pryor and Schoof, 2016;Pryor et al., 
2016;Ford and Schoof, 2016, 2017;McKinnon et al., 2016). Indeed, SM is particularly 
important in determining the surface energy partitioning and the magnitude of θe over 
regions that have previously been identified as exhibiting ‘warming holes’, and for all 
grid cells the RMSE for models including SM as a predictor is smaller than the temporal 
variability of θe as measured using the standard deviation of the daily θe values. 
Specifically, only a model including SM is able to predict the occurrence of extreme (and 
highly health-relevant) values of θe over the western portion of Midwestern states such 
as IA, MO, IL and also in MS and AL. This research thus implies that SM has played 
and may continue to play a key role in dictating the presence and intensity of ‘warming 
holes’ that have been previously noted in analyses of near-surface air temperature data 
(from both in situ measurements and reanalysis products). 
 
Table 1. Caption should specify over JJA and 1980-2014; “coefficient [(r)]”, “the pres- 
ence [or] absence”; the total number of grids (1962) should be specified OR the stats 
should be presented as percentages to be consistent with the text. Column with r>0.8 
and RMSE <5k: what about the number of grids that satisfy BOTH criteria? 
Response: Done and done (new data added to Table 1, and a note added to the text 
that reads; ‘The ANN-HL3-SM model also exhibits the highest number of grid cells that 
have both a RMSE < 5 K and a r > 0.8 for both max-θe and min-θe. (Table 1).’). 
 
Fig 1. For (c-g) it is unclear from the caption whether 1980-2014 is still the averaging 
period; “standard deviation of daily [JJA] (e)...”; Mean [JJA daily] soil moisture...”; 
explained computation would be more appropriate to include in the main text of article. 
Is SM also averaged over 1980-2014? ; “total profile [0-1m? profile total thickness]”; 
the variable names and units should be displayed on each subpanel. Is the 90-day 
running JJA just June1-Aug31 average or on June 1 the ∼March1-June1 average and 
so-on? Please clarify. 
Response: Clarifications added. In the text we have added the following details about 
SM; ‘Specifically we use a 90-day running mean estimate of antecedent SM (i.e. the 
value for 1 June is an average of values from approx. 1 March to 1 June) over 3×3 grid 
cells centered on the grid cell in question (i.e. integrated over an area of approximately 
30,000 km2, see Figure 1g).’ This is already a relatively compact figure so have 
maintained the units in the caption. 
 
Fig3. The 5 models from Table 1 should be alluded to here by their acronyms in that 
table; the domain of actions on the right hand side should be specified as for the 
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predictors. From the flowchart is appears that z-scores are fed into the ANN. From the 
text I understood that daily z-scores are used to compute daily PC’s which are passed 
to the ANN. This Figure could be eliminated by adding a data table, which demarcates 
the predictors and predictands, and describing the rest in text. Currently the flowchart 
is a bit unclear. 
Response: I’ve remade the figure to define the acronyms and clarify the data flows.  
 
Fig 4. ANN-HL3-TOP is missing and needs to be included. The labels and units for 
rows 2 and 3 should be added to the far right side. 
Response: ANN-HL3-TOP is qualitatively so similar to ANN-HL3-SM that in order to 
enhance the legibility of the figure I excluded it. I have added a note to the caption to 
reflect this. This is already a relatively compact figure so have maintained the units in 
the caption. 
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Modeling the contributions of global air temperature, 
synoptic-scale phenomena and soil moisture to near-surface 
static energy variability using artificial neural networks. 
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Abstract.  The static energy content of the atmosphere is increasing at the global scale, but exhibits important sub-

global and sub-regional scales of variability and is a useful parameter for integrating the net effect of changes in the 

partitioning of energy at the surface and for improving understanding of the causes of so-called ‘warming-holes’ 10 

(i.e. locations with decreasing daily maximum air temperatures (T) or increasing trends of lower magnitude than the 

global mean). Further, measures of the static energy content (herein the equivalent potential temperature, θe) are 

more strongly linked to excess human mortality and morbidity than air temperature alone, and have great relevance 

in understanding causes of past heat-related excess mortality and making projections of possible future events that 

are likely to be associated with negative human health and economic consequences. New non-linear statistical 15 

models for summertime daily maximum and minimum θe are developed and used to advance understanding of 

drivers of historical change and variability over the eastern USA. The predictor variables are an index of the daily 

global mean temperature, daily indices of the synoptic scale meteorology derived from T and specific humidity (Q) 

at 850 hPa and 500 hPa geopotential heights (Z), and spatiotemporally averaged soil moisture (SM). SM is 

particularly important in determining the magnitude of θe over regions that have previously been identified as 20 

exhibiting ‘warming holes’ confirming the key importance of SM in dictating the partitioning of net radiation into 

sensible and latent heat and dictating trends in near-surface T and θe. Consistent with our a priori expectations, 

models built using Artificial Neural Networks (ANN) out-perform linear models that do not permit interaction of the 

predictor variables (global T, synoptic-scale meteorological conditions and SM). This is particularly marked in 

regions with high variability in min- and max-θe, where more complex models built using ANN with multiple 25 

hidden layers are better able to capture the day-to-day variability in θe and the occurrence of extreme max-θe. Over 

the entire domain the ANN with 3 hidden layers exhibits high accuracy in predicting max-θe > 347 K. The median 

hit rate for max-θe > 347 K is > 0.60, while the median false alarm rate is ≈ 0.08. 

 

1 Motivation and objectives 30 

Extreme heat is associated with significant societal and environmental impacts, and a number of prior studies have 

elaborated on the drivers of extreme air temperatures (T) and made projections of extreme T and the associated 
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human health impacts and socioeconomic consequences (Sanderson and Ford, 2017;de'Donato et al., 2015;O'Neill 

and Ebi, 2009;Garcia-Herrera et al., 2010).  Previous studies have sought to quantify the predictability of extreme T 

as a function of lead-time and variables describing teleconnections to remote sea-surface temperature anomalies 

(McKinnon et al., 2016) and/or local soil moisture (Brabson et al., 2005). Physiological stress is maximized under 

the co-occurrence of elevated T and specific humidity (q) (Zhang et al., 2014). Thus to understand spatiotemporal 5 

variability in heat-related mortality and/or morbidity there is a need to consider integrative variables derived from 

both T and q, such as equivalent potential temperature (θe) computed herein using the following approximation: 

𝜃! = 𝑇 !"""
!

!!/!!"
+ !(!)

!!"
𝑄,                (1) 

Where T is air temperature (K), P is atmospheric pressure (hPa), Rd is specific gas constant for air (J Kg-1 K-1), 

Cpd is specific heat for dry air (J Kg-1 K-1), L(T) is latent heat of vaporization (ƒ(T)) (J Kg-1), q is specific 10 

humidity of water vapor (Kg Kg-1) (Bolton, 1980) .   

Potential temperature is the temperature an unsaturated air parcel would have if brought adiabatically to a standard 

pressure. Thus, potential temperature is conserved for an unsaturated air parcel if it remains unsaturated as it rises 

and sinks. Equivalent potential temperature is conserved under vertical motion even if there is phase change of water 

vapor contained within the air. Hence, use of metrics such as θe permits more accurate depictions of near-surface 15 

energy budgets and surface heating trends for use in climate change detection studies (Davey et al., 2006). 

Equivalent potential temperature rather than equivalent temperature is used here to allow comparison of values from 

other reanalyses (or other model output) that uses a different discretization of terrain elevation.  

When considering the local surface energy balance (Eq. 2), near-surface T is responsive only to changes in the 

sensible heat flux from/to the surface, while θe responds to changes in both the sensible and latent heat flux terms: 20 

𝑆 1 –  𝛼 +  𝑅!" –  𝑅!"   =  𝐻 +  𝐿𝐸 +  𝐺              (2) 

Where S is incoming solar radiation, α is albedo, Rli is counter-radiated longwave radiation from the 

atmosphere, Rlo is outgoing longwave radiation from the surface, H is sensible heat flux, LE is latent heat flux, 

and G is ground heat flux.  

Accordingly, the total static energy of the near-surface atmosphere (and thus θe) has significantly increased since the 25 

1970s due to the increase in net radiation (left hand side of Eq. 2) (Peterson et al., 2011) and in response to increased 

T and the associated response in q (Ribera et al., 2004;Willett et al., 2007). However, climate modes (such as El 

Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and Pacific North American mode 

(PNA)) cause inter-annual variability in global (Huang et al., 2017) and regional (Llamedo et al., 2017) T and q 

anomalies, and there is substantial regional and sub-regional variability in absolute magnitude of static energy and 30 

temporal trends therein (Fall et al., 2010;Pryor and Schoof, 2016;Pryor et al., 2016).  

The following is a précis of the scales and processes we seek to explore and include in our new statistical 

downscaling models for summertime daily maximum and minimum equivalent potential temperature (θe): 

• Global scale forcing due to enhanced greenhouse gas concentrations and internal climate variability (e.g. ENSO 

(Mann et al., 1998)). As T increases the atmospheric water vapor content responds in proportion to the 35 

saturation vapor pressure (Willett et al., 2007;Allen and Ingram, 2002). Thus, both components (T and q) of 

Prof. Sara C. Pryor� 10/30/2017 11:33 AM
Deleted: Many p

Prof. Sara C. Pryor� 10/30/2017 11:50 AM
Formatted: Superscript

Prof. Sara C. Pryor� 10/30/2017 11:38 AM
Formatted: Widow/Orphan control
Prof. Sara C. Pryor� 10/31/2017 11:30 AM
Formatted: Font:(Default) Times New
Roman, 10 pt, Not Bold, Font color: Auto,
Pattern: ClearProf. Sara C. Pryor� 10/31/2017 11:30 AM
Formatted: Font:
Prof. Sara C. Pryor� 10/31/2017 11:30 AM
Formatted: Check spelling and grammar
Prof. Sara C. Pryor� 10/31/2017 11:30 AM
Formatted: Font color: Auto
Prof. Sara C. Pryor� 11/1/2017 9:15 AM
Deleted: While 

Prof. Sara C. Pryor� 11/1/2017 9:16 AM
Deleted:  within the surface energy balance

Prof. Sara C. Pryor� 10/31/2017 11:30 AM
Formatted: Font:(Default) Times

Prof. Sara C. Pryor� 11/1/2017 9:15 AM
Deleted: T40 
Prof. Sara C. Pryor� 10/30/2017 12:21 PM
Deleted: global lower



3 

 

static energy (θe) are enhanced in years and seasons with high global mean air temperatures. Previous research 

has indicated that variability in equivalent temperature (Te, i.e. the temperature computed from (1) but excluding 

the correction for bringing the air parcel adiabatically to a reference pressure of 1000 hPa) in the North Atlantic 

is strongly linked to NAO (Ribera et al., 2004), and the probability of ‘heat waves’ across the US is linked to 

hemispheric waves (Teng et al., 2013) and thus the PNA (Trenberth, 1990). 5 

• Synoptic scale forcing (Grotjahn et al., 2016). Much of the eastern USA broke records for heat indices during 

the summer of 2012 in part due to persistent anticyclonic conditions (Peterson et al., 2013), and many heat 

watch-warning employ a synoptic typing based methodology (Sheridan and Kalkstein, 2004). Further, 

variability and temporal trends in summertime moist static energy and dew point temperatures (Td) in the 

Midwestern USA appear to be linked to enhanced horizontal atmospheric moisture advection due in part to 10 

northward expansion of the southeast summertime anticyclone (Kalkstein et al., 1998;Rogers et al., 2007;Pryor 

and Schoof, 2016;Ford and Schoof, 2017).  

• Local-regional changes in water availability and energy partitioning at the surface, due to factors such as land 

cover change and soil moisture modification as a result of irrigation of cropland (Davey et al., 2006;Pryor et al., 

2016).  15 

Observed tendencies in T, q and θe are naturally a product of a combination of these drivers (Horton et al., 2016). 

The expression of internal climates modes (e.g. ENSO, PNA and NAO) influences the frequency and intensity of 

different synoptic scale phenomena (Sheridan, 2003;Weaver, 2013), and has been found to be partly responsible for 

an increase in the number of oppressively hot days in many urban areas across the USA over recent decades 

(Sheridan et al., 2009).  Further, there are important feedbacks between the land-atmosphere coupling, the synoptic 20 

scale circulation patterns and boundary-layer structure (Lee et al., 2016). Thus, for example, extreme high Td (and 

by association elevated q) in the Midwestern USA is associated with (a) development and propagation of low 

pressure from the High Plains to through the upper Great Lakes, (b) healthy crops and sufficient surface soil 

moisture, and (c) restricted vertical mixing (Bentley and Stallins, 2008).  

The objectives of this research are: 25 

1) To use non-linear (machine learning) models applied to a three-tiered suite of predictors: (a) An index of the 

daily global mean temperature, (b) indices of the conditions at the synoptic scale based on principal components 

analysis (PCA) of upper-air variables, and (c) soil moisture estimates, to investigate spatiotemporal variations in 

θe and enhance understanding of the causes of variability and change in θe over the eastern USA. 

2) To examine whether the performance of the artificial neural networks (ANNs) used to predict daily maximum 30 

and minimum θe is enhanced by inclusion of additional hidden layers in the ANNs. 

2 Data and Methods 

2.1 Study region 

The eastern USA (Figure 1a) is the focus of this research because: 

• It is home to over 200 million people (based on the 2013 census). 35 
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• It is characterized by high summertime Te (and θe) and in situ data have indicated trends in Te exceed those in T 

alone (Schoof et al., 2015). Further, the region is largely congruent with an area of coherence for extreme T 

events in prior research (McKinnon et al., 2016). 

• It encompasses major urban areas that have experienced a number of past extreme heat events associated with 

substantial excess mortality and morbidity (see summary in (Vanos et al., 2015) and also (Anderson and Bell, 5 

2011)). Further, a range of reanalyses exhibit a consistent signal of increasing frequency of both dry (i.e. high T 

but low q) and humid (i.e. combined high T and q) heat wave days over the study region during the period 

1981–2015 (Schoof et al., 2017). 

• It exhibits strong spatial gradients in terms of the nature of land cover and rate of change of both land 

management and SM (Figure 1a and g, (Pryor et al., 2016;Pryor and Schoof, 2016;Ellenburg et al., 2016)). For 10 

example, over the period 1950-2000 the region as a whole experienced rapid population growth (though this 

was not spatially uniform), expansion of area classified as exurban, an overall reduction of land in agriculture 

(though again this was highly heterogeneous in space) and an increase in the intensity of water management 

(including expansion of irrigation) (Brown et al., 2005).  

• Parts of it (focused on the southern Great Plains, i.e. the southern and western-most portion of the current study 15 

area) were identified in the global land–atmosphere coupling experiments (GLACE) as exhibiting atypically 

strong atmosphere-surface coupling in some global climate models. Further, soil moisture makes a large 

contribution to sub-seasonal forecast skill for air temperatures and precipitation in this region (Koster et al., 

2011;Koster et al., 2006;Dirmeyer and Halder, 2017;Guo et al., 2006).  

• It also incorporates two areas of reduced daily maximum T during multiple consecutive years extending over 20 

part or all of the twentieth century (i.e. warming holes). One is located along the border of Iowa (IA)-Nebraska 

(NE)-South Dakota (SD) and one is centered on Mississippi (MS) and Alabama (AL) (locations shown in 

Figure 1h). The lack of warming in both regions has been attributed to changing land-surface characteristics and 

enhanced soil moisture availability (Kalnay and Cai, 2003;Pan et al., 2009;Ellenburg et al., 2016). In the case of 

MS and AL upto 60% of the variance of summer temperatures has been ascribed to soil moisture (and thus an 25 

increase in the LE at the surface at the expense of H, Eq. 2) and cloud cover (reducing the net radiation) 

(Ellenburg et al., 2016). However, additional factors may account for these warming holes including large scale 

climate modes such as the Interdecadal Pacific Oscillation and the associated sea surface temperature anomalies 

in the tropical Pacific (Meehl et al., 2015), and aerosol radiative forcing (Leibensperger et al., 2012;Yu et al., 

2014). 30 

2.2 Data set 

All variables used herein derive from the MERRA-2 reanalysis data set (Molod et al., 2015;Reichle et al., 2017a). 

This minimizes uncertainty in models linking our predictors to near-surface static energy resulting from use of 

different data sets to derive the predictor suite and/or the response variables (daily minimum and maximum θe). The 

MERRA-2 reanalysis product assimilates an unprecedented array of remote sensing and in situ data streams, but 35 

does not assimilate in situ observations of near-surface T or q. MERRA-2 output is available at a resolution of 
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0.625°× ~0.5° (longitude-by-latitude). We use MERRA-2 output for all summer days (JJA) during 1980-2015 to 

compute the following variables: 

1) A globally averaged daily mean air temperature computed using hourly 2-m T from all MERRA-2 grid 

cells. This predictor (Figure 1b) is intended to represent the long-term tendency in global mean 

temperatures and interannual/interdecadal variability caused by internal climate modes (Huang et al., 5 

2017). 

2) Indices of synoptic scale meteorology. Air temperature (T850) and specific humidity (q850) at 850 hPa along 

with 500 hPa geopotential heights (Z500) in the domain (25.5-50°N, 97.5-65°W) for 20:00 UTC (i.e. 16:00 

Eastern Daylight Time, 15:00 Central Daylight Time) are converted to z-scores (that indicates how many 

standard deviations an individual value is from the mean) and used in a rotated PCA to generate daily 10 

principal component scores (PCs) that represent the proximity of each day to the major modes of synoptic-

scale variability. These predictors (i.e. the PCs) are intended to represent variability in the synoptic-scale 

circulation (e.g. presence of anticyclonic conditions likely to be associated with subsidence and thus 

retarded vertical mixing) and also large-scale advection of static energy. Fifteen components are retained 

based on a scree plot analysis (Cattell, 1966) and are subject to Varimax rotation (Richman, 1986). Daily 15 

PC scores for all 15 PCs are used as predictors in the statistical models, to allow each day to exhibit partial 

membership of multiple synoptic types. Spatial fields of the three variables sampled once per day are used 

in the PCA due to the high temporal autocorrelation present in these variables, and 20:00 UTC is selected 

to coincide with approximately the timing of the afternoon peak in surface T over the eastern USA. Figure 

2 shows centroids of synoptic modes of variability as defined using the PCA (so-called key days) as 20 

represented by the spatial patterns of T850, q850 and Z500 computed as the mean conditions on the seven days 

that exhibit highest PC scores on each PC. As shown, many of the synoptic types thus identified are readily 

interpretable as representing a diversity of zonal versus meridional circulation (cf. type 9 and 5 and 6), and 

some are characterized by conditions known to be associated with strong southerly low-level advection of 

high T and q into the region (e.g. types 1, 3, and 15) (Pryor and Schoof, 2016;Weaver, 2013). Further, most 25 

types exhibit a high degree of similarity with other synoptic-scale classifications derived for the region (e.g. 

type 7 is very similar to one that is associated with summertime precipitation over the southeastern USA 

(Diem, 2006)).  

3) An index of soil moisture (SM). This predictor is included to represent the availability of moisture at the 

atmosphere-surface boundary. Due to its spatial heterogeneity, following previous research (Ford and 30 

Schoof, 2016), we use a time and spatially integrated metric of SM. Specifically we use a 90-day running 

mean estimate of antecedent SM (i.e. the value for 1 June is an average of values from approx. 1 March to 1 

June) over 3×3 grid cells centered on the grid cell in question (i.e. integrated over an area of approximately 

30,000 km2, see Figure 1g). MERRA-2 SM has been evaluated relative to in situ measurements of surface 

and root-zone SM and exhibits an unbiased root mean square error (RMSE) of 0.05 m3m-3 and a variance 35 

explanation (R2) value of the average root-zone SM anomaly of 0.56 (Reichle et al., 2017a). Further, since 

the MERRA-2 system applies bias correction to the precipitation estimates used in the land surface model 
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(Reichle et al., 2017b), this may result in enhanced accuracy of SM estimates. However, it should be noted 

that there are relatively few direct measurements of SM and thus the evaluation of MERRA-2 is focused on 

agricultural locations. 

4) An estimate of (i) daily maximum θe and (ii) daily minimum θe in each grid cell (see Figure 1c and d). The 

daily minimum and maximum values are used as the predictands in the downscaling and are derived using 5 

Eq(1) applied to hourly T at 2-m, q at 2-m and surface pressure (P). The domain used to compute the 

gridded fields of the predictands (daily minimum and maximum θe) is truncated by one grid cell on each 

boundary of the domain used to generate the predictors to accommodate the spatial averaging used to 

generate the SM predictor. The range of grid cell θe estimates are consistent with those derived from station 

observations within the study region (Pryor and Schoof, 2016), and in accord with a priori expectations 10 

both daily max-θe and min-θe exhibit primarily latitudinal variability (Figure 1c and d). Mean max-θe 

decreases from values of ∼350 K (∼80°C) in the south of the domain to approximately 320 K (∼50°C) in 

the north. MO and IA exhibit anomalously high mean max-θe compared with grid cells at the same latitudes 

(Figure 1c) reflecting, in part, the advection of air with high T and q from the south by the Great Plains 

Low Level Jet (GPLLJ) (Weaver, 2013;Pryor and Schoof, 2016;Schoof et al., 2015), and the presence of 15 

abundant SM (Figure 1g) (Al Bitar et al., 2017).  

5) There are also important spatial patterns of the day-to-day variability of daily max-θe and min-θe that 

provide key context for considering the performance of different transfer functions (i.e. statistical models 

linking indices of the global mean T, synoptic scale meteorology and soil moisture (the predictors) to the 

response variables; max-θe and min-θe). The variance (and standard deviation) of daily max-θe values (i.e. a 20 

measure of the dispersion of individual days around the mean values of min- and max-θe shown in Figures 

1c and 1d) is largest over IA/southern Minnesota (MN) (Figure 1e), while the variance of min-θe is greatest 

over Illinois (IL) (Figure 1f). In both cases the day-to-day variability as measured by the standard deviation 

is ~ 10 K. The standard deviation of daily max-θe and min-θe decreases with decreasing latitude and both 

variables exhibit lowest variability over the southern portions of the study domain (e.g. Florida (FL) has a 25 

standard deviation < 5 K) (Figure 1e,f).  

Thus the time series of predictors 1) and 2) (global mean T and the 15 PC scores) are common to models built for all 

grid cells, but predictor 3) (SM) and the response variables (predictands, daily max-θe and min-θe) are grid-cell 

specific.  

2.3 Methods 30 

Artificial neural network (ANN) architectures are potentially highly useful in developing statistical models for 

response variables such as θe because ANN do not require any assumptions about the form of the relationship 

between individual predictors, between predictors and predictands (min- and max-θe), and can treat complex and 

non-linear term interactions. ANNs are data-driven self-adaptive multi-layer perceptrons that model relationships 

between input variables and dependent output variables. Term interactions are described using mathematical 35 
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functions encoded within hidden-layers and weights that connect all nodes within the network layers including the 

input (predictors) and output (predictand) layers to perform the non-linear mapping between the input and output 

variables (Gardner and Dorling, 1998). The number of hidden layers within the ANN determines the degree of non-

linearity that can be modeled. Hence, if the data are linearly separable, no hidden layers are required. Our a priori 

expectation is that the different predictors of daily maximum and minimum θe will interact in complex, non-linear 5 

ways. Thus, we apply ANN to develop models relating the global mean T, PC scores of the synoptic-scale 

meteorology and antecedent SM to daily maximum or minimum θe in each grid cell. Because we seek to examine 

spatial variability in model performance, we build and test the ANNs at the grid-cell level and then examine the 

resulting spatial coherence of model skill. A range of different learning algorithms can be employed in ANN. Herein 

the neural networks are constructed within Matlab using the Levenberg-Marquardt back-propagation algorithm (in 10 

which the sum of the squares of the deviations between the observations and model predictions is minimized) 

(Papageorgiou and Poczeta, 2017). Although there is no single ‘best-practice’ regarding the number of hidden layers 

to use with ANN, there is evidence that a single hidden layer is sufficient for the large majority of problems (Toth et 

al., 2000). To test the dependence of model skill on the number of hidden-layers, three independent models are 

constructed for each MERRA-2 grid cell using: 15 

1) No hidden layers, i.e. a linear regression model with no interaction between the predictors. 

2) ANN with a single hidden layer.  

3) ANN with three hidden layers.  

To examine the importance of SM in determining the downscaling model skill, a fourth ANN model (with 3 hidden 

layers) is also built for each grid cell and each of the two predictands (daily maximum and minimum θe) that 20 

excludes SM from the input variables. Lastly, it is challenging to determine which measures of SM are most 

appropriate to use within statistical downscaling models. Therefore, in addition to developing models using the 

MERRA-2 variable ‘PRMC’, which is the ‘Total profile soil moisture content’ in m3m-3 (that is summed across all 

six soil layers and represents the total water potentially available for evapotranspiration to the atmosphere), a fifth 

ANN model (with 3 hidden layers) is also built that uses the variable ‘GWETTOP’ that describes the SM content in 25 

the upper 5 cm of the soil (unitless) (Reichle et al., 2017a), and thus best represents the SM that is readily available 

for evaporation into the overlying atmosphere. 

Table 1 summarizes the model abbreviations used herein. A schematic of the downscaling model architecture and 

data flows is given in Figure 3. For each model (and thus each grid cell) 70% of the data set is randomly selected to 

be used for training of the models, 15% is used for internal validation and 15% is withheld and used as an 30 

independent sample for model testing. We use two primary metrics of model performance: RMSE and Pearson 

correlation coefficient (r) between observed and predicted daily minimum and maximum-θe in each grid cell on each 

day in the test data set (i.e. independent observations), summarized at both the grid cell level and also averaged over 

all 1962 MERRA-2 grid cells that have some land areas within them (i.e. a domain average). The correlation 

coefficient is thus used as a relative measure of model performance, while RMSE provides an absolute measure of 35 

degree of agreement between the model ‘predictions’ and the observed values (i.e. it is the typical value of the 

prediction error). Given the importance of extreme heat to human health we further examine the ability of the 
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models to capture the occurrence of very high θe. In this analysis we set a threshold of 347 K (73°C) to indicate 

extreme max-θe (based on information provided in (Buzan et al., 2015) for the eastern USA) and a threshold of 337 

K for min-θe. A contingency table approach is used to evaluate the accuracy of the model predictions of extreme-θe 

using the hit rate (HR) (Wilks, 2011): 

𝐻𝑅 = #!!"#
#!!!"!#!"##$#

 ,                 (3) 5 

Where #hits is number of days in the independent data set where the observations and predictions both indicate 

exceedance of the threshold, and #misses is the number of days when the observations indicate an exceedance 

of the threshold but the model prediction does not. 

And the false alarm rate (FAR) of each individual grid cell: 

𝐹𝐴𝑅 = #!"#$% !"!#$%
#!"#$% !"!#$%!#!"##$!% !"!!!"!#$%

 ,             (4) 10 

Where #false alarms is number of days in the independent data set where the observations did not indicate 

exceedance of the threshold but the prediction was for an exceedance, and #correct non-events is the number 

of days when the observations and predictions both indicate the threshold is not exceeded. 

3 Results 

For both daily maximum-θe and daily minimum-θe, the worst model performance statistics (highest RMSE as a 15 

fraction of the temporal variability θe, and lowest r) are associated with the linear models that do not include 

parameter interactions (i.e. MLR) (Table 1 and Figures 4 and 5). Nevertheless, output from all model architectures 

for min-θe and max-θe exhibit high correlation coefficients (r > 0.8) with independent data over most of the study 

domain. Correlation coefficients exceed 0.8 for 84% of grid cells for ANN-HL3-SM applied to max-θe and 81% for 

min-θe. Further, 92% of grid cells for ANN-HL3-SM exhibit RMSE < 5 K for max-θe and 91% exhibit RMSE < 5 K 20 

for min-θe (Table 1, Figure 4 and 5). The ANN-HL3-SM model also exhibits the highest number of grid cells that 

have both a RMSE < 5 K and a r > 0.8 for both max-θe and min-θe. (Table 1). Grid cells with highest RMSE for 

min-θe and max-θe also generally have highest variance (i.e. largest day-to-day variability). For example, grid cells 

in IA exhibit highest variance and highest RMSE for max-θe (Figure 1e and Figure 4), and grid-cells within IL are 

generally characterized by large RMSE and variance of min-θe (Figure 1f and Figure 5).  Thus, while noting the 25 

RMSE (i.e. typical prediction error) is largest over IA for max-θe (~ 5 K), it is less than half the standard deviation 

computed from the day-to-day variability in max-θe (~ 10 K).  

Generally all models exhibit slightly worse performance across both measures (r and RMSE) for min-θe than max-θe 

at the grid-cell level and integrated over all land grid cells (Table 1 and Figures 4 and 5). The reduced model skill 

for min-θe may reflect use of output at 20:00 UTC values of the predictors used in the synoptic classification due to 30 

our particular focus on daytime max-θe.  

Although performance differences between the five model architectures for daily maximum-θe and daily minimum-

θe are comparatively modest when averaged over the entire domain (Table 1), there are important regional variations 

in the performance of the different model functional forms. Over two-thirds of all grid cells (1332 of 1962) exhibit 
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lower RMSE in the ANN model with 3 hidden layers and including SM (i.e. ANN-HL3-SM) than in any of the other 

models (e.g. MLR). The enhancement of model performance as measured by a decrease in RMSE for the more 

complex model of max-θe and min-θe is particularly marked in the west-central of the domain (over parts of 

Missouri (MO) and Iowa (IA), close to or within one of the ‘warming holes’) (Figure 4 and 5). This is a region 

where a substantial fraction of T variance is explained by thermal and moisture advection by the GPLLJ (Weaver, 5 

2013), where modeled land-atmosphere coupling is particularly intense (Koster et al., 2011;Koster et al., 2006) and 

where there are strong longitudinal gradients of SM (Figure 1g). Lowest correlations between predicted and 

observed min- and max-θe values occur over east Texas (TX) for all model formulations although the RMSE of 

model predictions are not particularly high in this area (Figure 4 and 5). The low RMSE may reflect the small day-

to-day variability in min- and max-θe over this region (Figure 1e and f), possibly due to the proximity to the ocean, 10 

while the low r may indicate that the synoptic types derived herein are not able to represent mesoscale features such 

as dry lines that play a key role in dictating day-to-day variability in θe over this sub-region. It is also worthy of note 

that this area was excluded from the eastern US in terms of the area of coherence for extreme T over the eastern 

USA (McKinnon et al., 2016) and that eastern TX is on the southwestern boundary of the study domain. These two 

factors may indicate that the synoptic types derived herein do not fully represent the range of meteorological 15 

conditions associated with θe variability in the lower central Great Plains. 

Interpreting weights from complex ANN is very challenging in the context of predictor relevance and the values 

(and sign) of the weights vary in space and with the complexity of the model architecture (number of hidden layers). 

However, it is worthy of note that the weights on the index of global temperatures (and thus expression of internal 

climate modes) in ANN-HL3-SM are uniformly close to zero across the grid-cells in the interior of the continent, but 20 

are of large magnitude in land grid cells close to the Gulf of Mexico (i.e. the south of the domain) and around the 

Great Lakes.  Given this index is strongly influenced by global sea surface temperatures (SST), the implication is 

that this predictor contains important information about the SST and thus potentially evaporation from the Great 

Lakes and the Gulf of Mexico leading to higher q. 

Consistent with prior research that has indicated the importance of atmosphere-surface interactions (Cai et al., 2014) 25 

and specifically soil moisture (Pryor et al., 2016;Seneviratne et al., 2010) in surface energy partitioning and thus 

near-surface T and q regimes and static energy, exclusion of SM from the ANN with 3 hidden layers (i.e. ANN-

HL3) decreases model performance relative to ANN-HL3-SM and increases the RMSE for max-θe in 70% of grid 

cells. The regions for which this impact is most strongly manifest are close to or within the ‘warming holes’ 

described above and/or are located downstream of regions of significant county-level irrigation and anthropogenic 30 

enhancement of SM (Pryor et al., 2016;DeAngelis et al., 2010) (Figure 1g), indicating the potential for 

anthropogenic enhancement of SM to strongly influence static energy and human heat-stress in these regions. For 

example, RMSE for max-θe is increased in models excluding SM in all grid cells within MO, and all but one grid 

cell each in IA and IL (Figure 4). This finding is also replicated in the second region of weak or negative air 

temperature trends described above and centered on MS and AL (Ellenburg et al., 2016). The RMSE is lower in 35 

ANN-HL3-SM than ANN-HL3 over all but one grid cell in these two states. Thus this analysis strongly supports 

prior assertions that SM plays a key role in dictating the surface energy balance and in the suppression of daily 
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maximum T, while increasing max-θe. 

The statistical (downscaling) models show similar dynamic range to independent observations, although there is 

some evidence that the models underestimate the total variance in max-θe leading to underestimation of extreme 

max-θe as is evident from the flattening of the scatterplots for very high values of daily maximum θe (see the upper 

row of panels in Figure 4).  To examine this further we conduct an analysis of the HR and FAR for max-θe in excess 5 

of 347 K. This threshold is exceeded by daily maximum θe derived from the MERRA-2 reanalysis on an average of 

∼ 15% of summer days when all eastern US grid-cells are considered, but naturally exhibits a higher frequency of 

exceedance (of up to 75% of days) along the southeastern portion of the TX gulf coast and is observed on nearly 

50% of days over coastal portions of the Gulf coast states and FL (Figure 6a). Conversely, it is seldom or never 

observed within grid cells in the north of the domain (Figure 6a). To ensure a sufficiently robust sample size on 10 

which to compute the HR for extreme max-θe we consider only grid cells where more than 40 days in the 

independent data sample (i.e. 8%) exceed this threshold. The mean HR values for the linear model (MLR), the ANN 

with 3-hidden layers (ANN-HL3-SM), and the ANN with 3-hidden layers but excluding SM (ANN-HL3) computed 

over all these grid cells is 59, 60 and 56%, respectively (Figure 6b-d), indicating that over the entire study domain 

the role of SM and predictor interactions in explaining the occurrence of extreme max-θe is modest. All model forms 15 

perform least well in terms of predicting the occurrence of max-θe > 347 K over eastern TX and South Carolina 

(SC) (Figure 6e-g). However, the model excluding SM exhibits particularly poor performance (i.e. low HR) in these 

regions. The causes of the poor model performance in eastern TX and SC are currently not fully understood, 

although it is worthy of note that data from MERRA-2 grid-cells in SC exhibit a relatively low overall frequency of 

exceedance of this threshold and are also characterized by comparatively low 99th percentile θe in an analysis of heat 20 

indices derived from the Community Land Model v4.5 (Buzan et al., 2015). Grid cells along the Gulf coast and over 

the states of MO, IA and IL exhibit high HR for prediction of extreme max-θe and substantial improvement in HR is 

noted in IA, IL and MO (Figure 6e-g) in the ANN-HL3-SM relative to the other model forms.  This is consistent 

with strong spatial gradients in SM (Figure 1e), findings of the GLACE projects of strong atmosphere-surface 

coupling (Koster et al., 2011;Koster et al., 2006), and analyses for stations in IL that also show a strong dependence 25 

of high Te on soil moisture (Ford and Schoof, 2016). To contextualize the HR presented above it is important to note 

that they are associated with comparatively low false alarm rates (FAR). Indeed, FAR for the occurrence of min-θe > 

342 K or max-θe > 347 K are very modest for all model formulations (Figure 6 and 7). For example, over 94% of 

grid cells indicate FAR for max-θe > 347 K that are below 0.25 for the ANN-HL3-SM models. Thus, the relatively 

high HR reported herein are not being artificially inflated by unrealistically high predictions of the occurrence of 30 

extreme θe. The inclusion of SM as a predictor enhances HR in regions previously identified as exhibiting high 

variance in extreme θe without a concomitant increase in FAR (Figure 6 and 7). It should be acknowledged that even 

the ANN with 3 hidden layers and soil moisture (ANN-HL3-SM) exhibits a modal grid-cell HR of 0.6-0.7, and thus 

misses a substantial fraction of extreme θe. Nevertheless, these HR and FAR are indicative of positive Relative 

Operating Characteristics (ROC) (i.e. plots of the true positive rate greatly exceeds false positive rates) (Wilks, 35 

2011).  Further, HR and FAR computed for max-θe and min-θe are comparable to (or better than) seasonal re-
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forecasts of summertime T at 2-m over the land areas of Southern Europe developed using the European Centre for 

Medium-Range Weather Forecasts (ECMWF) seasonal ensemble forecasting system (Weisheimer et al., 2011).   

In contrast to the results for prediction of extreme max-θe the model architecture has virtually no impact on HR for 

min-θe > 337 K, and neither does the inclusion of SM in the model. In all cases the domain averaged HR = 59% and 

no region exhibits consistent improved or degraded performance for ANN-HL3-SM or ANN-HL3 over MLR 5 

(Figure 7). This finding is consistent with the overall results for models of min-θe that exhibit only modest decreases 

in model performance (increased RMSE and lower r) when SM is excluded from the predictor suite (Table 1 and 

Figure 5). Consistent with the interpretation of the surface energy balance (Eq. 2) this re-emphasizes that SM more 

directly impacts near-surface T and q during the daytime under conditions of positive net radiation.  

Differences in model performance between ANN conditioned on total SM and using wetness only in the top soil 10 

layer (upper 5 cm) are very small when averaged across the domain (Table 1) and indeed for virtually all grid cells. 

Only 26 grid cells exhibited a Δ|RMSE| > 0.5 K for models using PRMC versus those using GWETTOP (out of a 

total of 1962), while 155 exhibited an increase in RMSE > 0.5 K when SM was excluded from the model. Thus, 

although the weights within the ANNs differ for use of the two SM parameters, the overall model skill is unchanged 

by use of the two SM estimates possibly due to the spatial and temporal averaging applied herein, or uncertainty in 15 

reanalysis-derived SM variables. 

4 Summary and Conclusions 

Very few statistical downscaling analyses focus on integrative variables such as θe that explicitly incorporate co-

variability of T and q, but such variables have direct applications to climate change impact analyses (such as analysis 

of heat waves (Buzan et al., 2015)). Further, this is an application of climate downscaling where statistical 20 

approaches may be particularly useful given evidence that even when nested within observed lateral boundary 

conditions Regional Climate Models (RCMs) have difficulty in capturing the joint probability distributions of T and 

q and thus in accurately representing either the probability distribution of static energy or the spatio-temporal 

variability therein (Pryor and Schoof, 2016). Analyses of θe are also essential to advancing fundamental 

understanding of changes in the total static energy content of the lower atmosphere, and may reveal important 25 

information of relevance to both model performance analyses and attribution studies of global change.  

The goal of this work is to develop a hierarchy of statistical models with increasing complexity and use them to 

determine the degree to which increased complexity enhances the skill of model predictions of θe and to attribute 

variability in min- and max-θe over eastern North America. Prior to discussing the results from application of this 

analysis framework to output from the MERRA-2 reanalysis it is worthy of note that previous research on regional 30 

heat wave characteristics over the contiguous US using a suite of reanalyses indicated some important differences in 

the magnitude of derived equivalent temperature (Te) between the reanalysis products (Schoof et al., 2017) as well 

as in strength of land-atmosphere coupling between the reanalysis products (Ferguson et al., 2012). Thus, there 

would be value in applying this framework to additional observationally constrained data sets to evaluate: (1) The 

degree to which the findings of a key role of SM to determining the model skill for daily maximum θe in specific 35 
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sub-regions are generalizable and spatially consistent between reanalyses, and further if the predictability of θe 

exhibits sensitivity to the spatiotemporal averaging used in deriving the SM predictors. (2) If use of a reanalysis 

product (or forecast model) that does not employ bias-correction of precipitation amounts would substantially alter 

the ANN model structure. (3) If the partial truncation of the upper percentiles of daily maximum θe in the model 

predictions is also a generalizable finding when our model framework is applied to different data sets. 5 

Consistent with our a priori expectations, models built using ANN out-perform those that do not permit interaction 

of the predictor variables. Domain averaged RMSE for min- and max-θe is smallest in the more complex models 

(i.e. for ANN-HL3-SM, RMSE < 4 K and < 4.3 K, respectively, c.f. mean max-θe ≈ 333 K and mean min-θe ≈ 321 

K). Particularly in regions with high variability in min- and max-θe the more complex models with multiple hidden 

layers are better able to capture the day-to-day variability in θe. Correlation coefficients exceed 0.8 for 84% of grid 10 

cells for ANN-HL3-SM applied to max-θe and 81% for min-θe. Further, 92% of grid cells for ANN-HL3-SM exhibit 

a RMSE < 5 K for max-θe and 91% for min-θe.  

The primary purposes of this research are to enhance understanding of the causes of variability and change in θe 

over the eastern USA and to propose a new downscaling approach to allow projections of daily minimum and 

maximum θe using variables commonly available from reanalyses and global and regional climate models. However, 15 

although prognostic thermal physiological models are required to make accurate assessments of human heat stress, 

the ANN models developed here may also have utility in assessments of possible climate change impacts on human 

health. Further, these analyses also may have applications to short-term forecasting of human-health relevant heat 

events (McKinnon et al., 2016;Weisheimer et al., 2011), since the methodological framework developed herein 

could be applied to observed antecedent SM, and modeled forecasts of the global mean T and conditions at the 20 

synoptic scale over the eastern USA. Many of the heat watch-warning systems implemented across the United States 

currently employ a synoptic typing methodology (Sheridan and Kalkstein, 2004), but the performance of such 

systems may be aided by implementation of other variables/analysis methodologies such as those used herein. The 

ANN-HL3-SM models developed herein exhibit relative high skill in predicting the occurrence of extreme min- and 

max-θe, and indeed out-perform the simpler models. The ANN with 3 hidden layers and that includes SM as a 25 

predictor (i.e. ANN-HL3-SM) exhibits a domain averaged median hit rate for max-θe > 347 K is > 0.60, while the 

median FAR is ≈ 0.08. Results from the ANN models further indicate that max-θe and the occurrence of extreme 

max-θe appear to be considerably more sensitive to SM than min-θe which in turn appears to exhibit a stronger 

dependence on the precise prevailing synoptic scale conditions based on the ANN weights.  

Our results imply there are large spatial gradients in the importance of the predictors we used herein. For example, 30 

in the northeastern portions of our study region inclusion of SM as a predictor has considerably lower impact on 

model skill for either max-θe or min-θe (Figure 4-7). Global T substantially contributes to model skill near the Gulf 

coast and close to the Great Lakes but is less important over the remainder to the eastern USA, while SM exhibits 

greatest importance in sub-regions previously noted as exhibiting ‘warming holes’. Our framework has greater skill 

for max-θe than min-θe. It is possible that inclusion of additional predictors could lead to enhanced model skill 35 

particularly for extreme high values of max-θe or min-θe that are of greatest importance to human health, and/or that 
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our methodology could be evolved to allow derivation of persistence indices (e.g. the occurrence of consecutive 

nights with high minimum θe).  

We can not conclusively discount contributions from other phenomena (e.g. aerosol forcing, cloud cover) to the 

occurrence of ‘warming holes’ (areas with declining or no-trends in T) (Meehl et al., 2015), and these features may 

be a complex response to multiple drivers. However, results presented herein are consistent with past work that has 5 

indicated the importance of soil moisture (SM) in determining partitioning of the surface energy budget, and thus the 

spatiotemporal patterns of θe over the central and eastern USA (Koster et al., 2011;Koster et al., 2006;Pryor and 

Schoof, 2016;Pryor et al., 2016;Ford and Schoof, 2016, 2017;McKinnon et al., 2016). Indeed, SM is particularly 

important in determining the surface energy partitioning and the magnitude of θe over regions that have previously 

been identified as exhibiting ‘warming holes’, and for all grid cells the RMSE for models including SM as a 10 

predictor is smaller than the temporal variability of θe as measured using the standard deviation of the daily θe 

values. Specifically, only a model including SM is able to predict the occurrence of extreme (and highly health-

relevant) values of θe over the western portion of Midwestern states such as IA, MO, IL and also in MS and AL. 

This research thus implies that SM has played and may continue to play a key role in dictating the presence and 

intensity of ‘warming holes’ that have been previously noted in analyses of near-surface air temperature data (from 15 

both in situ measurements and reanalysis products).  

5 Data availability 

The MERRA-2 data used herein are available from http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset2.pl (see 

(Bosilovich et al., 2015) for a detailed description of the file structures). 
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Table 1. Domain averaged model performance statistics (root mean square error (RMSE) and the mean Pearson 
correlation coefficient (r)) versus independent test data for daily maximum equivalent potential temperature (max-θ e) 
and daily minimum equivalent potential temperature (min-θ e) during JJA, 1980-2015. The results are shown for the five 
model formulations expressed in terms of the number of hidden layers in the ANN (where 0 hidden layers indicates 
results for a multiple linear regression model with no term interactions), the presence or absence of soil moisture as a 5 
predictor and whether the SM is total columnar (PRMC) or surface only (WGETTOP). The total number of grid cells 
considered herein is 1960. 

Abbreviation 
used herein 

Model 
architecture 

Soil 
moisture 
predictor  

max-θe min-θe 

<RMSE> 
(K) 

<r> # grid cells 
with r>0.8 , 

RMSE < 
5K,  and 

both criteria 
met 

<RMSE> 
(K) 

<r> # grid cells 
with r>0.8, 
RMSE < 
5K,  and 

both criteria 
met 

MLR Multiple linear 
regression 

PRMC 4.05 0.849 1575, 1727, 
1370 

4.39 0.836 1537, 1665, 
1311 

ANN-HL1-
SM 

ANN with 1 
hidden layer 

PRMC 4.03 0.850 1602, 1754, 
1394 

4.34 0.839 1572, 1750, 
1370 

ANN-HL3-
SM 

ANN with 3 
hidden layers 

PRMC 3.97 0.855 1621, 1798, 
1482 

4.29 0.844 1588, 1782, 
1450 

ANN-HL3 ANN with 3 
hidden layers, 
but excluding 

SM 

None 4.10 0.846 1549, 1675, 
1300 

4.33 0.843 1580, 1765, 
1427 

ANN-HL3-
TOP 

ANN with 3 
hidden layers 

WGETTOP 3.97 0.856 1623, 1802, 
1476 

4.29 0.844 1604, 1782, 
1432 
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Figure 1. (a) The study domain used herein (25.5-50°N, 97.5-65°W) and five consolidated land use land-cover (LULC) 
classes as represented at a resolution of 0.05×0.05°  from the MODIS land cover data set for 2014 (MCD12C). (b) A 
boxplot of daily global mean JJA temperature values (K) (1980-2015) as computed from the MERRA-2 output. (c) Mean 
summertime (JJA, 1980-2015) maximum-θ e and (d) minimum-θ e (K) as computed from hourly T and q at 2-m and 5 
surface pressure (P) in each MERRA-2 grid cell. Standard deviation of daily (e) maximum-θ e and (f) minimum-θ e (K) 
(JJA, 1980-2015). (g) Mean soil moisture estimates (1980-2015) from MERRA-2 used as a predictor in the ANN and 
computed as follows: the daily mean value for total profile soil moisture content (PRMC) for each grid cell is averaged 
over a spatial area of 3×3 grid cells centered on the grid cell of interest, and used to compute a 90-day running JJA mean 
soil moisture (m3m-3).  Panel (h) shows the location of states that are explicitly referred to herein. 10 
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Figure 2. Summary of the conditions under each of the PCA-derived synoptic modes of variability. The panels show the 
“mode centroid” (i.e. mean of the 7 days that exhibit highest PC scores for the type). The color depicts T850 (K), the solid 
black lines show Z500 (gpm) and the red lines depict q850 (gKg-1). The PC number is shown in the lower left of each panel 
and the panels are arranged so that the first mode of variability is shown in the upper left panel, the fifth PC is shown in 5 
the second row in the left most panel and so forth. To aid legibility, the panels in this figure denote the study region as a 
rectangle, with state outlines excluded, thus also shown in the lower right of this figure is a map depicting the state 
outlines for the same domain as shown in the other panels but using a Plate Carree projection (i.e. the equi-rectangular 
projection) used in Figures 1, 4, 5, 6 and 7.  

	  10 
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Figure 3. Schematic of the ANN model architecture (model naming convention), data flow, predictors and predictands. 	  
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Figure 4. Précis of the downscaling model performance for daily maximum-θ e (max-θ e). The upper panels show 
scatterplots of observed and predicted max-θ e for all grid cells and all days within the test (independent) data, along with 
a red 1:1 line. The columns show results for four model configurations: multiple linear regression (MLR, left), ANN with 
1-hidden layer (ANN-HL1-SM, second column), ANN with 3-hidden layers (ANN-HL3-SM third column) and ANN with 5 
3-hidden layers but excluding information regarding the soil moisture (ANN-HL3 right column). The second row shows 
the Pearson correlation (r) of predicted and observed max-θ e values in the independent data for the four different models, 
while the third row shows the mean root mean square error (RMSE) (K) computed for independent data from each grid 
cell for the four models. Results for ANN-HL3-TOP are virtually identical to those for ANN-HL3-SM and thus are not 
shown.	 	10 
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Figure 5. Précis of the downscaling model performance for daily minimum-θ e (min-θ e). The upper panels show 
scatterplots of observed and predicted min-θ e for all grid cells and all days within the test (independent) data, along with 
a red 1:1 line. The columns show results for four model configurations: multiple linear regression (MLR, left), ANN with 
1-hidden layer (ANN-HL1-SM, second column), ANN with 3-hidden layers (ANN-HL3-SM third column) and ANN with 5 
3-hidden layers but excluding information regarding the soil moisture (ANN-HL3 right column). The second row shows 
the Pearson correlation (r) of predicted and observed min-θ e values in the independent data for the four different models, 
while the third row shows the mean root mean square error (RMSE) (K) computed for independent data from each grid 
cell for the four models. Results for ANN-HL3-TOP are virtually identical to those for ANN-HL3-SM and thus are not 
shown. 10 
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Figure 6. (a) Map of the fractional frequency of occurrence of max-θ e > 347 K in each grid cell based on the independent 
(test) data set. (b) Histogram of hit rate (HR) and false alarm rate (FAR) for all grid cells and (e) spatial map for correct 
identification of max-θ e>347 K for all grid cells where this threshold is exceeded by >8% of days in the independent data 
based on output from the multiple linear regression model (MLR). (c) and (f) As in panels (b) and (e) but for output from 5 
the ANN model with 3 hidden layers and including SM (ANN-HL3-SM). (d) and (g) As in panels (b) and (e) but for output 
from the ANN model with 3 hidden layers excluding SM (ANN-HL3).  
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Figure 7. (a) Map of the fractional frequency of occurrence of min-θ e > 337 K in each grid cell based on the independent 
(test) data set. (b) Histogram of hit rate (HR) and false alarm rate (FAR) for all grid cells and (e) spatial map for correct 
identification of min-θ e>337 K for all grid cells where this threshold is exceeded by >8% of days in the independent data 
based on output from the multiple linear regression model (MLR).  (c) and (f) As in panels (b) and (e) but for output from 5 
the ANN model with 3 hidden layers and including SM (ANN-HL3-SM). (d) and (g) As in panels (b) and (e) but for output 
from the ANN model with 3 hidden layers excluding SM (ANN-HL3).  

	


