Articles | Volume 17, issue 16
Atmos. Chem. Phys., 17, 10093–10107, 2017
https://doi.org/10.5194/acp-17-10093-2017
Atmos. Chem. Phys., 17, 10093–10107, 2017
https://doi.org/10.5194/acp-17-10093-2017
Research article
29 Aug 2017
Research article | 29 Aug 2017

Temporal evolution of main ambient PM2. 5 sources in Santiago, Chile, from 1998 to 2012

Francisco Barraza et al.

Related authors

Impact of biomass burning and stratospheric intrusions in the remote South Pacific Ocean troposphere
Nikos Daskalakis, Laura Gallardo, Maria Kanakidou, Johann Rasmus Nüß, Camilo Menares, Roberto Rondanelli, Anne M. Thompson, and Mihalis Vrekoussis
Atmos. Chem. Phys., 22, 4075–4099, https://doi.org/10.5194/acp-22-4075-2022,https://doi.org/10.5194/acp-22-4075-2022, 2022
Short summary
High-resolution spatial-distribution maps of road transport exhaust emissions in Chile, 1990–2020
Mauricio Osses, Néstor Rojas, Cecilia Ibarra, Víctor Valdebenito, Ignacio Laengle, Nicolás Pantoja, Darío Osses, Kevin Basoa, Sebastián Tolvett, Nicolás Huneeus, Laura Gallardo, and Benjamín Gómez
Earth Syst. Sci. Data, 14, 1359–1376, https://doi.org/10.5194/essd-14-1359-2022,https://doi.org/10.5194/essd-14-1359-2022, 2022
Short summary
Spiky fluctuations and scaling in high-resolution EPICA ice core dust fluxes
Shaun Lovejoy and Fabrice Lambert
Clim. Past, 15, 1999–2017, https://doi.org/10.5194/cp-15-1999-2019,https://doi.org/10.5194/cp-15-1999-2019, 2019
Short summary
High resolution EPICA ice core dust fluxes: intermittency, extremes and Holocene stability
Shaun Lovejoy and Fabrice Lambert
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-110,https://doi.org/10.5194/cp-2018-110, 2018
Manuscript not accepted for further review
Short summary
BAERLIN2014 – stationary measurements and source apportionment at an urban background station in Berlin, Germany
Erika von Schneidemesser, Boris Bonn, Tim M. Butler, Christian Ehlers, Holger Gerwig, Hannele Hakola, Heidi Hellén, Andreas Kerschbaumer, Dieter Klemp, Claudia Kofahl, Jürgen Kura, Anja Lüdecke, Rainer Nothard, Axel Pietsch, Jörn Quedenau, Klaus Schäfer, James J. Schauer, Ashish Singh, Ana-Maria Villalobos, Matthias Wiegner, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 8621–8645, https://doi.org/10.5194/acp-18-8621-2018,https://doi.org/10.5194/acp-18-8621-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions
Minghao Qiu, Corwin Zigler, and Noelle E. Selin
Atmos. Chem. Phys., 22, 10551–10566, https://doi.org/10.5194/acp-22-10551-2022,https://doi.org/10.5194/acp-22-10551-2022, 2022
Short summary
Simulating the radiative forcing of oceanic dimethylsulfide (DMS) in Asia based on machine learning estimates
Junri Zhao, Weichun Ma, Kelsey R. Bilsback, Jeffrey R. Pierce, Shengqian Zhou, Ying Chen, Guipeng Yang, and Yan Zhang
Atmos. Chem. Phys., 22, 9583–9600, https://doi.org/10.5194/acp-22-9583-2022,https://doi.org/10.5194/acp-22-9583-2022, 2022
Short summary
Quantifying the effects of mixing state on aerosol optical properties
Yu Yao, Jeffrey H. Curtis, Joseph Ching, Zhonghua Zheng, and Nicole Riemer
Atmos. Chem. Phys., 22, 9265–9282, https://doi.org/10.5194/acp-22-9265-2022,https://doi.org/10.5194/acp-22-9265-2022, 2022
Short summary
Secondary organic aerosol formation via multiphase reaction of hydrocarbons in urban atmospheres using CAMx integrated with the UNIPAR model
Zechen Yu, Myoseon Jang, Soontae Kim, Kyuwon Son, Sanghee Han, Azad Madhu, and Jinsoo Park
Atmos. Chem. Phys., 22, 9083–9098, https://doi.org/10.5194/acp-22-9083-2022,https://doi.org/10.5194/acp-22-9083-2022, 2022
Short summary
Contrasting source contributions of Arctic black carbon to atmospheric concentrations, deposition flux, and atmospheric and snow radiative effects
Hitoshi Matsui, Tatsuhiro Mori, Sho Ohata, Nobuhiro Moteki, Naga Oshima, Kumiko Goto-Azuma, Makoto Koike, and Yutaka Kondo
Atmos. Chem. Phys., 22, 8989–9009, https://doi.org/10.5194/acp-22-8989-2022,https://doi.org/10.5194/acp-22-8989-2022, 2022
Short summary

Cited articles

Andrade, M. de F., de Miranda, R. M., Fornaro, A., Kerr, A., Oyama, B., de Andre, P. A., and Saldiva, P.: Vehicle emissions and PM2. 5 mass concentrations in six Brazilian cities, Air Qual. Atmos. Heal., 5, 79–88, https://doi.org/10.1007/s11869-010-0104-5, 2012.
Artaxo, P.: Aerosol source apportionment at Santiago Chile Winter 1996, Technical report for the National Commission of the Environment, Santiago, Chile, 1996.
Artaxo, P.: Aerosol characterization study in Santiago de Chile Wintertime 1998: Technical report for the National Commission of the Environment, Santiago, Chile, 1998.
Ayrault, S., Catinon, M., Boudouma, O., Bordier, L., Agnello, G., Reynaud, S., and Tissut, M.: Street Dust?: Source and Sink of Heavy Metals To Urban Environment, in: Proceedingd of the 16th International Conference on Heavy Metals in the Environment, Vol. 1, edited by: Pirrone, N., 1998–2001, Rome, Italy, 2013.
Belis, C. A. A., Karagulian, F., Larsen, B. R. R., and Hopke, P. K. K.: Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe, Atmos. Environ., 69, 94–108, https://doi.org/10.1016/j.atmosenv.2012.11.009, 2013.
Download
Short summary
We quantify the main sources that have contributed to fine particulate matter (PM2.5) between 1998 and 2012 in Santiago's downtown. We calculate the long-term trend as well as abrupt changes in the time series and show how these relate to particular government policies implemented to improve air quality in specific years. We thus identify which measures successfully reduced individual sources and which sources need measures to avoid episodes when PM2.5 concentrations surpass Chilean standards.
Altmetrics
Final-revised paper
Preprint