Articles | Volume 17, issue 23
https://doi.org/10.5194/acp-17-14333-2017
https://doi.org/10.5194/acp-17-14333-2017
Research article
 | 
04 Dec 2017
Research article |  | 04 Dec 2017

Impact of uncertainties in inorganic chemical rate constants on tropospheric composition and ozone radiative forcing

Ben Newsome and Mat Evans

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Mathew Evans on behalf of the Authors (01 Oct 2017)
ED: Publish subject to technical corrections (06 Oct 2017) by Thomas von Clarmann (deceased)
AR by Mathew Evans on behalf of the Authors (13 Oct 2017)  Manuscript 
Download
Short summary
We explore the uncertainty in the predictions of a chemical transport model (GEOS-Chem) from uncertainty in 60 inorganic rate constants and photolysis rates. We find uncertainty in the global mean ozone burden of 10 %, in global mean OH of 16 %, methane lifetimes of 16 %, and tropospheric ozone radiative forcings of 13 %. Reductions in the uncertainty of rate constants of these simple reactions would reduce uncertainty in our understanding of atmospheric composition.
Altmetrics
Final-revised paper
Preprint