Articles | Volume 17, issue 19
Atmos. Chem. Phys., 17, 11849–11859, 2017
https://doi.org/10.5194/acp-17-11849-2017
Atmos. Chem. Phys., 17, 11849–11859, 2017
https://doi.org/10.5194/acp-17-11849-2017
Research article
06 Oct 2017
Research article | 06 Oct 2017

Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

Guocheng Wang et al.

Related authors

On the magnitude and uncertainties of global and regional soil organic carbon: A comparative analysis using multiple estimates
Ziqi Lin, Yongjiu Dai, Umakant Mishra, Guocheng Wang, Wei Shangguan, Wen Zhang, and Zhangcai Qin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-232,https://doi.org/10.5194/essd-2022-232, 2022
Preprint under review for ESSD
Short summary
A comparative study of anthropogenic CH4 emissions over China based on the ensembles of bottom-up inventories
Xiaohui Lin, Wen Zhang, Monica Crippa, Shushi Peng, Pengfei Han, Ning Zeng, Lijun Yu, and Guocheng Wang
Earth Syst. Sci. Data, 13, 1073–1088, https://doi.org/10.5194/essd-13-1073-2021,https://doi.org/10.5194/essd-13-1073-2021, 2021
Short summary
Simulating the spatiotemporal variations in aboveground biomass in Inner Mongolian grasslands under environmental changes
Guocheng Wang, Zhongkui Luo, Yao Huang, Wenjuan Sun, Yurong Wei, Liujun Xiao, Xi Deng, Jinhuan Zhu, Tingting Li, and Wen Zhang
Atmos. Chem. Phys., 21, 3059–3071, https://doi.org/10.5194/acp-21-3059-2021,https://doi.org/10.5194/acp-21-3059-2021, 2021
Short summary
Evaluation of CH4MODwetland and Terrestrial Ecosystem Model (TEM) used to estimate global CH4 emissions from natural wetlands
Tingting Li, Yanyu Lu, Lingfei Yu, Wenjuan Sun, Qing Zhang, Wen Zhang, Guocheng Wang, Zhangcai Qin, Lijun Yu, Hailing Li, and Ran Zhang
Geosci. Model Dev., 13, 3769–3788, https://doi.org/10.5194/gmd-13-3769-2020,https://doi.org/10.5194/gmd-13-3769-2020, 2020
Short summary
Impacts of climate and reclamation on temporal variations in CH4 emissions from different wetlands in China: from 1950 to 2010
T. Li, W. Zhang, Q. Zhang, Y. Lu, G. Wang, Z. Niu, M. Raivonen, and T. Vesala
Biogeosciences, 12, 6853–6868, https://doi.org/10.5194/bg-12-6853-2015,https://doi.org/10.5194/bg-12-6853-2015, 2015
Short summary

Related subject area

Subject: Biosphere Interactions | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Net ecosystem exchange (NEE) estimates 2006–2019 over Europe from a pre-operational ensemble-inversion system
Saqr Munassar, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, Michał Gałkowski, Sophia Walther, and Christoph Gerbig
Atmos. Chem. Phys., 22, 7875–7892, https://doi.org/10.5194/acp-22-7875-2022,https://doi.org/10.5194/acp-22-7875-2022, 2022
Short summary
Interpreting machine learning prediction of fire emissions and comparison with FireMIP process-based models
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022,https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Distinguishing the impacts of natural and anthropogenic aerosols on global gross primary productivity through diffuse fertilization effect
Hao Zhou, Xu Yue, Yadong Lei, Chenguang Tian, Jun Zhu, Yimian Ma, Yang Cao, Xixi Yin, and Zhiding Zhang
Atmos. Chem. Phys., 22, 693–709, https://doi.org/10.5194/acp-22-693-2022,https://doi.org/10.5194/acp-22-693-2022, 2022
Short summary
Was Australia a sink or source of CO2 in 2015? Data assimilation using OCO-2 satellite measurements
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 21, 17453–17494, https://doi.org/10.5194/acp-21-17453-2021,https://doi.org/10.5194/acp-21-17453-2021, 2021
Short summary
CO2-equivalence metrics for surface albedo change based on the radiative forcing concept: a critical review
Ryan M. Bright and Marianne T. Lund
Atmos. Chem. Phys., 21, 9887–9907, https://doi.org/10.5194/acp-21-9887-2021,https://doi.org/10.5194/acp-21-9887-2021, 2021
Short summary

Cited articles

Amato, M. and Ladd, J.: Decomposition of 14C-labelled glucose and legume material in soils: properties influencing the accumulation of organic residue C and microbial biomass C, Soil Biol. Biochem., 24, 455–464, 1992.
Baudron, F., Jaleta, M., Okitoi, O., and Tegegn, A.: Conservation agriculture in African mixed crop-livestock systems: expanding the niche, Agr. Ecosyst. Environ., 187, 171–182, https://doi.org/10.1016/j.agee.2013.08.020, 2014.
Baudron, F., Delmotte, S., Corbeels, M., Herrera, J. M., and Tittonell, P.: Multi-scale trade-off analysis of cereal residue use for livestock feeding vs. soil mulching in the Mid-Zambezi Valley, Zimbabwe, Agr. Syst., 134, 97–106, https://doi.org/10.1016/j.agsy.2014.03.002, 2015.
Bhattacharyya, T., Pal, D. K., Deshmukh, A. S., Deshmukh, R. R., Ray, S. K., Chandran, P., Mandal, C., Telpande, B., Nimje, A. M., and Tiwary, P.: Evaluation of RothC model using four long term fertilizer experiments in black soils, India, Agr. Ecosyst. Environ., 144, 222–234, https://doi.org/10.1016/j.agee.2011.07.021, 2011.
Bond-Lamberty, B. and Thomson, A.: Temperature-associated increases in the global soil respiration record, Nature, 464, 579–582, 2010.
Download
Short summary
Cropland soil carbon sequestration contribute to not only climate change mitigation but also to sustainable agricultural production. This paper investigates soil carbon dynamics across the global main cereal cropping systems at a fine spatial resolution, using a modeling approach based on state-of-the-art databases of soil and climate. The key environmental controls on soil carbon changes were also identified.
Altmetrics
Final-revised paper
Preprint