Articles | Volume 16, issue 15
https://doi.org/10.5194/acp-16-9891-2016
https://doi.org/10.5194/acp-16-9891-2016
Research article
 | 
08 Aug 2016
Research article |  | 08 Aug 2016

Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode

Likun Xue, Rongrong Gu, Tao Wang, Xinfeng Wang, Sandra Saunders, Donald Blake, Peter K. K. Louie, Connie W. Y. Luk, Isobel Simpson, Zheng Xu, Zhe Wang, Yuan Gao, Shuncheng Lee, Abdelwahid Mellouki, and Wenxing Wang

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by L.K. Xue on behalf of the Authors (11 Jun 2016)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (27 Jun 2016) by Dwayne Heard
RR by Anonymous Referee #2 (27 Jun 2016)
RR by Anonymous Referee #1 (10 Jul 2016)
ED: Publish subject to technical corrections (17 Jul 2016) by Dwayne Heard
AR by L.K. Xue on behalf of the Authors (18 Jul 2016)  Manuscript 
Download
Short summary
The chemical budgets and principal sources of ROx and NO3 radicals during a multi-day photochemical smog episode in Hong Kong are elucidated by an observation-constrained MCM model. NO3 was shown to be an important oxidant even during daytime in a pollution case when high aerosol loading attenuated the solar irradiation. This study suggests the potential important role of daytime NO3 chemistry in polluted atmospheres under conditions with the co-existence of abundant O3, NO2, VOCs, and aerosols.
Altmetrics
Final-revised paper
Preprint