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Abstract. Changes in the soil organic carbon (SOC) stock
are determined by the balance between the carbon input from
organic materials and the output from the decomposition of
soil C. The fate of SOC in cropland soils plays a significant
role in both sustainable agricultural production and climate
change mitigation. The spatiotemporal changes of soil or-
ganic carbon in croplands in response to different carbon (C)
input management and environmental conditions across the
main global cereal systems were studied using a modeling
approach. We also identified the key variables that drive SOC
changes at a high spatial resolution (0.1◦× 0.1◦) and over a
long timescale (54 years from 1961 to 2014). A widely used
soil C turnover model (RothC) and state-of-the-art databases
of soil and climate variables were used in the present study.
The model simulations suggested that, on a global average,
the cropland SOC density increased at annual rates of 0.22,
0.45 and 0.69 Mg C ha−1 yr−1 under crop residue retention
rates of 30, 60 and 90 %, respectively. Increasing the quan-
tity of C input could enhance soil C sequestration or reduce
the rate of soil C loss, depending largely on the local soil and
climate conditions. Spatially, under a specific crop residue re-
tention rate, relatively higher soil C sinks were found across
the central parts of the USA, western Europe, and the north-
ern regions of China. Relatively smaller soil C sinks oc-
curred in the high-latitude regions of both the Northern and
Southern hemispheres, and SOC decreased across the equa-
torial zones of Asia, Africa and America. We found that SOC
change was significantly influenced by the crop residue re-

tention rate (linearly positive) and the edaphic variable of ini-
tial SOC content (linearly negative). Temperature had weak
negative effects, and precipitation had significantly negative
impacts on SOC changes. The results can help guide carbon
input management practices to effectively mitigate climate
change through soil C sequestration in croplands on a global
scale.

1 Introduction

On a global scale, the soil is the largest terrestrial carbon (C)
pool, and it stores approximately three times the quantity of
C that is in the atmosphere. Consequently, a small variation
in soil carbon stock can lead to substantial changes in at-
mospheric carbon dioxide (CO2) concentrations (Schlesinger
and Andrews, 2000; Scharlemann et al., 2014). Soil organic
carbon (SOC) stored in croplands constitutes approximately
10 % of the global soil carbon stock (Jobbagy and Jackson,
2000), and cultivation generally leads to marked changes in
SOC by influencing the processes regarding soil C produc-
tion and decomposition (Luo et al., 2013; Wang et al., 2016).
Changes in cropland SOC are regulated by complex inter-
actions between the local soil environmental and climatic
conditions as well as the management regimes (Brady and
Weil, 2008). Moreover, continuity in the soil C monitoring
data over meaningfully large scales of both time and space is
lacking. Consequently, the ability to characterize the SOC
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dynamics on a fine spatiotemporal resolution over a large
scale is substantially hindered.

Cropland SOC is a balance of carbon inputs (mainly de-
pendent on biomass productivity that is controlled by the cli-
mate and management conditions) and outputs (strongly reg-
ulated by climatic conditions). Since the start of the 1960s,
the “green revolution”, which aims to provide more food to
feed the increasing population, has been widely launched
across the global agricultural systems (Evenson and Gollin,
2003). During this period, numerous efforts regarding crop
variety improvement, and the applications of irrigation and
nitrogen fertilization have been taken to enhance the global
crop production (Fischer and Edmeades, 2010; Evenson and
Gollin, 2003). As a result, the global crop production tripled
from 1961 to 2010, which is mostly due to greater yields per
unit area (Zeng et al., 2014). Increases in crop production
provide more carbon inputs (e.g., organic matter from crop
roots and residues) into soils, thereby substantially affecting
the SOC sequestration (Wang et al., 2016). However, the de-
grees of these impacts at fine spatiotemporal resolutions on
a global scale are still unclear and have seldom been compre-
hensively studied.

Over the past several decades, a number of agricultural
system models have been developed and used to reproduce
the dynamic processes, including carbon flows, that occur
between the agroecosystems and the atmosphere (Li et al.,
1994; Parton et al., 1994; Keating et al., 2003; Huang et al.,
2009). These models have been reported to be able to cap-
ture the soil C changes under different environmental and
management conditions, thereby providing an opportunity
for quantifying the soil C dynamics at larger spatial and
temporal scales. Based on the process-based models, ef-
forts have already been taken to quantify the soil C dynam-
ics in croplands at the national and continental scales. For
example, using the CENTURY model, Ogle et al. (2010)
and Lugato et al. (2014) estimated that the average soil
C density increased under improved management at rates
of 1.3 MgCha−1 yr−1 from 1990 to 2000 in the USA, and
0.12 MgCha−1 yr−1 from 2013 to 2050 in Europe. Using an-
other biogeophysical model (i.e., Agro-C), Yu et al. (2012)
quantified that China’s cropland soils sequestered approxi-
mately 0.20 MgCha−1 annually from 1980 to 2009. Using
the same model, however, Wang et al. (2013) found that the
average soil C annually decreased by 0.20 MgCha−1 from
1960 to 2010 in the Australian wheatbelt. The large dispar-
ities in the signs and the magnitudes of estimated soil C
changes could be attributed to the different local soil and cli-
mate conditions and various agricultural management prac-
tices. Moreover, the differences in the regional model input
data obtained from different sources and simulating proce-
dures, such as model configurations and parameterizations in
different studies with different models, can also bias the re-
gional simulation results, thereby hampering the ability for
a comprehensive and robust evaluation of the soil C dynam-
ics in croplands on a global scale.

Currently, most existing process-based models require
many detailed parameters for the model inputs, which are
not readily obtainable at a large scale. As one of the most
classic and widely used soil C turnover models, the RothC
model (Jenkinson et al., 1990), however, requires only a few
easily obtainable parameters and input data. The model has
been widely and frequently adopted to simulate the soil C
changes under different management treatments and soil and
climate conditions across the world’s cropping systems (Fal-
loon and Smith, 2002; Guo et al., 2007; Yang et al., 2003;
Bhattacharyya et al., 2011; Skjemstad et al., 2004; Smith
et al., 2005). More recently, by adopting the model’s original
default parameters, the RothC model has been tested against
the measurements obtained from 16 long-term experimen-
tal sites across the global croplands and showed a generally
good performance in representing the SOC dynamics under
different treatments at different sites (Wang et al., 2016).

In this study, we simulated the spatiotemporal soil C dy-
namics across the main global cereal (i.e., wheat, maize and
rice) cropping systems, using the RothC model and state-of-
the-art databases of soil and climate. The soil C revolutions
were simulated under different scenarios of C inputs (calcu-
lated from crop residues, roots and manure) on a monthly
time step from 1961 to 2014 at a high spatial resolution of
0.1◦× 0.1◦. Based on the model simulations, we presented
the spatiotemporal changes in SOC across the main global
cereal growing areas under different residue retention rates.
The impacts of C input management, edaphic and climatic
variables on SOC changes were also statistically analyzed to
identify the key factors driving the soil C dynamics.

2 Materials and methods

2.1 Study area

The study area covered the main cereal (i.e., wheat, maize
and rice) cropping regions of the world (Fig. S1 in the Sup-
plement). We selected the wheat, maize and rice cropping
areas because they are the most widely planted (covering ap-
proximately 72 % of the global cereal cropping areas) and
productive (constituting approximately 80 % of the global
cereal yield) cereals in the world (FAOSTAT, 2017). The
geographic distribution of the global croplands (0.1◦× 0.1◦

spatial resolution, with a cropland percentage value within
each pixel) (Ramankutty et al., 2008), and the areas growing
wheat, maize and rice (Monfreda et al., 2008) were sourced
from the Center for Sustainability and the Global Environ-
ment (SAGE). The main cereal cropping regions were then
obtained by masking the global croplands with the wheat,
maize and rice cropping areas using a geographic informa-
tion system (GIS) analysis approach. According to Vancut-
sem et al. (2013), we selected the pixels that were made up
of more than 30 % cropland areas as the study area in the
present study (Fig. S1). These areas were selected because
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such pixels more efficiently represent the croplands in the
real world.

2.2 RothC model and its initialization

The Rothamsted carbon model (RothC, version 26.3) was
used to simulate the soil C dynamics in croplands in the
present study. The RothC model is a widely used soil organic
matter (SOM) decomposition model used to simulate the C
dynamics in agricultural soils under various environments
and management practices (Smith et al., 2005; Guo et al.,
2007; Skjemstad et al., 2004). Recently, Wang et al. (2016)
evaluated the model’s performance in simulating soil C vari-
ations using observations from 16 long-term experimental
sites across the world’s wheat-growing regions. The vali-
dated results suggested that the model could reasonably re-
produce the SOC dynamics under a wide range of soil and
climatic conditions and agricultural management practices.
Detailed information on the RothC model description can be
found in Jenkinson et al. (1990).

The soil carbon pool in the RothC model is divided
into five conceptual components, i.e., decomposable plant
material (DPM), resistant plant material (RPM), microbial
biomass (BIO), humified organic matter (HUM), and inert
organic matter (IOM). These conceptual pools are difficult to
measure directly in most cases and can only be empirically
initialized because only the quantity of total soil organic car-
bon is obtainable without finer level partitioning among the
subpools. In the present study, following Wang et al. (2016),
we adopted the approach of Weihermüller et al. (2013), who
developed a validated set of pedotransfer functions to initial-
ize C pools in the RothC model:

IOM= 0.049×SOC1.139 (1)
RPM= (0.1847×SOC+ 0.1555)× (Clay+ 1.2750)−0.1158 (2)
HUM= (0.7148×SOC+ 0.5069)× (Clay+ 10.3421)0.0184 (3)
BIO= (0.0140×SOC+ 0.0075)× (Clay+ 8.8473)0.0567, (4)

where SOC is the total soil organic C content in the top 30 cm
soil layer (MgCha−1), and Clay is the soil clay fraction (%).

The default yearly decomposition rates for the five above-
mentioned soil C subpools were divided by 12 to run the
model on a monthly time step (Jenkinson et al., 1990). The
annual carbon inputs to soils from crop residue, root and ma-
nure were assumed to occur after harvest, which is acceptable
because the model is insensitive to the time of C input, par-
ticularly in long-term simulations (Smith et al., 2005). The
default value of the DPM/RPM ratio (i.e., 1.44) of the C in-
put is adopted in this study because it is suggested as a typical
value for most crops (Jenkinson et al., 1990).

2.3 Spatial data

The soil parameters used in the present study, such as soil
carbon density and the clay fraction in the top 30 cm of

the soil profiles, were sourced from the Harmonized World
Soil Database (HWSD) (Fao and Isric, 2012). This soil data
set combines information from various sources such as the
World Inventory of Soil Emission Potentials (WISE), the
Soil Terrain Database (SOTER) and the FAO Soil Map of
the world. The HWSD is recommended as the most re-
cent and most detailed globally consistent and continuous
map of SOC with the highest spatial resolution of 0.1◦×
0.1◦ (Fig. S2) that is available (Hiederer and Köchy, 2011;
Scharlemann et al., 2014). The soil cover data were de-
rived from the crop calendar data set (Sacks et al., 2010),
which is documented in the Center for Sustainability and the
Global Environment (SAGE) and provides gridded maps of
the global planting and harvesting dates for 19 major crops
including wheat, maize and rice.

The global climate data layers with a 0.5◦× 0.5◦ spa-
tial resolution (Harris et al., 2014) were sourced from the
Climatic Research Unit (https://crudata.uea.ac.uk/cru/data/
hrg/). The most recent version of the climate data product
(i.e., CRU TS v.4.00) was used in this study. The time series
of the monthly climate data layers include mean air tempera-
ture, precipitation and potential evapotranspiration, spanning
from 1901 to 2014. According to Jenkinson et al. (1990), the
potential evapotranspiration was converted to open pan evap-
oration (one of the required model inputs of RothC) by di-
viding potential evapotranspiration by 0.75. The climate data
have a coarser spatial resolution than that of the soil data set
(i.e., 0.1◦× 0.1◦) that we used in the RothC model simula-
tions. Here, the climate data in each coarser pixel were as-
sumed to be the same as in the finer pixels (0.1◦× 0.1◦) lo-
cated within that coarser pixel (0.5◦× 0.5◦).

Carbon inputs are mainly sourced from crop residues,
roots and manure (Yu et al., 2012). We derived this informa-
tion at a high spatial resolution from the various sources of
existing data sets. Firstly, the global crop yields for wheat,
maize and rice in 2005 at a 0.1◦× 0.1◦ spatial resolution
were obtained from the 2005 Spatial Production Allocation
Model (SPAM) (You et al., 2014). The SPAM provides crop-
specific information on yield at a high spatial resolution and
has undergone a significant validation and has shown promis-
ing performance globally (Liu et al., 2010). However, the
SPAM data set does not include continuous time series data.
As such, we adopted the global annual rates of change of the
major cereal crop yields at a 0.1◦×0.1◦ resolution (Ray et al.,
2012) to generate the crop yield data time series. Here, we
calculated the annual crop yields from 1961 to 2014 based
on the percentages of the annual rates of change of the crop
yields and the crop yield data in 2005 (i.e., SPAM data set)
by assuming a linear rate of change in the crop yields. This
is acceptable because the rates of increase in the global yield
have been found to be linear for most of the major cereal
crops since the start of the 1960s (Fischer and Edmeades,
2010; Hafner, 2003). In each grid, the annual amounts of
crop residue and roots were then calculated based on the
yield data by adopting the residue / economic product ratio
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and the root / shoot ratio as described by Huang et al. (2007).
All residues and roots were assumed to have a carbon content
of 45 % when the quantity of the carbon input from the crops
was determined (Skjemstad et al., 2004).

The annual carbon input from manure application at
a global scale was derived from Zhang et al. (2017), who
used the Global Livestock Impact Mapping System (GLIMS)
data set in conjunction with the country-specific annual live-
stock population to reconstruct the manure nitrogen produc-
tion and application of global croplands during 1860–2014
at a high spatial resolution of 0.1◦× 0.1◦. Following Lugato
et al. (2014), the C input to soils from manure was calculated
according to the average C : N ratios of the different types of
manures. The average C : N ratio of manures was set to 20
because various studies have found that manure, in general,
maintains a relatively stable C : N ratio of approximately 20
(Sharpley and Moyer, 2000; Ko et al., 2008; Eghball et al.,
2002). All of the calculated C inputs from crop roots and
manure were assumed to be incorporated into the soils. The
number of C inputs from the above-ground residues of the
crops, however, were further determined by setting different
residue retention scenarios as described below.

2.4 Simulation scenarios and identification of the
controls of SOC dynamics

The crop residue that is retained in the system after harvest
can benefit the sequestration of soil carbon in the croplands.
The amount of above-ground residue that is retained in the
system, however, shows vast spatial disparity and uncertainty
across the global croplands. In developing regions such as
Asia and Africa, it has been suggested that only approxi-
mately 30 % of the crop residues are retained in the soils after
harvest (Jiang et al., 2012; Baudron et al., 2014). In devel-
oped regions such as Europe and North America, however,
the crop residue retention rate can reach over 60 % (Scarlat
et al., 2010; Lokupitiya et al., 2012). Furthermore, in Aus-
tralia, it has been reported that 100 % of the crop residue was
retained across 72–100 % of the cropping area of the country
from 2010 to 2014 (National Inventory Report 2013, 2015).
However, this information is based on rough estimations and
statistical data. To the best of our knowledge, detailed in-
formation on the residue retention rates over a meaningfully
large scale of both time and space across different countries
and continents is still lacking. Consequently, a scenario mod-
eling approach was adopted to assess the dynamics of SOC
as determined by various potential management practices on
crop residues. We specified three crop residue retention rates
in the present study, i.e., 30, 60 and 90 % (hereafter simply
denoted as R30, R60 and R90).

In total, we ran 461 586 (three crop residue retention sce-
narios× 153 862 grids) RothC simulations. Each simulation
quantified the SOC content in the top 30 cm of the soil from
1961 to 2014 on a monthly basis. Based on the model simula-
tions, we showed the spatiotemporal changes of SOC under

different crop residue retention rates. We also assessed the
impacts of SOC changes of crop residue retention, climatic
and soil variables using Spearman’s rank correlation coef-
ficient (ρ). The selected climatic variables included mean
annual temperature (hereafter simply denoted by “tempera-
ture”) and mean annual precipitation (hereafter simply de-
noted by “precipitation”). These two variables have been
suggested to be uncorrelated and could reasonably represent
the spatial variation over a wide range of climate patterns
(Bryan, 2003). For the correlation analysis, the long-term
monthly climate variables were summarized to the mean an-
nual values for each grid. The selected soil parameters in-
cluded the model’s edaphic inputs, i.e., initial SOC content
and soil clay fraction. The change in the soil C is calculated
as the difference in SOC between 2014 and 1961. Spear-
man’s rank correlation coefficient was then calculated be-
tween the SOC change and crop residue retention rates and
the soil and climate variables across the full set of RothC
simulations. The sign of ρ, positive or negative, indicates the
direction of the association between the independent and de-
pendent variables. The absolute magnitude of ρ, between 0
and 1, suggests the strength of the correlation between the
two variables. All analyses were performed using statistical
and graphical software R 3.3.2 (R Development Core Team,
2017).

3 Results

On a global average, SOC generally increased over time
under the different specified crop residue retention rates
in the present study (Fig. 1). The median SOC in-
creased from 46.2 MgCha−1 in 1961 to 58.3 MgCha−1 un-
der R30 (Fig. 1a), 70.9 MgCha−1 under R60 (Fig. 1b),
and 84.1 MgCha−1 under R90 (Fig. 1c) in 2014. In
general, the annual rates of change in SOC were
0.22 MgCha−1 yr−1 under R30, 0.45 MgCha−1 yr−1 under
R60, and 0.69 MgCha−1 yr−1 under R90 (Fig. 1).

Figure 2 shows the spatial patterns of the estimated SOC
changes under R30 (Fig. 2a), R60 (Fig. 2b) and R90 (Fig. 2c).
Among the three scenarios, a relatively higher increase in
SOC generally occurred in the middle latitudes of the North-
ern Hemisphere, such as the central parts of the USA, west-
ern Europe and the northern regions of China (Fig. 2). A rel-
atively small increase in SOC generally occurred in the high-
latitude regions of both the Northern and Southern Hemi-
sphere, while the SOC decreased across the equatorial zones
of Asia, Africa and America (Fig. 2). On a global average,
69, 82 and 89 % of the study area acted as a net carbon sink
during the study period under R30 (Fig. 2a), R60 (Fig. 2b)
and R90 (Fig. 2c), respectively.

The quantified SOC changes also showed large spatiotem-
poral disparities across different continents (Fig. 3). In gen-
eral, among the three scenarios, the SOC of the cropland
across Europe, Asia and North America showed a linearly
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Figure 1. Temporal changes in the soil organic carbon (MgCha−1)
of the main global cereal cropping regions under different above-
ground crop residue retention rates of 30 % (a), 60 % (b) and 90 %
(c). Box plots show the median and interquartile range with the
whiskers extending to the most extreme data points within the 1.5×
(75–25 %) data range.

increasing trend over time (Fig. 3). In Oceania, the SOC in-
creased faster in the first two decades and showed a relatively
lower increasing rate during the latter three decades (Fig. 3).
In South America and Africa, the SOC decreased in the first
few decades and increased or remained relatively stable dur-
ing the latter periods under R30 (Fig. 3a) and R60 (Fig. 3b).
Under R90, however, the average SOC on all continents in-
creased over time (Fig. 3c). In general, the regions with
higher annual C input rates (e.g., Europe and North America)
experienced higher SOC increases than the areas with rela-
tively lower C input rates (e.g., Oceania and Africa) across
all three crop residue retention scenarios (Figs. 3 and S4).

The quantified SOC changes were regulated by soil, cli-
mate and management practices. The initial SOC was sig-
nificantly but negatively correlated (ρ =−0.20) with SOC
change, while the soil clay fraction showed a negligible cor-
relation (ρ =−0.17, Fig. 4). The selected climatic variables
displayed a negligible correlation (temperature, ρ =−0.18),
and a significant but negative correlation (precipitation, ρ =
−0.22) with SOC change (Fig. 4). The crop residue reten-

tion rate showed a strong and positive correlation (ρ = 0.34)
with the SOC change (Fig. 4). Figure 5 presents the impacts
of crop residue retention, initial SOC content and precip-
itation on SOC change. In general, crop residue retention
seemed to be linearly and positively correlated with SOC
change (Fig. 5a), whereas the initial SOC content (Fig. 5b)
and precipitation (Fig. 5c) had negative linear effects on SOC
change.

4 Discussion

4.1 Interpretation and implication of the results

Soil organic carbon change is a balance between C input
from crops and manures and C output through decomposi-
tion. The linear increase in the global average SOC that was
quantified in this study (Fig. 1) can be mainly attributed to
the increasing rate of C input throughout the study period
(Fig. S3). This is associated with the increased crop produc-
tion that began at the start of the “green revolution,” which
was launched during the 1960s (Fischer and Edmeades,
2010; Evenson and Gollin, 2003). In the present study, we
found that the crop residue retention rate is strongly and pos-
itively correlated with the change in SOC (Fig. 4). This is
similar to the findings of our previous studies (Wang et al.,
2016, 2015), which found that higher amounts of C input
can lead to higher soil C sink capacities. On a global aver-
age, the total amounts of C input to soils are 1.7, 2.7 and
3.7 MgCha−1 under the crop residue retention rates of 30,
60 and 90 %, respectively (Fig. S3). The corresponding an-
nual rates of SOC changes under R30, R60 and R90 were
0.22, 0.45 and 0.69 MgCha−1 yr−1 (Fig. 1), indicating ap-
proximately doubled and tripled SOC sequestration rates af-
ter enhancing the residue retention rate from 30 to 60 and
90 %. This is consistent with the estimations of Lal (2004),
who reported that the rates of SOC sequestration in croplands
range from 0.02 to 0.76 MgCha−1 yr−1 when improved sys-
tems of crop management are adopted. However, it should be
noted that the increased SOC sequestration rate that is con-
tributed to by the increased C input can be limited at longer
periods, as the SOC would eventually reach a relatively sta-
ble threshold (Stewart et al., 2007).

Apart from the residue retention rate, the initial SOC is
one of the major controlling factors of SOC change. The re-
sults in Figs. 4 and 5 indicate that under otherwise similar
environmental and managed conditions, soils with lower ini-
tial SOC contents would experience greater SOC increases or
smaller soil C losses. This negative correlation between SOC
change and initial SOC content has also been documented in
other studies (Zhao et al., 2013; Wang et al., 2014). The re-
lationship is further supported by the distribution of global
SOC changes (Fig. 2) and the global initial SOC densities
that are quantified in this study (Fig. S2). For example, soils
with lower initial SOC contents in western Europe generally
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Figure 2. Spatial distribution of the SOC change (1961–2014, MgCha−1) across the main global cereal cropping regions under different
above-ground crop residue retention rates of 30 % (a), 60 % (b) and 90 % (c).
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Figure 3. SOC evolution of five continents in the main global cereal cropping regions under different above-ground crop residue retention
rates of 30 % (a), 60 % (b) and 90 % (c).

Figure 4. Spearman’s rank correlation coefficients between SOC
change (1961–2014, MgCha−1) and residue retention and soil and
climate variables. All tests were significant (P < 0.001).

showed higher SOC increases than the soils in eastern Europe
with relatively higher initial SOC contents (Figs. 2 and S2).
Spatial patterns of lower initial SOC associated with higher
SOC changes in neighboring areas can also be found in other
regions such as the USA and China (Figs. 2 and S2). The soil
clay fraction has been suggested to benefit C stabilization
through the mineralogical protection of soil C (Oades, 1988;
Amato and Ladd, 1992). However, we identified a negligible
but negative correlation between soil C accumulation and soil
clay fraction in this study (Fig. 4). The adverse effects of soil
clay could be a result of the strong correlation between initial
soil C content and the soil clay fraction (ρ = 0.31, data not
shown). Here, the soils with higher initial SOC contents gen-
erally had higher clay fractions, and this would overshadow

the beneficial contributions of soil clay to soil C accumula-
tion.

The negative effects of higher temperature and precipita-
tion on SOC change identified in the present study (Figs. 4
and 5) can be attributed to the higher SOC decomposition
rates in warmer and wetter soils, which is consistent with the
description of the RothC model (Jenkinson et al., 1990) and
the other findings by Bond-Lamberty and Thomson (2010).
Here, it should be noted that such correlations between the
climate and SOC changes might only be valid in a soil car-
bon turnover model that only consists of the dynamic C pro-
cesses in the soil (e.g., RothC model). In other agricultural
model simulations, climatic variables may play a different
role in affecting the SOC change through jointly regulating
both crop productions and soil C dynamics. For example,
Wang et al. (2014) used a process-based agricultural system
model (i.e., Agro-C model) to simulate the SOC dynamics
in the semi-arid regions of the North China Plain and found
positive effects of temperature and precipitation on SOC ac-
cumulation. This is because, in temperature and water defi-
cient areas (e.g., the North China Plain), increased temper-
ature and precipitation promote crop production and hence
increases the C input to soils, which favors SOC sequestra-
tion.

Can we estimate the actual historical soil C dynamics
across the world? A large challenge exists due to a lack of
data availability, particularly for the two main RothC model
inputs, initial SOC content and annual C input. Firstly, the
soil properties presented by the HWSD were derived from
different sources with unevenly sampled soil profiles over
time and space. As such, the value of initial SOC content
can hardly, if at all, represent the actual SOC content at the
beginning of the study period. However, the modeled dynam-
ics of the SOC in the present study may be appropriate, to
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Figure 5. Response of SOC change (1961–2014, MgCha−1) to the three most influential variables of crop residue retention rate (a), initial
SOC (b), and mean annual precipitation (c). Box plots show the median and interquartile ranges with the whiskers extending to the most
extreme data point within the 1.5× (75–25 %) data range.

a certain extent, to represent the spatiotemporal patterns of
the soil C source and sink processes. Secondly, a lack of de-
tailed information on crop residue management across both
time and space remains, which hinders our ability to accu-
rately characterize the SOC changes on a large scale at fine
spatiotemporal resolutions. However, we can roughly assume
that the above-ground residue retention rates were approxi-
mately 30 % in developing regions such as Asia and Africa
(Jiang et al., 2012; Baudron et al., 2014; Erenstein, 2011)
and 60 % in other regions (Lokupitiya et al., 2012; Scarlat
et al., 2010; Baudron et al., 2015). Based on these assump-
tions, we further quantified that the global average SOC in-
creased at a rate of 0.34 MgCha−1 yr−1 under an average an-
nual C input rate of 2.4 MgCha−1 yr−1 from 1961 to 2014.
On a global scale, the estimated efficiency of the conversion
of C input to SOC (i.e., the ratio of SOC change to C input)
is 14 %, which falls within the 10–18 % range estimated by
Campbell et al. (2000). It should be noted that the conversion
efficiency varies across space and is highly dependent on the
local climatic and edaphic conditions (Yu et al., 2012).

By extrapolating these results to the global total crop-
land area of 1400 Mha (Jobbagy and Jackson, 2000), it was
found that the global cropland soils could have sequestered
0.48 PgC annually from 1961 to 2014, which equals ap-
proximately 8 % of the contemporaneous global average an-
nual C emissions from fossil fuel combustions (http://cdiac.
ornl.gov/ftp/ndp030/global.1751_2014.ems). By enhancing
the crop residue retention rates to 60 and 90 % in all global
croplands, the soil C accumulation would offset approxi-
mately 11 and 16 % of the fossil fuel-induced C emissions.
Although soil C can be increased by enhancing the quantity
of C input, it would eventually reach a threshold at a higher
level (Stewart et al., 2007). Until then, more carbon input
would be needed to maintain the soil C at higher levels (Wang

et al., 2016). Otherwise, the soil C in croplands would de-
crease, and soils would again act as a net C source.

4.2 Uncertainties and limitations

Several uncertainties and limitations should be considered
when interpreting the simulation results in this study. Firstly,
the SOC change modeled in the present study could be bi-
ased due to the spatial inconsistency in the time of soil sam-
pling, which varied widely over the second half of the twen-
tieth century (Fao and Isric, 2012). In some places, the ini-
tial soil C information derived from the HWSD only repre-
sented the actual soil C levels during the periods after the
early 1960s. For example, the soil profile measurements used
to produce the soil map of China, which is included in the
HWSD data sets, were generally collected in the late 1970s
and early 1980s (Yu et al., 2007). Considering that the spatial
patterns of cropland SOC could have substantially changed
over the study period under the changing environments and
management practices (Figs. 1 and 2), the initial SOC used
in the present study (derived from HWSD) might signifi-
cantly differ from the actual soil C levels in the early 1960s.
In addition, it has been reported that soils with higher ini-
tial C contents would experience smaller increases or greater
C losses under otherwise similar conditions, and vice versa
(Zhao et al., 2013; Wang et al., 2015). Consequently, for
those regions with soil sampling times much later than the
early 1960s, our quantified SOC changes may be underesti-
mations in the areas where substantial soil C increases had
occurred before measurements were collected. In contrast,
the SOC changes could be overestimated in the areas that are
accompanied by a previous significant decrease in soil C.

Secondly, the RothC model was developed to simulate the
soil organic matter turnover in upland soils (Jenkinson et al.,
1990), and it generally performs well in the global wheat sys-
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tems with non-waterlogged soils (Wang et al., 2016). In the
paddy soils, particularly during the rice-growing seasons, the
soil C decomposition rate might be reduced when subjected
to anaerobic conditions. For example, Shirato and Yokozawa
(2005) used the RothC model to simulate the C changes in
Japanese paddy soils and suggested that the model’s perfor-
mance can be improved by modifying the SOC decomposi-
tion rates during the rice growing season. As such, the de-
fault parameters adopted in the present study may bias the
simulations of the SOC changes across the rice systems that
are mainly distributed in southeast Asia. In the present study,
we adopted the model’s default parameters rather than the
modified factors from Shirato and Yokozawa (2005), mainly
because the rice-growing areas in Japan constitute approxi-
mately 1 % of the world’s total (FAOSTAT, 2017), and the as-
sociated climatic and edaphic conditions differ significantly
from the other rice systems. We highlight the need to robustly
calibrate the model’s soil C decomposition rates against the
long-term experimental data across the rice paddy soils to
represent the different patterns in climate, soil and manage-
ment conditions of southeast Asia in the future.

Finally, the limitations of the current first-order decay
model (e.g., RothC) may cause significant bias in the model
simulations. For example, our results suggested a general
linear relation between C input and SOC variation (Figs. 1
and S3), which contradicts previous findings that increasing
the incorporated amount of crop residue may affect the SOC
change in a variety of ways other than linearly (Powlson
et al., 2011). Moreover, it has been reported that, although
soil can accumulate a significant amount of C when the pre-
existing soil C content is low, the SOC reaches a threshold
level (i.e., carbon saturation state) where little or no signifi-
cant further changes occur even when more C is added (Stew-
art et al., 2007; Qin et al., 2013). Without considering the C
saturation state, the first-order decay model might overesti-
mate the SOC in longer timescale simulations, particularly
in regions where the C input is higher and the SOC decom-
position rate is lower.
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