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Abstract. Chemical rate constants determine the composi-
tion of the atmosphere and how this composition has changed
over time. They are central to our understanding of climate
change and air quality degradation. Atmospheric chemistry
models, whether online or offline, box, regional or global, use
these rate constants. Expert panels evaluate laboratory mea-
surements, making recommendations for the rate constants
that should be used. This results in very similar or identi-
cal rate constants being used by all models. The inherent un-
certainties in these recommendations are, in general, there-
fore ignored. We explore the impact of these uncertainties on
the composition of the troposphere using the GEOS-Chem
chemistry transport model. Based on the Jet Propulsion Lab-
oratory (JPL) and International Union of Pure and Applied
Chemistry (IUPAC) evaluations we assess the influence of
50 mainly inorganic rate constants and 10 photolysis rates
on tropospheric composition through the use of the GEOS-
Chem chemistry transport model.

We assess the impact on four standard metrics: an-
nual mean tropospheric ozone burden, surface ozone
and tropospheric OH concentrations, and tropospheric
methane lifetime. Uncertainty in the rate constants for

NO2+OH
M
−→HNO3 and O3+NO→NO2+O2 are the

two largest sources of uncertainty in these metrics. The ab-
solute magnitude of the change in the metrics is similar if
rate constants are increased or decreased by their σ values.
We investigate two methods of assessing these uncertainties,
addition in quadrature and a Monte Carlo approach, and con-
clude they give similar outcomes. Combining the uncertain-
ties across the 60 reactions gives overall uncertainties on the
annual mean tropospheric ozone burden, surface ozone and
tropospheric OH concentrations, and tropospheric methane

lifetime of 10, 11, 16 and 16 %, respectively. These are larger
than the spread between models in recent model intercompar-
isons. Remote regions such as the tropics, poles and upper
troposphere are most uncertain. This chemical uncertainty
is sufficiently large to suggest that rate constant uncertainty
should be considered alongside other processes when model
results disagree with measurement.

Calculations for the pre-industrial simulation allow a
tropospheric ozone radiative forcing to be calculated of
0.412± 0.062 W m−2. This uncertainty (13 %) is compara-
ble to the inter-model spread in ozone radiative forcing found
in previous model–model intercomparison studies where the
rate constants used in the models are all identical or very
similar. Thus, the uncertainty of tropospheric ozone radia-
tive forcing should expanded to include this additional source
of uncertainty. These rate constant uncertainties are signifi-
cant and suggest that refinement of supposedly well-known
chemical rate constants should be considered alongside other
improvements to enhance our understanding of atmospheric
processes.

1 Introduction

The concentration of gases and aerosols in the atmosphere
have changed over the last century due to human activity.
This has resulted in a change in climate (IPCC, 2013) and a
degradation in air quality (Dockery et al., 1993) with tropo-
spheric ozone (O3) and methane (CH4) playing a central role.
The response of these compounds to the changing emissions
is complex and non-linear (Lin et al., 1988). The hydroxyl
radical (OH) plays a central role in this chemistry, as it ini-
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tiates the destruction of many pollutants (notably CH4) and
thus determines their lifetime in the atmosphere. The domi-
nant source of OH is the photolysis of O3 in the presence of
water vapour. The oxidation of compounds such as CH4, car-
bon monoxide (CO) and other hydrocarbons can lead to the
production of O3 if sufficient oxides of nitrogen (NOx) are
present. Changes in the emissions of O3 precursors between
the pre-industrial (∼ 1850) and the present-day periods have
increased O3 concentrations and this has produced a radiative
forcing estimated to be 410± 65 mW m−2 (Stevenson et al.,
2013).

The rate constants of the reactions occurring in the at-
mosphere have been determined by a number of laboratory
studies which are synthesised by groups such as the In-
ternational Union of Pure and Applied Chemistry (IUPAC)
(Atkinson et al., 2004) and Jet Propulsion Laboratory (JPL)
(Burkholder et al., 2015) panels. These provide recommen-
dations for both rate constants and their associated uncertain-
ties. These reactions are typically expressed in an Arrhenius
form to represent the temperature dependence. More com-
plicated representations are needed for three-body reactions.
IUPAC and JPL provide similar but different representations
of the uncertainty in a rate constant. For IUPAC (Eq. 1), the
uncertainty in a rate constant is described as the uncertainty
in the log10 of the rate constant (1log10kT ) at a temperature
(T ), with the panel giving values for the log10 uncertainty
at 298 K (1log10k298 K) and the rate of increase in uncer-
tainty away from 298 K described by a 1E/R term. For JPL
(Eq. 1), the relative uncertainty in a rate constant (f (T )) is
described as the relative uncertainty at temperature of 298 K
(f (298)) together with a term (g) that expresses how quickly
the uncertainty increases away from 298 K (Eq. 2), leading
to temperature dependences which increase away from room
temperature (Fig. 1).

1log10kT =1log10k298 K+ 0.4343
1E

R

(
1
T
−

1
298K

)
(1)

f (T )= f (298K)exp
∣∣∣∣g(

1
T
−

1
298K

)∣∣∣∣ (2)

For the reactions studied, the uncertainty at 298 K typi-
cally ranges from 5 % for well-understood reactions to 30 %
for those which have significant uncertainties. Other reac-
tions can have larger uncertainties than quoted here. The in-
crease in uncertainty at temperatures away from 298 K can
range from 0 to over 40 %, giving some reactions a total un-
certainty of over 50 % in the cold upper troposphere.

Models of atmospheric composition (whether using pre-
scribed meteorology or calculating the meteorology, single
box or transport, etc.) use these recommended rate constants,
together with estimates of the meteorology, emissions, de-
position, photolysis, etc. of compounds to calculate the con-
centration of species in the atmosphere. These models are a
central tool for our understanding of atmospheric processes
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Figure 1. Example of the uncertainty on a reaction rate constant.
The relative uncertainty of the reaction O3+NO is plotted as a
function of temperature. The lowest uncertainty is at room temper-
ature (298 K) with exponentially increasing uncertainties occurring
as we diverge to higher and lower temperatures.

and for making policy choices to minimise climate change
and air pollution.

Although these models have been developed significantly
over the last decades, they have, in general, all used the same
basic chemical rate constants as evaluated by the IUPAC
or JPL panels. Little emphasis has been placed on under-
standing the uncertainty in predicted atmospheric composi-
tion caused by the uncertainty in these rate constants. The
focus has been to investigate the impacts of novel chemi-
cal reactions or understanding emissions, etc. (e.g. Sherwen
et al., 2016; Hartley and Prinn, 1993). Here though, we in-
vestigate the impact of this uncertainty on the composition
of the troposphere. We base our assessment on the uncertain-
ties in rate constants described by the JPL and IUPAC pan-
els (Burkholder et al., 2015; Atkinson et al., 2004) using the
GEOS-Chem model and evaluate a range of model diagnos-
tics for both the present-day and the pre-industrial periods.

2 Model simulations

GEOS-Chem (Bey et al., 2001) (http://www.geos-chem.org)
is an offline chemistry transport model. We use version 9-
2. For computational expediency, we use a horizontal res-
olution of 4◦ latitude by 5◦ longitude with 47 vertical hy-
brid pressure-sigma levels from the surface to 0.01 hPa.
The chemistry is solved within the troposphere with the
SMVGEAR solver (Jacobson and Turco, 1994). We use a
mass-based scheme for aerosol (Park et al., 2003) and thus
can not investigate the impact of the rate constant uncer-
tainty on aerosol number or size distribution. Stratospheric
chemistry is unchanged in all simulations and uses a lin-
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earised approach to the chemistry (McLinden et al., 2000;
Murray et al., 2012). Global anthropogenic emissions were
taken from the Emission Database for Global Atmospheric
Research (EDGAR) v3 for NOx , CO, VOCs and SOx . Re-
gional or source-specific inventories replaced EDGAR where
appropriate (EMEP, BRAVO, Streets, CAC, NEI05, RETRO
and AEIC; see the GEOS-Chem wiki for more details). Bio-
genic emissions (isoprene, monoterpenes, methyl butenol)
are taken from the MEGAN v2.1 emission inventory (Sin-
delarova et al., 2014). Biomass burning emissions were used
from the GFED3 monthly emission inventory (van der Werf
et al., 2010). NOx sources from lightning (Murray et al.,
2012) and soils (Hudman et al., 2012) were also included. As
in previous studies (Parrella et al., 2012; Sofen et al., 2011),
pre-industrial emissions are calculated by switching off an-
thropogenic emissions, reducing biomass burning emissions
to 10 % of their modern-day values and setting CH4 concen-
trations to a constant 700 ppbv (Parrella et al., 2012).

For both present-day and the pre-industrial simulations,
we run the model from 1 July 2005 to 1 July 2007 with
GEOS-5 meteorology. We used the first year to spin up the
composition of the troposphere. Metrics are derived from the
second year of simulation.

We follow the methodology of JPL (Burkholder et al.,
2015) for the representation of uncertainties in rate constants
converting IUPAC representation where necessary. For two-
body reactions, the uncertainty is given by two parameters.
f (298 K) describes the relative uncertainty at 298 K, and g
describes how the uncertainty increases as temperature di-
verges from 298 K, as shown in Eq. (2).

3 Reactions studied

We limit our study to the inorganic (Ox , HOx , NOx , CO,
CH4) reactions together with some key organic and sul-
fur reactions. Uncertainties in organic molecules degrada-
tion chemistry of the atmosphere makes a systematic assess-
ment of these uncertainties difficult (Goldstein and Galbally,
2007). Table 1 shows a list of reactions that are perturbed
and the uncertainties assumed. We use the uncertainty rec-
ommendations from the JPL panel if provided and the IU-
PAC panel otherwise. We investigate the impact of 50 in-
organic chemical reactions and 10 photolysis reactions (Ta-
ble 1). Uncertainties in photolysis rate constants are harder
to define than for the other reactions. We consider the ap-
propriate chemical uncertainty here as the uncertainty in the
absorption cross section and the quantum yield rather than
the uncertainty in the photon flux which we attribute to the
radiative transfer calculation. A full calculation of the chem-
ical uncertainty in a photolysis rate is complex, as it depends
upon the uncertainties at different wavelengths, the indepen-
dence of the cross section and quantum yield parameters and
the transfer of this information through the spectral bins used
for the laboratory studies and the photolysis calculations. In

order to simplify this calculation, we apply a 10 % uncer-
tainty to all photolysis rates. Although this is not ideal, it
does allow us to place an uncertainty in the photolysis rates
into the context of other uncertainties. An improved presen-
tation of the photolysis uncertainty should be included in fu-
ture work.

4 Single reaction perturbations

From each of these 60 reactions, we increase the reaction
rate by the 1σ temperature-dependent uncertainty given in
Table 1. To allow the model to spin up, we run the model for
2 years and take the second year of simulation for the calcu-
lation of four metrics: tropospheric O3 burden, mean surface
O3 mixing ratio, tropospheric mass-weighted mean OH num-
ber density and tropospheric mean CH4 lifetime. We subtract
the values of these metrics from the base value of the metric
(unchanged rate constants) and then take the absolute value
to remove cases where the value decreases on an increase in
the rate constant. Figure 2 shows the changes for all four met-
rics with Table 1 giving the values for the change in tropo-
spheric O3 burden. We express these values as a percentage
of the base case value.

It is evident that a relatively small number of reactions pro-
duce large uncertainties in the values of these metrics. The
one that offers the most uncertainty is the reaction between
NO2 and OH to product nitric acid, which leads to uncertain-
ties in the range of 6–11 % in the metrics investigated here.
This reaction is both highly uncertain (f (298 K)= 30 %)
and acts as a large global sink for NOx and HOx . The
O3+NO reaction to produce NO2 is central to the partition-
ing of NOx in the atmosphere. Thus, increasing its rate con-
stant reduces NO concentrations in the atmosphere (leading
to lower O3 concentrations) and increasing the concentration
of NO2 (which favours NO2 removal) which again reduces
O3 concentrations. Another significant reaction is that be-
tween CH4 and OH to produce CH3O2 radicals. The model
assumes a constant CH4 concentration so an increase in the
rate constant between CH4 and OH leads to an increased
source of radicals but does not lead to a commensurate drop
in the CH4 concentration. Thus, an increase in this rate con-
stant in the model is effectively the same as an increase in the
emission of CH4, which results in a wide range of impacts
such as increased CO concentrations, etc. Reactions after the
10th most significant reaction for all the metrics generates an
uncertainty of less than 1 %.

The relative importance of the different reactions does not
change much with the metric being investigated (see Fig. 2).
The rate constants of these top 10 reactions are not particu-
larly uncertain (other than for NO2+OH) compared to other
reactions, but they link important chemical cycles and have
a very large chemical flux flowing through them. Thus, rel-
atively small changes in their uncertainties will lead to large
changes in concentration.
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Table 1. Table of reactions studied. f (298) indicates the JPL or IUPAC panel uncertainty estimate at 298 K and g gives the rate at which
this uncertainty increases away from 298 K (see previous section). Reactions with 0 for the temperature dependence indicate there is zero
temperature dependency or not enough information to provide a temperature-varying uncertainty. The final column gives the fractional
increase in the ozone burden by increasing the rate constant to its 1σ value. Reactions with a ∗ are the 10 reactions used in the Monte Carlo
study.

Number Reaction f (298) g (K) 1σ O3 burden
change (%)

1∗ NO2+OH
M
−→HNO3 1.3 100 −6.20

2∗ O3+NO→NO2+O2 1.1 200 −3.61
3∗ HO2+NO→NO2+OH 1.15 20 3.09
4∗ OH+CH4→CH3O2+H2O 1.1 100 2.89
5∗ O3+HO2→OH+ 2O2 1.15 80 −2.39
6∗ O(1D)+N2→O+N2 1.1 20 1.82
7∗ O(1D)+H2O→OH+OH 1.08 20 −1.54

8 HO2+NO2
M
−→HNO4 1.06 400 −0.959

9 HNO3+OH→H2O+NO3 1.2 0 0.928
10∗ O3+NO2→NO3+O2 1.15 150 −0.803
11∗ O(1D)+O2→O+O2 1.1 10 0.745
12 CH3C(O)O2+NO→CH3O2+NO2+CO2 1.5 0 0.721
13∗ O3+OH→HO2+O2 1.1 50 −0.693
14 CH3O2+NO→CH2O+HO2+NO2 1.15 100 0.553
15 CH3OH+OH→HO2+CH2O 1.1 60 0.462
16 CH3C(O)OONO2→CH3C(O)OO+NO2 1.2 200 0.341

17 CH3C(O)O2+NO2
M
−→CH3C(O)OONO 1.2 50 −0.289

18 OH+H2→H2O+HO2 1.05 100 0.282
29 OH+H2O2→H2O+HO2 1.15 45 0.265
20 NO+NO3→ 2NO2 1.3 100 0.249
21 HO2+NO3→OH+NO2 1.5 0 0.248
22 CH3OOH+OH→CH3O2+H2O 1.4 150 −0.243
23 CH3SCH3+OH→SO2+CH3O2+CH2O 1.1 100 0.231
24 OH+HO2→H2O+O2 1.15 50 −0.215
25 CH3CH2OO+NO→CH3CHO+NO2+HO2 1.2 150 0.211
26 C2H6+OH→CH3CH2OO+H2O 1.07 50 0.201
27 O(1D)+H2→OH+H 1.15 50 0.198
28 HCOOH+OH→H2O+CO2+HO2 1.2 100 0.196
29 OH+OH→H2O+O3 1.25 50 0.195
30 CH3CHO+NO3→HNO3+CH3C(O)OO 1.3 300 0.193
31 HNO2+OH→H2O+NO2 1.5 200 0.178
32 CH3CHO+OH→CH3C(O)OO+CH2O+CO+HO2 1.05 20 0.174
33 CH3SCH3+NO3→SO2+HNO3+CH3OO+CH2O 1.1 150 0.172
34 CH3O2+CH3O2→CH3OH+CH2O+O2 1.2 100 0.170
35 HO2+HO2→H2O2 1.15 100 0.166
36 CH2O+OH→CO+HO2+H2O 1.15 50 0.156

37 NO+OH
M
−→HNO2 1.2 50 −0.151

38 SO2+OH
M
−→ SO4+HO2 1.1 100 0.151

39 NO2+NO3
M
−→N2O5 1.2 100 −0.151

40 HNO4+OH→H2O+NO2+O2 1.3 500 0.149

41 OH+OH
M
−→H2O2 1.5 100 −0.146

42 CO+OH→HO2+CO2 1.1 100 −0.144
43 NO3+NO3→ 2NO2+O2 1.5 500 −0.144
44 OH+NO3→HO2+NO2 1.5 0 −0.143
45 NO2+NO3→NO+NO2+O2 1.1 100 −0.134
46 HNO4→HO2+NO2 1.3 270 0.104
47 CH3O3+HO2→CH3OOH+O2 1.3 150 0.0350
48 CH2=C(CH3)CH=CH2+OH→HOCH2C(OO)(CH3)CH=CH2 1.07 100 −0.0323

Atmos. Chem. Phys., 17, 14333–14352, 2017 www.atmos-chem-phys.net/17/14333/2017/
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Table 1. Continued.

Number Reaction f (298) g (K) 1σ O3 burden
change (%)

49 NO3+CH2O→HNO3+HO2+CO 1.3 0 −0.0145
50 C4H10+OH→ 2H2O+C4H9 1.06 100 0.0132

51 hv+NO2→NO+O(3P) 1.1 0 2.66
52 hv+O3→O2+O(1D) 1.1 0 −1.97
53 hv+HNO3→OH+NO2 1.1 0 0.559
54 hv+CH2O→CO+HO2+HO2 1.1 0 0.338
55 hv+HNO4→HO2+NO2 1.1 0 0.262
56 hv+N2O5→NO3+NO2 1.1 0 0.223
57 hv+NO3→NO2+O(3P) 1.1 0 0.222
58 hv+HNO4→OH+NO3 1.1 0 0.200
59 hv+CH3CHO→CH3OO+HO2+CO 1.1 0 0.199
60 hv+CH3CHO→CH4+CO 1.1 0 0.196
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Figure 2. Uncertainties in all metrics: fractional uncertainties of (a) O3 tropospheric burden, (b) OH tropospheric burden, (c) O3 surface
concentration and (d) CH4 lifetime. Each bar labelled with a reaction represents a run with a 1σ increase in the rate constant. “Other”
represents the addition in quadrature of the reactions that were not the top 20 most influential. “Top 10” represents the addition in quadrature
of the 10 most important reactions, and “Monte Carlo top 10” represents the standard deviation of the Monte Carlo ensemble. “Total”
represents the addition in quadrature of all the simulations.
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Figure 3. Uncertainty linearity: a comparison of absolute uncertainties in O3 and OH tropospheric burdens for both positive and negative
changes to the rate constants. These reactions show a similar magnitude of tropospheric species concentration change if the rate is set to its
lower or higher sigma level of uncertainty.

It is just as easy to decrease the rate constants as it is to in-
crease them. Figure 3 shows that the absolute uncertainties in
tropospheric O3 burden and OH global mean concentrations
vary for the top 10 reactions for both increasing and decreas-
ing the rate constant. Although there are some differences
between the impact of increasing or decreasing the rate con-
stant, there is a degree of consistency between the two, and
so for simplicity reasons we only consider further the impact
of increasing the rate constants.

Given the uncertainties for the individual reactions calcu-
lated here, the next question is how these uncertainties can be
combined together to generate a single uncertainty from rate
constants’ uncertainty on the composition of the atmosphere.

5 Addition of uncertainties

If these perturbations are independent (uncertainties in one
rate constant are not related to uncertainties in another) and
the model approximately linear, the total rate constant un-
certainty can be found by finding the root of the sum of the
individual uncertainties squared (addition in quadrature) as
shown in Eq. (3).

σ 2
total =6σ

2
reaction (3)

It is hard to assess the independence of the rate constants.
Given the nature of the laboratory experiments used to deter-
mine them, it is likely that there is some overlap in assump-
tions. It would be extremely difficult to diagnose this for all
60 reactions, and so we ignore this in further work.

Atmospheric chemistry is though non-linear (Lin et al.,
1988). A doubling of a change to the model does not nec-
essarily lead to a doubling of the model response. Thus, is it
not obvious how uncertainties from the individual rate con-

stant perturbations should be combined. To investigate this,
we perform a Monte Carlo analysis of the model. We take 10
of the most significant reactions determined earlier (shown
by the ∗ in Table 1) and generate 10 normally distributed ran-
dom numbers (µ= 0, σ = 1), one for each reaction. For each
of the 10 rate constants, we add on the calculated 1σ uncer-
tainty multiplied by the random number and run the model.
We repeat this 50 times to produce a Monte Carlo ensem-
ble from which we can calculate the four metrics described
earlier.

If the model is linear, the metrics calculated from each
member of the Monte Carlo ensemble should be (to some
level) the same as the linear addition of the individual rate
constant perturbations weighted by the Monte Carlo random
numbers. Figure 4 shows the perturbation in the value of the
metric calculated for each ensemble member against the cal-
culated value of the metric using the single reaction values.
The model shows a strong linear relationship between the
metrics examined (intercepts of 0.21± 0.9 % and gradients
of 0.80± 0.04); thus, if the errors are uncorrelated, we can,
at least to a first approximation, add the individual 1σ pertur-
bations together in quadrature using Eq. (3) to calculate the
overall uncertainty in the model metrics. From these simula-
tions, we estimate the quadrature approach leads to an over-
estimate of the 1σ uncertainty on the order of 10 %.

We thus conclude that the adding together of the individual
perturbations in quadrature gives a good approximation to
the uncertainty calculated by the Monte Carlo method for
significantly less computational burden.

Atmos. Chem. Phys., 17, 14333–14352, 2017 www.atmos-chem-phys.net/17/14333/2017/



B. Newsome and M. Evans: Rate constant uncertainty on tropospheric composition 14339

20 10 0 10 20
Pertubation in metric (%)

20

10

0

10

20

E
st

im
a
te

d
 p

e
rt

u
b
a
ti

o
n
 (

%
)

O3  tropospheric mean

y = 0.914x + 0.044
 R2  = 0.982(a)

20 10 0 10 20
Pertubation in metric (%)

20

10

0

10

20

E
st

im
a
te

d
 p

e
rt

u
b
a
ti

o
n
 (

%
)

O3  surface mean

y = 0.871x + 0.104
 R2  = 0.969(c)

30 20 10 0 10 20 30
Pertubation in metric (%)

30

20

10

0

10

20

30

E
st

im
a
te

d
 p

e
rt

u
b
a
ti

o
n
 (

%
)

OH tropospheric mean

y = 0.903x + 0.574
 R2  = 0.973(b)

40 30 20 10 0 10 20 30 40
Pertubation in metric (%)

40

30

20

10

0

10

20

30

40

E
st

im
a
te

d
 p

e
rt

u
b
a
ti

o
n
 (

%
)

CH4  lifetime

y = 0.846x + 1.140
 R2  = 0.970(d)

Figure 4. Monte Carlo simulations to understand the models’ linearity: the x-axis values show the percentage change in the metric value
of an ensemble member compared to the simulation with no perturbations. The y-axis values show the expected percentage change of the
metric based on a linear addition of the individual 1σ perturbation experiments weighted by the Monte Carlo perturbation values. Metrics
investigated are (a) O3 tropospheric burden, (b) OH tropospheric burden, (c) O3 mean surface concentration and (d) CH4 lifetime. We show
the result of 50 Monte Carlo simulations. Each simulation perturbs 10 of the most important reactions (∗ reactions in Table 1) 1σ by normally
distributed random numbers.

6 Impacts on the present-day atmosphere metrics

We show in Fig. 2 the absolute percentage change in global
annual mean O3 burden, surface O3, tropospheric average
OH and CH4 tropospheric lifetime from increasing each of
the reaction rate constants in Table 1 in turn by their 1σ
value. They are ordered by the magnitude of the perturba-
tion, and for clarity we only show the top 20, combining the
remaining 40 in quadrature into the “Other” category. The
fractional change in tropospheric O3 burden for all of the per-
turbations is given in Table 1. We show the results of combin-
ing all of these reactions in quadrature (“Total (sum)”), the
result of combining the top 10 in quadrature (“Top 10”) and

the standard deviation from the 50 Monte Carlo simulations
(“Monte Carlo top 10”). The relative closeness (∼ 10 %) of
the value calculated from the “Top 10” and the “Monte Carlo
top 10” shows that the addition in quadrature approach pro-
vides a useful approximation to the Monte Carlo methodol-
ogy with significantly less computational burden.

The top 10 reactions contribute over 90 % of the uncer-
tainty for all metrics with the overall uncertainty for the an-
nual mean tropospheric ozone burden, surface ozone and tro-
pospheric OH concentrations, and tropospheric methane life-
time calculated to be 10, 11, 16 and 16 %, respectively. These
uncertainties can be compared to the inter-model spreads
found from model intercomparison exercises. The multi-
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Figure 5. Spatial distribution of uncertainties: fractional uncertainties calculated for O3, OH and CO concentrations for the tropospheric
column (a), the zonal mean (b) and the surface (c) from adding together the individual reaction uncertainties from the 60 reactions studied
in quadrature.

model standard deviations in the ozone burden, tropospheric
OH concentration and troposphere methane lifetime were
found to be 7, 10 and 10 % in the Atmospheric Chemistry and
Climate Model Intercomparison Project (ACCMIP) studies
(Young et al., 2013; Voulgarakis et al., 2013). Thus, we find
that the chemical rate constant uncertainty is larger than the
multi-model spread, which is usually used to give some sense
of our uncertainty in our understanding of a quantity. As the
models used in these intercomparisons typically use the same
rate constants, this rate constant uncertainty is not included
in the inter-model spread, and thus the inter-model spread
should be considered a lower estimate.

7 Spatial distribution of uncertainty

Figure 5 shows the spatial distribution of the total uncer-
tainty in the annual mean O3, OH and CO concentrations
for the tropospheric column, the zonal mean and at the sur-
face from the 60 reactions. Similar plots for a large num-
ber of other model species are shown in Figs. 6–11. There

is a significant degree of inhomogeneity in these uncertain-
ties which respond to a range of factors. The uncertainties in
the rate constants are largest in the upper troposphere where
the temperatures are coldest and thus furthest from the 298 K
base temperature used to calculate the uncertainties. How-
ever, these uncertainties can only manifest if chemistry is the
large source or sink for a species in that region. O3 uncer-
tainties are relatively low in the upper troposphere, as it has
a large stratospheric source in this region which we have not
perturbed (see Sect. 2). OH uncertainties on the other hand
are high (30 %) in the upper troposphere due to the low tem-
peratures. Over continental regions, the concentration of CO
is not particularly uncertain as the emissions and transport
control the concentration. However, over the ocean where
emissions are small, the chemistry becomes more important
and so uncertainty increases. Uncertainties in CO are largest
in the Southern Hemisphere where direct emission is lower
and chemical production from CH4 and other hydrocarbons
is significant. In general, uncertainties are largest over re-
mote regions far from recent emissions, especially if they
are particularly cold or hot compared to room temperature.
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Figure 6. Primary VOCs: total 1σ uncertainty in the concentrations of C2H6, C3H8, PRPE (≥C3 alkenes), ALK4 (≥C4 alkanes) and ISOP
(isoprene) from the addition in quadrature of the individual reaction uncertainties. “Column” covers the tropospheric column.
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Figure 7. Other organics: total 1σ uncertainty in the concentrations of CH2O, MP (methyl hydroperoxide), ALD2 (acetaldehyde), GLYC
(glycolaldehyde), MACR (methacrolein) and MKV (methyl vinyl ketone) from the addition in quadrature of the individual reaction uncer-
tainties. “Column” covers the tropospheric column.
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Figure 8. NOx : total 1σ uncertainty in the concentrations of NO, NO2, NO3, N2O5, HNO2 and HNO4 from the addition in quadrature of
the individual reaction uncertainties. “Column” covers the tropospheric column.
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Figure 9. NOy : total 1σ uncertainty in the concentrations of HNO3, PAN (peroxyacetyl nitrate), PPN (peroxymethacryloyl nitrate), PMN
(peroxymethacryloyl nitrate) and NIT (inorganic aerosol nitrates) from the addition in quadrature of the individual reaction uncertainties.
“Column” covers the tropospheric column.
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Figure 10. Sulfur and aerosols: total 1σ uncertainty in the concentrations of SO2, SO2−
4 , DMS (dimethyl sulfide) and NH+4 from the addition

in quadrature of the individual reaction uncertainties. “Column” covers the tropospheric column.

Thus, surface OH values are more uncertain in the cold re-
mote Southern Ocean than they are in the tropics. Surface
O3 values are uncertain in the warm tropics where intense
sunlight and high water vapour concentrations lead to a large
chemical flux through O3.

Across the full set of simulated compounds (Figs. 6–11),
there are even larger uncertainties. For primary emitted hy-
drocarbons, large uncertainties occur in remote, photochem-
ically active locations such as the tropics where shorter-lived
hydrocarbons may be many OH lifetimes away from sources.
Uncertainties in the OH concentrations thus multiply in these

regions, leading to uncertainties of up to 60 % for ≥C4 alka-
nes, for example. Secondary products such as H2O2 and
CH3OOH also show significant uncertainties of up to 56 %
in some locations.

NOx concentrations close to emission sources are domi-
nated by the emission and transport and thus are not very
sensitive to chemical uncertainty (Fig. 8). However, away
from these emissions, uncertainties can build up. Uncertain-
ties in the NOx concentrations at the poles are up to a fac-
tor of 40 %. Uncertainties in PAN concentrations (Fig. 9) are
in general high (> 20 %) in most locations (∼ 50 % over the

www.atmos-chem-phys.net/17/14333/2017/ Atmos. Chem. Phys., 17, 14333–14352, 2017
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Figure 11. Inorganics: total 1σ uncertainty in the concentrations of H2O2, O3, OH, CO and HO2 from the addition in quadrature of the
individual reaction uncertainties. “Column” covers the tropospheric column.
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Figure 12. Impact on model/measurement comparisons: modelled (red) and measured (black) annual cycle in monthly mean O3, CO, C2H6,
C3H8, ALK4 (≥ C4 alkanes) and NO2 mixing ratios at Cabo Verde (Carpenter et al., 2011). Shaded area represents the 1σ uncertainty from
the 60 reactions added together in quadrature.

remote ocean), reflecting the complexity of the chemistry in-
volving uncertainties in both ROx and NOx concentrations.
Uncertainties in nitric acid (the dominant NOx sink) concen-
trations are smaller however (∼ 5 %), reflecting the mass bal-
ance constraint of emissions of NOx having to balance NOy
sinks. Large variability in nitric acid concentrations in the
Southern Ocean reflects non-linearities in aerosol thermody-
namics of HNO3 /NO−3 partitioning.

SO2 concentrations show the largest uncertainties in the
tropical upper troposphere where OH is also highly uncer-
tain. However, SO2−

4 shows much smaller uncertainty, again
reflecting mass conservation constraints. NH+4 concentra-
tions show little sensitivity to the rate constants analysed.
Overall, this suggests that aerosol mass is not particularly
sensitive to the gas-phase chemistry examined here.

Overall, we see a complex pattern of uncertainty with ge-
ographically highly variable uncertainty.

8 Implications for model-measurement comparisons

Comparisons between the predictions made by models and
observations underpin the assessment of model fidelity. De-
viations between the model and measurements are often
used to diagnose model failings. Attributing these differ-
ences to uncertainties in the emissions is particularly pop-
ular (see, for example, Hartley and Prinn, 1993; Huang et al.,
2008). Figure 12 shows observed monthly mean and stan-
dard deviations for CO, O3, C2H6, C3H8, C4H10 and NO2
from the World Meteorological Organisation’s Global At-
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Figure 13. Ozone site comparison: modelled (red) and measured (black) concentrations of ozone at a range of sites. The pink shaded area
shows the 1σ uncertainty from the chemical kinetics. The error bars represent the 1σ uncertainty of these observations. Monthly mean
observational data were obtained from Sofen et al. (2016), using multiple years between 2004 and 2010 to create more complete datasets.

mosphere Watch Cape Verde Atmospheric Observatory (Car-
penter et al., 2011), overlaid with the base model simulation
and the chemical uncertainty (1σ ) calculated from the addi-
tion in quadrature of the 60 1σ simulations. We chose this
location as it is far from recent emissions and thus should
show large uncertainties for primary emitted species.

Consistent with Figs. 6–11, the uncertainty in the model
calculation ranges from 5 to 30 % depending upon the
species. For some of the species (CO, O3, C2H6, C4H10),
much of the difference between the model and the measure-
ments lies within the model 1σ uncertainty. For others, such
as C3H8 or NO2, the differences are harder to explain and
other processes (emissions, transport, unknown chemistry,
etc.) would need to be explored.

Figure 13 shows a comparison of the O3 measured at a
number of locations around the world (Sofen et al., 2016) and
the model. The shaded areas show the 1σ uncertainty due the
kinetics for the model and the 1σ standard deviation in the

measurements. The uncertainty in the model varies between
1 and 5 ppbv depending on location. In some locations, the
model uncertainty falls within the measured values. In others,
there are significant deviations.

Figures 6–11 show significant changes in uncertainty
with changes in the vertical due to increasing uncertainty
with reducing temperature. Figure 14 shows a selection of
ozonesonde observations from the World Ozone and Ultra-
violet Data Centre (WOUDC, 2017) compared to equivalent
modelled concentrations and uncertainties. Observations are
derived from the surface into the middle troposphere as the
temperature drops. The uncertainty thus maximises at around
10 km. Above this, much of the ozone in the model is pro-
duced in the stratosphere, which is unperturbed in these sim-
ulations. Above this height, the uncertainty in the ozone due
to tropospheric chemistry uncertainty reduces.

These comparisons with observations highlight the com-
plexity of attributing model failure to a particular cause. For
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Figure 14. Ozonesondes: comparisons between the variability of annual ozonesonde measurements and model data with uncertainties. The
black line shows the annual mean observation data and the shaded gray area shows the range of data. The red line shows the model data and
the pink shaded line shows the chemical 1σ uncertainty. Observations are obtained from WOUDC (2017).

some locations and some species, the chemical uncertainty
can be large. For the same species, in a different location, the
uncertainties may be much smaller. Inversion studies which
attempt to attribute model failure to a single cause (for exam-
ple, uncertainties in emissions) need to have a detailed under-
standing of the magnitude and geographical distribution of
the other model errors. We show here that they vary between
different species and can be large and highly spatially vary-
ing. This should be considered when model inversion studies
are undertaken.

9 Ozone radiative forcing

We repeat the 60 1σ simulations described above with pre-
industrial (notionally, the year 1850) emissions (see Sect. 2)
to allow us to calculate an uncertainty in the radiative forc-
ing of O3. For each reaction, we calculate the difference in
the annual mean tropospheric column O3 (Dobson units) be-

tween the present-day and pre-industrial simulations with the
rate constant increased to its 1σ value. Then, using a lin-
ear relationship between change in O3 column and radia-
tive forcing (Stevenson et al., 2013; Young et al., 2013) of
42 mW m−2 DU−1, we calculate a radiative forcing associ-
ated with the uncertainty associated with each reaction. We
estimate an overall uncertainty in the tropospheric O3 ra-
diative forcing in the same way as the other metrics, by
adding them together in quadrature. In our base simula-
tions, we calculated the tropospheric O3 radiative forcing
to be 412 mW m−2, consistent with previous studies (410±
65 mW m−2) (Stevenson et al., 2013). Our estimate of the
uncertainty in the O3 radiative forcing from rate constant un-
certainty is 56 mW m−2 (15 %), with reaction specific detail
shown in Fig. 15. Again, the same set of reactions contribute
the largest share to the uncertainty in the radiative forcing as
in the uncertainty in present-day O3 burden.

www.atmos-chem-phys.net/17/14333/2017/ Atmos. Chem. Phys., 17, 14333–14352, 2017



14350 B. Newsome and M. Evans: Rate constant uncertainty on tropospheric composition

N
O

2
 +

 O
H

 +
 m

O
3
 +

 N
O

H
O

2
 +

 N
O

O
H

 +
 C

H
4

h
v
 +

 N
O

2

O
3
 +

 H
O

2

H
O

2
 +

 N
O

2
 +

 m

O
(1

D
) 

+
 N

2

O
3
 +

 N
O

2

C
2
H

3
N

O
5

H
N

O
3
 +

 O
H

C
H

3
O

2
 +

 N
O

h
v
 +

 O
3

O
(1

D
) 

+
 O

2

h
v
 +

 H
N

O
3

C
H

3
C

(O
)O

O
 +

 N
O

h
v
 +

 C
H

2
O

O
(1

D
) 

+
 H

2
O

h
v
 +

 H
N

O
4

N
O

 +
 N

O
3

O
th

e
r

T
o
ta

l 
(s

u
m

)

A
C

C
M

IP

0

2

4

6

8

10

12

14

16

18

Fr
a
ct

io
n
a
l 
u
n
ce

rt
a
in

ty
 (

%
)

Figure 15. Uncertainties in O3 radiative forcing: absolute fractional uncertainty in tropospheric O3 radiative forcing between the pre-
industrial and present-day simulations due to rate constant uncertainty. Shown on the left are the 20 most important reactions. “Other”
shows the addition in quadrature of the remaining 40 reactions. “Total (sum)” indicates the total fractional uncertainty calculated by adding
together the individual uncertainties in quadrature. “ACCMIP” indicates the inter-model spread found from the ACCMIP (Young et al., 2013)
study.

This uncertainty estimate of 15 % can be compared to the
17 % spread in the O3 radiative forcing calculated between
climate models in the recent ACCMIP (Young et al., 2013)
intercomparison (shown in Fig. 15). This spread is usually
used as the uncertainty in our understanding of O3 radiative
forcing. However, as all of these models use the same JPL or
IUPAC recommended rate constants, the inter-model spread
does not include the rate constant uncertainty explored here.
Given that the rate constant uncertainty is comparable to the
inter-model spread, it should be included in future assess-
ments of the uncertainty in O3 radiative forcing. A naive
addition in quadrature approach would suggest that the un-
certainty on tropospheric O3 radiative forcing should be in-
creased by roughly 30 % to account for this.

10 Conclusions

We have shown that the uncertainty in the inorganic rate con-
stants leads to significant (> 10 %) uncertainties in the con-
centration of policy-relevant metrics of troposphere compo-
sition (O3 burden, surface O3, global mean OH, tropospheric
CH4 lifetime, O3 radiative forcing) with significantly higher
uncertainty in other compounds. This uncertainty may have
implications for climate policy through an underestimate of
the uncertainty on O3 radiative forcing or significant un-

certainties on the CH4 lifetime. This also has implication
for how model-measurement disagreements are interpreted.
Similar conclusions have been found for regional air quality
focussed models (Yang et al., 2000).

The simulations performed here likely provide a lower
limit to the chemical uncertainty. We do not explore the im-
pact in uncertainties in organic chemistry (beyond that from
the initiation of hydrocarbon oxidation) or in organic mech-
anisms; we do not included tropospheric bromine, iodine or
chlorine chemistry in our analysis or the parameters that de-
fine heterogeneous reaction rates. We have neither investi-
gated the impact of rate constant uncertainty on the compo-
sition of the stratosphere nor mesosphere, or how this may
propagate through to the troposphere. There are also uncer-
tainties in the Henry’s law constants used for wet and dry
parameterisations, etc. It seems likely therefore that the true
chemical uncertainty in the composition of the atmosphere is
significantly higher than that found here.

Although it may be challenging, reducing these uncer-
tainties would provide significant benefits. Targeting the top
10 reactions identified here (Fig. 2a) would significantly re-
duce the overall chemical uncertainties. Despite the fact that
the rate constants for these reactions may appear “decided”,
they provide the basis for determining the composition of the
atmosphere. Given the difficulties in reducing the uncertain-
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ties in other areas of the climate system (we will never know
the pre-industrial emissions well, etc.), a redoubled effort to
reduce rate constant uncertainty appears to be a relatively
straightforward methodology to improve our understanding
of atmospheric composition.
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