



# Supplement of

## Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode

Likun Xue et al.

Correspondence to: Likun Xue (xuelikun@sdu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

| Species                                                                                                                                                                                     | Instrument or techniques                             | Time resolution                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|
| O <sub>3</sub>                                                                                                                                                                              | TEI 49i                                              | 1 min                                    |
| СО                                                                                                                                                                                          | API 300EU                                            | 1 min                                    |
| $SO_2$                                                                                                                                                                                      | TEI 43i                                              | 1 min                                    |
| NO & NO <sub>2</sub>                                                                                                                                                                        | TEI 42i + blue light converter                       | 1 min                                    |
| NO & NOy                                                                                                                                                                                    | TEI 42cy + MoO converter                             | 1 min                                    |
| HONO                                                                                                                                                                                        | LOPAP                                                | 1 min                                    |
| CINO <sub>2</sub>                                                                                                                                                                           | CIMS                                                 | 6 sec                                    |
| PANs                                                                                                                                                                                        | CIMS                                                 | 6 sec                                    |
| H <sub>2</sub> O <sub>2</sub> & organic peroxides                                                                                                                                           | Aerolaser AL-2021                                    | 1 min                                    |
| C <sub>1</sub> -C <sub>10</sub> hydrocarbons                                                                                                                                                | Canister + GC/FID/ECD/MS                             | 24-hour                                  |
| C <sub>2</sub> -C <sub>10</sub> hydrocarbons                                                                                                                                                | Syntech Spectras, model GC955<br>Series 600/800 POCP | 30 min                                   |
| C <sub>1</sub> -C <sub>8</sub> carbonyls                                                                                                                                                    | DNPH-coated sorbent cartridge<br>sampling + HPLC     | 24-hour in general;<br>3-hour on episode |
| PM <sub>2.5</sub> & PM <sub>10</sub> mass                                                                                                                                                   | SHARP                                                | 1 min                                    |
| SO <sub>4</sub> <sup>2-</sup> , NO <sub>3</sub> <sup>-</sup> , NH <sub>4</sub> <sup>+</sup> , Cl <sup>-</sup> , Na <sup>+</sup> , Ca <sup>2+</sup> ,<br>K <sup>+</sup> in PM <sub>2.5</sub> | MARGA                                                | 1 hour                                   |
| OC & EC in PM <sub>2.5</sub>                                                                                                                                                                | Sunset OCEC analyzer                                 | 1 hour                                   |
| BC in PM <sub>2.5</sub>                                                                                                                                                                     | Magee                                                | 5 min                                    |
| Aerosol scattering coefficient                                                                                                                                                              | Ecotech Nephelometer                                 | 1 min                                    |
| Particle number concentration (5 nm-10 μm)                                                                                                                                                  | MSP/WPS Model 1000XP                                 | 8 min                                    |
| $J_{NO2}$                                                                                                                                                                                   | Metcon Filter Radiometer                             | 5 sec                                    |
| Temperature & RH                                                                                                                                                                            | Young RH/T probe                                     | 5 sec                                    |
| Wind speed and direction                                                                                                                                                                    | Gill WindSonic                                       | 5 sec                                    |
| Solar Radiation                                                                                                                                                                             | LI-200 Pyranometer Sensor                            | 5 sec                                    |

| Table S1. Summa | ry of field | measurements a | at Tung | Chung in | summer | 2011 |
|-----------------|-------------|----------------|---------|----------|--------|------|
|-----------------|-------------|----------------|---------|----------|--------|------|



Figure S1. Map showing the locations of Hong Kong, the Pearl River Delta region and the study site at Tung Chung (TC).



**Figure S2.** Time series of air pollutants and meteorological parameters observed at Tung Chung from 25-31 August 2011.  $S_{aero}$  stands for the scattering coefficient of PM<sub>2.5</sub>. The data gap for HONO was mainly due to the calibration and maintenance of the instrument.



**Figure S3.** 48-hour backward trajectories calculated by the HYSPLIT model for air masses at TC at 12:00 LT each day from 6<sup>th</sup> August to 7<sup>th</sup> September. The height of the starting point was set as 500 m a.g.l. See the lower panels for the legend of trajectories each day.



**Figure S4.** Diurnal variations of (a) formaldehyde and (b) acetaldehyde measured at Tung Chung on 31 August 2011.



**Figure S5.** Distributions of the daytime (08:00–18:00 local time) CO/NO<sub>y</sub> ratios measured at Tung Chung from 25–31 August 2011. The whisker plot provides the 90<sup>th</sup>, 75<sup>th</sup>, 50<sup>th</sup>, 25<sup>th</sup> and 10<sup>th</sup> percentiles of the measurement data.

### 1. Details of the OBM-AOCP model

The OBM-AOCP (Observation-Based Model for investigating the Atmospheric Oxidative Capacity and Photochemistry) is a zero-dimensional chemical box model that is capable of predicting the concentrations of reactive species (e.g., radicals) and quantifying the rates of various atmospheric photochemical processes. It has been used for evaluation of  $O_3$  and PAN formation, radical budget, and heterogeneous photochemistry in many previous studies (e.g., Xue et al., 2013; 2014a; 2014b; 2014c; 2015). The configuration of this model is detailed as follows.

### **1.1.** Chemical mechanisms

## 1.1.1. Basic mechanism

The OBM-AOCP is built on the Master Chemical Mechanism (MCM, *v3.2*). MCM is a nearly explicit mechanism describing the gas phase degradation of 143 primarily emitted VOC species together with the latest inorganic chemistry. It involves about 6700 chemical species (including intermediates and products) and includes approximately 17000 reactions. The detailed description of the MCM has been provided by Jenkin et al. (2003) and Saunders et al. (2003).

### 1.1.2. Heterogeneous chemistry module

In addition, the OBM-AOCP also incorporated a chemistry module describing several key heterogeneous processes in the atmosphere, namely, heterogeneous loss of  $N_2O_5$  on particle surface and subsequent formation of ClNO<sub>2</sub>, reactions of NO<sub>2</sub> on aerosol and ground surfaces producing HONO, uptake of HO<sub>2</sub> and NO<sub>3</sub> on aerosol surfaces, and heterogeneous reactions of HOCl and ClONO<sub>2</sub> on aerosol surface. The chemical reactions and related parameters, which are relevant to the present study, have been summarized in *Table S2*.

| Heterogeneous Reaction           | $k (\text{cm}^3 \text{ molecules}^{-1} \text{ s}^{-1})$                                                              | Remarks |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------|---------|
| $N_2O_5 \rightarrow NA + ClNO_2$ | $0.25 \times v_{N205} \times \gamma_{N205} \times S_{AERO} \times \varphi_{CINO2}$                                   | a       |
| $N_2O_5 \rightarrow NA + NA$     | $0.25 \times v_{\text{N2O5}} \times \gamma_{\text{N2O5}} \times S_{\text{AERO}} \times (1 - \varphi_{\text{CINO2}})$ | a       |
| $HO_2 \rightarrow products$      | $-\left(\frac{r}{Dg}+\frac{4}{\gamma HO2}\times v_{HO2}\right)^{-1}\times S_{AERO}$                                  | b       |

Table S2. Summary of the heterogeneous reactions incorporated into the OBM-AOCP

| $NO_3 \rightarrow products$        | $0.25 \times v_{NO3} \times \gamma_{NO3} \times S_{AERO}$                                         | c |
|------------------------------------|---------------------------------------------------------------------------------------------------|---|
| $CIONO_2 \rightarrow Cl_2 + HNO_3$ | $0.25 \times v_{\text{CIONO2}} \times \gamma_{\text{CIONO2}} \times S_{\text{AERO}}$              | d |
| $HOCl \rightarrow Cl_2$            | $0.25 \times v_{\text{HOCl}} \times \gamma_{\text{HOCl}} \times S_{\text{AERO}}$                  | e |
|                                    | aerosol: $\frac{1}{4} \times v_{\text{NO2}} \times \gamma_{\text{NO2}\_a} \times S_{\text{AERO}}$ | f |
| $NO_2 \rightarrow HONO$            | ground: $\frac{1}{8} \times v_{\text{NO2}} \times \gamma_{\text{NO2}\_g} \times \frac{s}{v}$      | f |

 $v_x$ : mean molecular speed of x;  $\gamma_x$ : uptake coefficient of x on surfaces;  $S_{AERO}$ : aerosol surface area concentration.

<sup>a</sup>  $\varphi_{CINO2}$ : product yield of CINO<sub>2</sub> from heterogeneous reaction of N<sub>2</sub>O<sub>5</sub>. In the present study, we turned off the formation of CINO<sub>2</sub> and constrained the model with the measured CINO<sub>2</sub> profiles. We adopted a moderate  $\gamma_{N2O5}$  of 0.014 in the present study, which was the observationally-derived average value from our recent field study in Hong Kong (Wang et al., 2016). NA: nitrate aerosol.

<sup>b</sup> *r*: surface-weighted particle radius; *D*g: gas phase diffusion coefficient. In the present study, we adopted a moderate  $\gamma_{HO2}$  value of 0.02.

<sup>c</sup>  $\gamma_{NO3} = 0.004$ .

<sup>d</sup>  $\gamma_{\text{CIONO2}} = 0.01$ .

<sup>e</sup>  $\gamma_{\text{HOCl}} = 0.01$ .

<sup>f</sup> $\gamma_{NO2\_g/a}$ : uptake coefficient of NO<sub>2</sub> on ground/aerosol surfaces. Considering the photo-enhanced production of HONO from surface reactions, higher values of  $\gamma_{NO2\_g/a}$  were used during daytime than at night. For  $\gamma_{NO2\_a}$ , we used a value of  $1 \times 10^{-6}$  at nighttime and increased it to  $5 \times 10^{-6}$  during daytime. For  $\gamma_{NO2\_g}$ , when solar radiation was smaller than 400 W m<sup>-2</sup>, we used the values of  $1 \times 10^{-6}$  and  $2 \times 10^{-5}$  during night and daytime respectively; with more intense solar radiation,  $\gamma_{NO2\_g} = 2 \times 10^{-5} \times (\text{solar radiation}/400)$  was used. *S/V* refers to the effective surface density of the ground. An effective surface area of 1.7 m<sup>2</sup> per geometric ground surface was used to calculate the *S/V*. Please refer to *Xue et al.* (2014a) for the details.

### 1.1.3. Chlorine chemistry module

The MCM (v3.2) only considers the reactions of chlorine atom (Cl·) with alkane species (Saunders et al., 2003). To comprehensively represent the Cl· chemistry, we have developed a detailed chlorine chemistry module and incorporated it into the OBM-AOCP. The protocol for compiling this new chemistry scheme has been published in recent (Xue et al., 2015), and the code in the format of FACSIMILE language is freely available per request. The chemical reactions and kinetic data are summarized below in *Tables S3-S5*.

Table S3. Summary of inorganic reactions added in the MCM to represent chlorine chemistry

| Category R | leactions | $k \text{ (cm}^3 \text{ molecules}^{-1} \text{ s}^{-1} \text{) or}$ | $J(s^{-1})$ | Remarks |
|------------|-----------|---------------------------------------------------------------------|-------------|---------|
|------------|-----------|---------------------------------------------------------------------|-------------|---------|

|                    | $Cl_2 \rightarrow Cl + Cl$              | $J_{C12}$                                                                                                            | - |
|--------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|---|
| Dhotolygia         | $ClNO_2 \rightarrow NO_2 + Cl$          | $J_{\rm CINO2}$                                                                                                      | а |
| Photolysis         | $ClONO_2 \rightarrow NO_3 + Cl$         | $0.83 \times J_{\text{CIONO2}}$                                                                                      | b |
| reactions          | $ClONO_2 \rightarrow NO_2 + ClO$        | $0.17 \times J_{\text{CIONO2}}$                                                                                      | b |
|                    | $HOCl \rightarrow OH + Cl$              | $J_{ m HOCl}$                                                                                                        | - |
|                    | $Cl + O_3 \rightarrow ClO + O_2$        | $2.8 \times 10^{-11} \times exp(-250/T)$                                                                             | с |
|                    | $Cl + HO_2 \rightarrow HCl + O_2$       | $3.5 \times 10^{-11}$                                                                                                | с |
| $C 1 + \mathbf{V}$ | $Cl + HO_2 \rightarrow ClO + OH$        | $7.5 \times 10^{-11} \times exp(-620/T)$                                                                             | с |
| $CI + \Lambda$     | $Cl + H_2O_2 \rightarrow HCl + HO_2$    | $1.1 \times 10^{-11} \times exp(-980/T)$                                                                             | с |
|                    | $Cl + NO_3 \rightarrow NO_2 + ClO$      | $2.4 \times 10^{-11}$                                                                                                | c |
|                    | $Cl + ClONO_2 \rightarrow Cl_2 + NO_3$  | $6.2 \times 10^{-12} \times \exp(145/T)$                                                                             | c |
|                    | $OH + HCl \rightarrow Cl + H_2O$        | $1.7 \times 10^{-12} \times \exp(-230/T)$                                                                            | с |
|                    | $OH + Cl_2 \rightarrow HOCl + Cl$       | $3.6 \times 10^{-12} \times exp(-1200/T)$                                                                            | c |
| OH + X             | $OH\text{+}HOCl \rightarrow ClO + H_2O$ | $5.0 \times 10^{-13}$                                                                                                | c |
|                    | $OH + ClO \rightarrow HO2 + Cl$         | $1.8 \times 10^{-11}$                                                                                                | c |
|                    | $OH + ClO \rightarrow HCl + O_2$        | $1.2 \times 10^{-12}$                                                                                                | c |
|                    | $ClO + NO_2 \rightarrow ClONO_2$        | 7.0×10 <sup>-11</sup>                                                                                                | с |
| ClO + X            | $ClO + HO_2 \rightarrow HOCl + O_2$     | $2.2 \times 10^{-12} \times \exp(340/T)$                                                                             | c |
|                    | $ClO + NO \rightarrow Cl + NO_2$        | $6.2 \times 10^{-12} \times \exp(295/T)$                                                                             | с |
|                    | $N_2O_5 \rightarrow NA + NA$            | $0.25 \times v_{\text{N2O5}} \times \gamma_{\text{N2O5}} \times S_{\text{AERO}} \times (1 - \varphi_{\text{CINO2}})$ | d |
| Heterogeneous      | $N_2O_5 \rightarrow NA + ClNO_2$        | $0.25 \times v_{\text{N2O5}} \times \gamma_{\text{N2O5}} \times S_{\text{AERO}} \times \varphi_{\text{CINO2}}$       | d |
| reactions          | $CIONO_2 \rightarrow Cl_2 + HNO_3$      | $0.25 \times v_{\text{CIONO2}} \times \gamma_{\text{CIONO2}} \times S_{\text{AERO}}$                                 | d |
|                    | $HOCl \rightarrow Cl_2$                 | $0.25 \times v_{\text{HOCI}} \times \gamma_{\text{HOCI}} \times S_{\text{AERO}}$                                     | d |

<sup>a</sup> In the present study,  $J_{CINO2}$  was scaled as a function of the measured  $J_{NO2}$ , i.e.,  $J_{CINO2} = 0.040 * J_{NO2}$ .

<sup>b</sup> The branching ratio is determined based on the Tropospheric Ultraviolet Visible (TUV) Radiation model calculations (http://cprm.acd.ucar.edu/Models/TUV/Interactive\_TUV/).

<sup>c</sup> The kinetic data are taken from the IUPAC database (<u>http://iupac.pole-ether.fr/index.html</u>).

<sup>d</sup> The same as those described in Table S2.

## Table S4. Summary of organic reactions existing in the MCM to represent chlorine chemistry

| Reactions                   | $k (\mathrm{cm}^3 \mathrm{molecules}^{-1}\mathrm{s}^{-1})$ |
|-----------------------------|------------------------------------------------------------|
| Cl + CH4 = CH3O2 + HCl      | 6.6×10 <sup>-12</sup> ×exp (-1240/T)                       |
| Cl + C2H6 = C2H5O2 + HCl    | 8.3×10 <sup>-11</sup> ×exp (-100/T)                        |
| Cl + C3H8 = IC3H7O2 + HCl   | $0.43 \times 1.4 \times 10^{-10} \times \exp(75/T)$        |
| Cl + C3H8 = NC3H7O2 + HCl   | $0.59 \times 1.4 \times 10^{-10} \times \exp(-90/T)$       |
| Cl + NC4H10 = NC4H9O2 + HCl | 0.44×2.05×10 <sup>-10</sup> ×exp (-120/T)                  |
| Cl + NC4H10 = SC4H9O2 + HCl | 0.59×2.05×10 <sup>-10</sup> ×exp (55/T)                    |
| Cl + IC4H10 = IC4H9O2 + HC1 | $0.564 \times 1.43 \times 10^{-10}$                        |

| Cl + IC4H10 = TC4H9O2 + HCl | $0.436 \times 1.43 \times 10^{-10}$ |
|-----------------------------|-------------------------------------|
| Cl + NC5H12 = PEAO2 + HCl   | $0.222 \times 2.80 \times 10^{-10}$ |
| Cl + NC5H12 = PEBO2 + HCl   | $0.558 \times 2.80 \times 10^{-10}$ |
| Cl + NC5H12 = PECO2 + HC1   | $0.220 \times 2.80 \times 10^{-10}$ |
| Cl + IC5H12 = IPEAO2 + HC1  | $0.408 \times 2.20 \times 10^{-10}$ |
| Cl + IC5H12 = IPEBO2 + HCl  | $0.342 \times 2.20 \times 10^{-10}$ |
| Cl + IC5H12 = IPECO2 + HCl  | $0.250 \times 2.20 \times 10^{-10}$ |
| Cl + NEOP = NEOPO2 + HCl    | $1.11 \times 10^{-10}$              |
| Cl + NC6H14 = HEXAO2 + HCl  | $0.182 \times 3.40 \times 10^{-10}$ |
| Cl + NC6H14 = HEXBO2 + HCl  | $0.457 \times 3.40 \times 10^{-10}$ |
| Cl + NC6H14 = HEXCO2 + HCl  | $0.361 \times 3.40 \times 10^{-10}$ |
| Cl + M2PE = M2PEAO2 + HCl   | $0.321 \times 2.90 \times 10^{-10}$ |
| Cl + M2PE = M2PEBO2 + HCl   | $0.269 \times 2.90 \times 10^{-10}$ |
| Cl + M2PE = M2PECO2 + HCl   | $0.213 \times 2.90 \times 10^{-10}$ |
| Cl + M2PE = M2PEDO2 + HCl   | $0.197 \times 2.90 \times 10^{-10}$ |
| Cl + M3PE = M3PEAO2 + HCl   | $0.317 \times 2.80 \times 10^{-10}$ |
| Cl + M3PE = M3PEBO2 + HCl   | $0.530 \times 2.80 \times 10^{-10}$ |
| Cl + M3PE = M3PECO2 + HCl   | $0.153 \times 2.80 \times 10^{-10}$ |
| Cl + M22C4 = M22C43O2 + HCl | $0.461 \times 1.71 \times 10^{-10}$ |
| Cl + M22C4 = M33C4O2 + HCl  | $0.386 \times 1.71 \times 10^{-10}$ |
| Cl + M22C4 = M22C4O2 + HCl  | $0.154 \times 1.71 \times 10^{-10}$ |
| Cl + M23C4 = M23C43O2 + HCl | $0.478 \times 2.30 \times 10^{-10}$ |
| Cl + M23C4 = M23C4O2 + HCl  | $0.522 \times 2.30 \times 10^{-10}$ |
| Cl + NC7H16 = HEPTO2 + HCl  | $3.90 \times 10^{-10}$              |
| Cl + M2HEX = M2HEXAO2 + HCl | $0.779 \times 3.50 \times 10^{-10}$ |
| Cl + M2HEX = M2HEXBO2 + HCl | $0.221 \times 3.50 \times 10^{-10}$ |
| Cl + M3HEX = M3HEXAO2 + HCl | $0.793 \times 3.11 \times 10^{-10}$ |
| Cl + M3HEX = M3HEXBO2 + HCl | $0.207 \times 3.11 \times 10^{-10}$ |
| Cl + NC8H18 = OCTO2 + HCl   | $4.60 \times 10^{-10}$              |
| Cl + NC9H20 = NONO2 + HCl   | $4.80 \times 10^{-10}$              |
| Cl + NC10H22 = DECO2 + HCl  | $5.55 \times 10^{-10}$              |
| Cl + NC11H24 = UDECO2 + HCl | $6.17 \times 10^{-10}$              |
| Cl + NC12H26 = DDECO2 + HCl | $6.74 \times 10^{-10}$              |
| Cl + CHEX = CHEXO2 + HCl    | $3.50 \times 10^{-10}$              |

# Table S5. Summary of organic reactions added to the MCM to represent the chlorine chemistry

| Reactions <sup>a</sup>                                                              | $k (cm^3 molecules^{-1}s^{-1})$          | Source |
|-------------------------------------------------------------------------------------|------------------------------------------|--------|
|                                                                                     | Aldehydes + Cl                           |        |
| $\mathrm{HCHO} + \mathrm{Cl} \rightarrow \mathrm{HCl} + \mathrm{HO2} + \mathrm{CO}$ | $8.1 \times 10^{-11} \times \exp(-34/T)$ | IUPAC  |

\_\_\_\_\_

| $CH3CHO + Cl \rightarrow CH3CO3 + HCl$                                 | $7.92 \times 10^{-11}$                   | IUPAC |  |
|------------------------------------------------------------------------|------------------------------------------|-------|--|
| $\rm CH3CHO + Cl \rightarrow \rm HCOCH2O2 + \rm HCl$                   | 8.0×10 <sup>-13</sup>                    | IUPAC |  |
| $C2H5CHO + Cl \rightarrow C2H5CO3 + HCl$                               | $1.3 \times 10^{-10}$                    | IUPAC |  |
| $C3H7CHO + Cl \rightarrow BUTALO2 + HCl$                               | $5.5 \times 10^{-12} \times exp (410/T)$ | b     |  |
| $C3H7CHO + Cl \rightarrow C3H7CO3 + HCl$                               | $3.1 \times 10^{-11} \times \exp(410/T)$ | b     |  |
| $IPRCHO + Cl \rightarrow IBUTALBO2 + HCl$                              | $2.2 \times 10^{-12} \times \exp(410/T)$ | b     |  |
| $IPRCHO + Cl \rightarrow IBUTALCO2 + HCl$                              | $2.4 \times 10^{-12} \times \exp(410/T)$ | b     |  |
| $IPRCHO + Cl \rightarrow IPRCO3 + HCl$                                 | $3.7 \times 10^{-11} \times \exp(410/T)$ | b     |  |
| $C4H9CHO + Cl \rightarrow C4CHOBO2 + HCl$                              | $7.3 \times 10^{-12} \times \exp(448/T)$ | b     |  |
| $C4H9CHO + Cl \rightarrow C4H9CO3 + HCl$                               | $3.1 \times 10^{-11} \times \exp(448/T)$ | b     |  |
| $BENZAL + Cl \rightarrow C6H5CO3 + HCl$                                | $3.6 \times 10^{-11} \times \exp(225/T)$ | b     |  |
| $GLYOX + Cl \rightarrow CO + CO + HO2 + HCl$                           | $4.86 \times 10^{-11} \times exp(-34/T)$ | с     |  |
| $GLYOX + Cl \rightarrow HCOCO3 + HCl$                                  | $3.24 \times 10^{-11} \times exp(-34/T)$ | с     |  |
| $MGLYOX + Cl \rightarrow CH3CO3 + CO + HCl$                            | $8.0 \times 10^{-11}$                    | с     |  |
| $MACR + Cl \rightarrow MACO3 + HCl$                                    | 4.86×10 <sup>-11</sup> ×exp(380/T) ×0.45 | d     |  |
| Ke                                                                     | etones + Cl                              |       |  |
| $CH3COCH3 + Cl \rightarrow CH3COCH2O2 + HCl$                           | $1.5 \times 10^{-11} \times exp(-590/T)$ | IUPAC |  |
| $MEK + Cl \rightarrow MEKAO2 + HCl$                                    | $1.4 \times 10^{-11} \times exp (80/T)$  | IUPAC |  |
| $MEK + Cl \rightarrow MEKBO2 + HCl$                                    | $1.4 \times 10^{-11} \times exp (80/T)$  | IUPAC |  |
| $MEK + Cl \rightarrow MEKCO2 + HCl$                                    | $2.4 \times 10^{-12} \times exp (80/T)$  | IUPAC |  |
| $MPRK + Cl \rightarrow CO2C54O2 + HCl$                                 | 9.6×10 <sup>-11</sup>                    | b     |  |
| $MPRK + Cl \rightarrow MPRKAO2 + HCl$                                  | $2.1 \times 10^{-11}$                    | b     |  |
| $\text{DIEK} + \text{Cl} \rightarrow \text{DIEKAO2} + \text{HCl}$      | $2.4 \times 10^{-11}$                    | b     |  |
| $\text{DIEK} + \text{Cl} \rightarrow \text{DIEKBO2} + \text{HCl}$      | $2.4 \times 10^{-11}$                    | b     |  |
| $MIPK + Cl \rightarrow MIPKAO2 + HCl$                                  | 3.5×10 <sup>-11</sup>                    | b     |  |
| $MIPK + Cl \rightarrow MIPKBO2 + HCl$                                  | 3.2×10 <sup>-11</sup>                    | b     |  |
| $\text{HEX2ONE} + \text{Cl} \rightarrow \text{HEX2ONAO2} + \text{HCl}$ | $1.56 \times 10^{-10}$                   | b     |  |
| $\text{HEX2ONE} + \text{Cl} \rightarrow \text{HEX2ONBO2} + \text{HCl}$ | 3.5×10 <sup>-11</sup>                    | b     |  |
| $\text{HEX2ONE} + \text{Cl} \rightarrow \text{HEX2ONCO2} + \text{HCl}$ | $2.7 \times 10^{-11}$                    | b     |  |
| $\text{HEX3ONE} + \text{Cl} \rightarrow \text{HEX3ONAO2} + \text{HCl}$ | $1.05 \times 10^{-10}$                   | b     |  |
| $\text{HEX3ONE} + \text{Cl} \rightarrow \text{HEX3ONBO2} + \text{HCl}$ | 2.3×10 <sup>-11</sup>                    | b     |  |
| $\text{HEX3ONE} + \text{Cl} \rightarrow \text{HEX3ONCO2} + \text{HCl}$ | $1.8 \times 10^{-11}$                    | b     |  |
| $\text{HEX3ONE} + \text{Cl} \rightarrow \text{HEX3ONDO2} + \text{HCl}$ | $1.8 \times 10^{-11}$                    | b     |  |
| $MIBK + Cl \rightarrow MIBKAO2 + HCl$                                  | $3.1 \times 10^{-10}$                    | b     |  |
| $MIBK + Cl \rightarrow MIBKBO2 + HCl$                                  | 3.0×10 <sup>-11</sup>                    | b     |  |
| $MTBK + Cl \rightarrow MTBKO2 + HCl$                                   | 2.9×10 <sup>-11</sup>                    | b     |  |
| $CYHEXONE + Cl \rightarrow CYHXONAO2 + HCl$                            | $1.3 \times 10^{-10}$                    | b     |  |
| Alcohols + Cl                                                          |                                          |       |  |
| $\rm CH3OH + Cl \rightarrow \rm HO2 + \rm HCHO + \rm HCl$              | $7.1 \times 10^{-11} \times exp(-75/T)$  | IUPAC |  |
| $C2H5OH + Cl \rightarrow CH3CHO + HO2 + HCl$                           | $5.5 \times 10^{-11} \times \exp(155/T)$ | IUPAC |  |

| $C2H5OH + C1 \rightarrow HOCH2CH2O2 + HCl$                                      | $4.8 \times 10^{-12} \times \exp(155/T)$  | IUPAC |
|---------------------------------------------------------------------------------|-------------------------------------------|-------|
| NPROPOL+ $Cl \rightarrow C2H5CHO + HO2 + HCl$                                   | $1.6 \times 10^{-11} \times \exp(525/T)$  | IUPAC |
| $NPROPOL + Cl \rightarrow HO1C3O2 + HCl$                                        | $4.1 \times 10^{-12} \times \exp(525/T)$  | IUPAC |
| $NPROPOL + Cl \rightarrow HYPROPO2 + HCl$                                       | $6.8 \times 10^{-12} \times \exp(525/T)$  | IUPAC |
| $IPROPOL + Cl \rightarrow CH3COCH3 + HO2 + HCl$                                 | $7.4 \times 10^{-11}$                     | IUPAC |
| $IPROPOL + Cl \rightarrow IPROPOLO2 + HCl$                                      | $1.3 \times 10^{-11}$                     | IUPAC |
| NBUTOL+ $Cl \rightarrow C3H7CHO + HO2 + HCl$                                    | $1.25 \times 10^{-11} \times \exp(550/T)$ | IUPAC |
| $NBUTOL + Cl \rightarrow NBUTOLAO2 + HCl$                                       | $1.12 \times 10^{-11} \times \exp(550/T)$ | IUPAC |
| $NBUTOL + Cl \rightarrow NBUTOLBO2 + HCl$                                       | $1.12 \times 10^{-11} \times \exp(550/T)$ | IUPAC |
| $BUT2OL + Cl \rightarrow BUT2OLO2 + HCl$                                        | 5.37×10 <sup>-11</sup>                    | b     |
| $BUT2OL + Cl \rightarrow MEK + HO2 + HCl$                                       | 9.51×10 <sup>-11</sup>                    | b     |
| $IBUTOL + Cl \rightarrow IBUTOLBO2 + HCl$                                       | $2.6 \times 10^{-11} \times \exp(352/T)$  | b     |
| $IBUTOL + Cl \rightarrow IBUTOLCO2 + HCl$                                       | $4.2 \times 10^{-12} \times \exp(352/T)$  | b     |
| $IBUTOL + Cl \rightarrow IPRCHO + HO2 + HCl$                                    | $1.6 \times 10^{-11} \times \exp(352/T)$  | b     |
| $TBUTOL+Cl \rightarrow TBUTOLO2 + HCl$                                          | $2.4 \times 10^{-11} \times \exp(-121/T)$ | b     |
| $TBUTOL+Cl \rightarrow TC4H9O + HCl$                                            | $3.1 \times 10^{-12} \times \exp(-121/T)$ | b     |
| $PECOH + Cl \rightarrow DIEK + HO2 + HCl$                                       | 9.1×10 <sup>-11</sup>                     | b     |
| $PECOH + Cl \rightarrow HO3C5O2 + HCl$                                          | $1.5 \times 10^{-11}$                     | b     |
| $PECOH + C1 \rightarrow PE2ENEBO2 + HC1$                                        | $1.0 \times 10^{-10}$                     | b     |
| $IPEAOH+Cl \rightarrow BUT2CHO + HO2 + HCl$                                     | 5.5×10 <sup>-11</sup>                     | b     |
| $IPEAOH + Cl \rightarrow HM2C43O2 + HCl$                                        | 4.9×10 <sup>-11</sup>                     | b     |
| $IPEAOH + Cl \rightarrow M2BUOL2O2 + HCl$                                       | $8.7 \times 10^{-11}$                     | b     |
| $ME3BUOL+C1 \rightarrow C3ME3CHO+HO2 + HC1$                                     | 6.45×10 <sup>-11</sup>                    | b     |
| $ME3BUOL + Cl \rightarrow HM33C3O2 + HCl$                                       | $1.02 \times 10^{-10}$                    | b     |
| $ME3BUOL + Cl \rightarrow ME3BUOLO2 + HCl$                                      | 5.78×10 <sup>-11</sup>                    | b     |
| $IPECOH + Cl \rightarrow HO2M2C4O2 + HCl$                                       | 6.58×10 <sup>-12</sup>                    | b     |
| $IPECOH + Cl \rightarrow ME2BU2OLO2 + HCl$                                      | 4.62×10 <sup>-11</sup>                    | b     |
| $IPECOH + Cl \rightarrow PROL11MO2 + HCl$                                       | 1.31×10 <sup>-11</sup>                    | b     |
| $IPEBOH + Cl \rightarrow H2M3C4O2 + HCl$                                        | 1.57×10 <sup>-11</sup>                    | b     |
| $IPEBOH + Cl \rightarrow ME2BUOLO2 + HCl$                                       | 9.82×10 <sup>-11</sup>                    | b     |
| $IPEBOH + Cl \rightarrow MIPK + HO2 + HCl$                                      | 9.82×10 <sup>-11</sup>                    | b     |
| $CYHEXOL+Cl \rightarrow CYHEXOLAO2 + HCl$                                       | $2.2 \times 10^{-10}$                     | b     |
| $CYHEXOL + Cl \rightarrow CYHEXONE+HO2+ HCl$                                    | 7.9×10 <sup>-11</sup>                     | b     |
| $\mathrm{MIBKAOH}{+}\mathrm{Cl} \rightarrow \mathrm{MIBKAOHAO2}{+}\mathrm{HCl}$ | 3.4×10 <sup>-11</sup>                     | b     |
| $\mathrm{MIBKAOH}{+}\mathrm{Cl} \rightarrow \mathrm{MIBKAOHBO2}{+}\mathrm{HCl}$ | 1.3×10 <sup>-11</sup>                     | b     |
| $MIBKAOH + Cl \rightarrow MIBKHO4O2 + HCl$                                      | $1.8 \times 10^{-12}$                     | b     |
| $\rm ETHGLY+Cl \rightarrow \rm HOCH2CHO+\rm HO2+\rm HCl$                        | $2.5 \times 10^{-10}$                     | b     |
| $PROPGLY+Cl \rightarrow ACETOL + HO2 + HCl$                                     | $1.26 \times 10^{-10}$                    | b     |
| $PROPGLY+Cl \rightarrow CH3CHOHCHO + HO2 + HCl$                                 | 7.94×10 <sup>-11</sup>                    | b     |
| $CRESOL + Cl \rightarrow OXYL1O2 + HCl$                                         | $6.20 \times 10^{-11}$                    | e     |

| Organic acids + Cl                                                  |                                     |                        |  |  |
|---------------------------------------------------------------------|-------------------------------------|------------------------|--|--|
| $\rm CH3OOH + Cl \rightarrow CH3O2 + HCl$                           | 3.54×10 <sup>-11</sup>              | IUPAC                  |  |  |
| $\rm CH3OOH + Cl \rightarrow \rm HCHO + OH + \rm HCl$               | 2.36×10 <sup>-11</sup>              | IUPAC                  |  |  |
| $\text{HCOOH} + \text{Cl} \rightarrow \text{HO2} + \text{HCl}$      | $1.9 \times 10^{-13}$               | IUPAC                  |  |  |
| $\rm CH3CO2H + Cl \rightarrow \rm CH3O2 + \rm HCl$                  | $2.65 \times 10^{-14}$              | IUPAC                  |  |  |
| $PROPACID + Cl \rightarrow C2H5O2 + HCl$                            | 3.96×10 <sup>-14</sup>              | b                      |  |  |
| Organic                                                             | c nitrates + Cl                     |                        |  |  |
| $\rm CH3NO3 + Cl \rightarrow \rm HCHO + \rm NO2 + \rm HCl$          | $2.4 \times 10^{-13}$               | IUPAC                  |  |  |
| $C2H5NO3 + Cl \rightarrow CH3CHO + NO2 + HCl$                       | $4.7 \times 10^{-12}$               | IUPAC                  |  |  |
| $\rm NC3H7NO3 + Cl \rightarrow C2H5CHO + NO2 + HCl$                 | 2.2×10 <sup>-11</sup>               | IUPAC                  |  |  |
| $IC3H7NO3 + Cl \rightarrow CH3COCH3 + NO2 + HCl$                    | 3.8×10 <sup>-12</sup>               | IUPAC                  |  |  |
| $NC4H9NO3 + Cl \rightarrow C3H7CHO + NO2 + HCl$                     | 8.5×10 <sup>-11</sup>               | IUPAC                  |  |  |
| Aron                                                                | natics + Cl                         |                        |  |  |
| $TOLUENE + Cl \rightarrow C6H5CH2O2 + HCl$                          | 5.9×10 <sup>-11</sup>               | Shi and Bernhard, 1997 |  |  |
| $OXYL + Cl \rightarrow OXYLO2 + HCl$                                | $1.5 \times 10^{-10}$               | Shi and Bernhard, 1997 |  |  |
| $MXYL + Cl \rightarrow MXYLO2 + HCl$                                | $1.7 \times 10^{-10}$               | b                      |  |  |
| $PXYL + Cl \rightarrow PXYLO2 + HCl$                                | 2.6×10 <sup>-10</sup>               | b                      |  |  |
| $EBENZ + Cl \rightarrow C6H5C2H4O2 + HCl$                           | 9.1×10 <sup>-11</sup>               | b                      |  |  |
| $PBENZ + Cl \rightarrow PHC3O2 + HCl$                               | $7.5 \times 10^{-11}$               | b                      |  |  |
| $IPBENZ + Cl \rightarrow PHIC3O2 + HCl$                             | 8.2×10 <sup>-11</sup>               | b                      |  |  |
| $TM123B + Cl \rightarrow TM123BO2 + HCl$                            | 3.6×10 <sup>-10</sup>               | b                      |  |  |
| $TM124B + Cl \rightarrow TM124BO2 + HCl$                            | 3.6×10 <sup>-10</sup>               | b                      |  |  |
| $TM135B + Cl \rightarrow TMBO2 + HCl$                               | 3.1×10 <sup>-10</sup>               | b                      |  |  |
| $OETHTOL + Cl \rightarrow ETOLO2 + HCl$                             | $1.1 \times 10^{-10}$               | b                      |  |  |
| $METHTOL + Cl \rightarrow ETOLO2 + HCl$                             | $1.4 \times 10^{-10}$               | b                      |  |  |
| $\text{PETHTOL} + \text{Cl} \rightarrow \text{ETOLO2} + \text{HCl}$ | $2.2 \times 10^{-10}$               | b                      |  |  |
| Alk                                                                 | enes + Cl                           |                        |  |  |
| $C2H4 + Cl \rightarrow CH2CLCH2O2$                                  | $1.0 \times 10^{-10}$               | IUPAC                  |  |  |
| $C3H6 + Cl \rightarrow C3H5O2 + HCl$                                | 2.7×10 <sup>-11</sup>               | Riedel et al. 2014     |  |  |
| $C3H6 + Cl \rightarrow IPROCLO2$                                    | $1.35 \times 10^{-10}$              | Riedel et al. 2014     |  |  |
| $C3H6 + Cl \rightarrow HYPROCLO2$                                   | $1.08 \times 10^{-10}$              | Riedel et al. 2014     |  |  |
| $OLEFIN + C1 \rightarrow OLECLO2$                                   | 5.86×10 <sup>-10</sup>              | b, g                   |  |  |
| $C5H8 + Cl \rightarrow ISOCLO2$                                     | 1.28×10 <sup>-10</sup> ×exp (390/T) | CB04                   |  |  |
| Alkyne + Cl                                                         |                                     |                        |  |  |
| $C2H2 + CI \rightarrow CLCHO + CO + HO2$                            | 4.97×10 <sup>-11</sup>              | h                      |  |  |

<sup>a</sup> All species are variables existing in the MCM, except for 'OLEFIN' and some reaction products of Cl with C<sub>3</sub>H<sub>6</sub>, OLEFIN, C<sub>5</sub>H<sub>8</sub> and ethyne.

<sup>b</sup> Reaction with Cl is assumed to be similar to that with OH, and the Cl rate constant is calculated by multiplying the OH rate constant by the average  $k_{\rm Cl}/k_{\rm OH}$  for compounds with available kinetic data (note that the C1 species was excluded from the  $k_{\rm Cl}/k_{\rm OH}$  calculation).

<sup>c</sup> The mechanism is taken from the SAPRC07 (http://www.engr.ucr.edu/~carter/SAPRC/saprc07.pdf).

<sup>d</sup> 45% of MACR is oxidized by Cl as a common aldehyde, whilst the remainder is treated as an alkene, being lumped into the 'OLEFIN'.

<sup>e</sup> The mechanism is taken from the SAPRC07 (http://www.engr.ucr.edu/~carter/SAPRC/saprc07.pdf). The reaction yields a new RO<sub>2</sub> radical, the degradation of which is approximated for simplicity to be the same as that of OXYL1O2.

<sup>f</sup> Reactions of Cl with  $C_3H_6$ , OLEFIN and  $C_5H_8$  introduce new model species and further reactions (see *Xue et al.* 2015 for the further reactions).

<sup>g</sup> OLEFIN is defined in the present study as the sum of 1-butene, i-butene, trans-2-butene, cis-2-butene, 1-pentene, trans-2-pentene, cis-2-pentene, 1-hexene, 2-methyl-1-butene, 3-methyl-1-butene, 2-methyl-2-butene, trans-2-hexene, cis-2-hexene, 2,3-dimethyl-2-butene, styrene, MVK and MACR (55%).

<sup>h</sup> The mechanism is taken from the SAPRC07 (http://www.engr.ucr.edu/~carter/SAPRC/saprc07.pdf). CLCHO is a new species in the MCM, but is assumed to be less reactive and not considered for further reactions.

## **1.2.** Physical processes

#### **1.2.1.** Photolysis frequencies

In the OBM-AOCP, photolysis frequencies (J values) are computed as a function of solar zenith angle (SZA), as defined by Saunders et al. (2003). To account for the potential impacts of cloud cover and particles, the model-calculated J values were further scaled in the present study with the measured  $J_{NO2}$  data, which were read in the model at a time interval of 10 minutes.

## 1.2.2. Dilution mixing with evolution of the planetary boundary layer

The dilution mixing was considered for all model species by introducing a dilution factor, which is defined as a function of the change in the height of planetary boundary layer (PBL). In the present study, the PBL height was assumed to vary linearly from 300 m at night to 1500 m at 14:00 local time in the afternoon. Sensitivity model runs with other maximum PBL heights (e.g., 1000 m and 2000 m) indicated that its impacts on the modeling results are negligible (i.e., <3% for modeled radical concentrations and primary source strengths of OH).

## 1.2.3. Dry Deposition

Dry deposition was considered for various inorganic gases and organic species including PANs, carbonyls, organic peroxides and acids in our model. The dry deposition velocities are taken from the literature of Zhang et al. (2003).

### **1.3.** Observational Constraint

The model was constrained in real-time with a full suite of measurement data to simulate the in-situ atmospheric chemistry. In the present study, it was constrained by the observed diurnal data of CO, NO, NO<sub>2</sub>, SO<sub>2</sub>, O<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, HONO, CINO<sub>2</sub>, PAN, CH<sub>4</sub>, C<sub>2</sub>-C<sub>10</sub> NMHCs, C<sub>1</sub>-C<sub>8</sub> carbonyls, aerosol surface area and radius, RH, temperature, pressure and J<sub>NO2</sub>. The observational data were averaged or interpolated with a time resolution of 10 minutes as the model constraints. The model was made with 00:00 LT as the initial time and ran for a 24-hour period. Before each simulation, the model was pre-run for five days with constraints of the campaign-average data so as to reach a steady state for the unconstrained species (e.g., radicals). Finally, the model outputs were extracted and applied for further analyses.

### 2. Model-simulated RO<sub>X</sub> levels

*Figure S6* shows the model-predicted daytime concentrations of OH, HO<sub>2</sub> and RO<sub>2</sub> at TC during the two episodes. The maximum concentrations of OH, HO<sub>2</sub> and RO<sub>2</sub> were  $6.4 \times 10^6$ ,  $7.7 \times 10^8$  and  $9.2 \times 10^8$  molecules cm<sup>-3</sup> (equivalent as 0.27, 32 and 39 pptv) on 25 August, and were  $7.0 \times 10^6$ ,  $5.3 \times 10^8$  and  $4.8 \times 10^8$  molecules cm<sup>-3</sup> (0.30, 23 and 20 pptv) on 31 August. To put our simulated results in a global perspective, the RO<sub>x</sub> radical levels at TC are well within the measured or modeled ranges in the polluted urban environments (Stone et al., 2012; and references therein). For instance, the peak concentrations of OH and HO<sub>2</sub> in Hong Kong are higher than those measured in Los Angeles U.S. (George et al., 1999), Birmingham U.K. (Emmerson et al., 2005) and Tokyo Japan (Kanaya et al., 2007), similar to those in New York U.S. (Ren et al., 2003) and Mexico City Mexico (Dusanter et al., 2009; Shirley et al., 2006), and lower than those in Nashville U.S. (Martinez et al., 2003) and Houston U.S. (Mao et al., 2010). In comparison with the limited results available in China, the RO<sub>x</sub> levels at TC are comparable to those simulated in Beijing (Liu et al., 2012) and Mt. Tai (Kanaya et al., 2009).

It is noteworthy that our simulated concentrations of  $OH/HO_2$  are much lower than the measured levels at a rural site (Back Garden) in the northern PRD (Hofzumahaus et al., 2009). The discrepancy may be due to the difference in the environments (e.g., high-NO<sub>X</sub> condition at TC and low-NO<sub>X</sub> condition at Back Garden) and/or the deficiency of current models to represent radical chemistry. Without direct observations of HO<sub>X</sub>, it is impossible to address the potential 'discrepancy' between measured and modeled radical levels, which is usually

found in the low-NO<sub>X</sub> environments. Here, the rationale of this study is to identify the major species and reaction pathways affecting the radical chemistry in the high-NO<sub>X</sub> environment of Hong Kong and the PRD region, based on the 'known chemistry' and comprehensive measurements of related parameters. Obviously, direct measurements of HO<sub>X</sub> radicals are quite needed to pin down this issue in the high-NO<sub>X</sub> environment of Hong Kong and the PRD region.



**Figure S6.** Model-simulated daytime concentrations of OH, HO<sub>2</sub> and RO<sub>2</sub> radicals at Tung Chung on (a) 25 August 2011 and (b) 31 August 2011.

## References

- Dusanter, S., Vimal, D., Stevens, P. S., Volkamer, R., Molina, L. T., Baker, A., Meinardi, S.,
  Blake, D., Sheehy, P., Merten, A., Zhang, R., Zheng, J., Fortner, E. C., Junkermann, W.,
  Dubey, M., Rahn, T., Eichinger, B., Lewandowski, P., Prueger, J., and Holder, H.:
  Measurements of OH and HO<sub>2</sub> concentrations during the MCMA-2006 field campaign Part 2: Model comparison and radical budget, *Atmos Chem Phys*, 9, 6655-6675, 2009.
- Emmerson, K. M., Carslaw, N., and Pilling, M. J.: Urban atmospheric chemistry during the PUMA campaign 2: Radical budgets for OH, HO<sub>2</sub> and RO<sub>2</sub>, *J Atmos Chem*, 52, 165-183, 2005.
- George, L. A., Hard, T. M., and O'Brien, R. J.: Measurement of free radicals OH and HO<sub>2</sub> in Los Angeles smog, *J Geophys Res-Atmos*, 104, 11643-11655, 1999.
- Hofzumahaus, A., Rohrer, F., Lu, K. D., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H.,

- Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S. R., Shao, M., Zeng, L. M., Wahner, A., and Zhang, Y. H.: Amplified Trace Gas Removal in the Troposphere, *Science*, 324, 1702-1704, 2009.
- Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, *Atmos Chem Phys*, 3, 181-193, 2003.
- Kanaya, Y., Cao, R. Q., Akimoto, H., Fukuda, M., Komazaki, Y., Yokouchi, Y., Koike, M., Tanimoto, H., Takegawa, N., and Kondo, Y.: Urban photochemistry in central Tokyo: 1.
  Observed and modeled OH and HO<sub>2</sub> radical concentrations during the winter and summer of 2004, *J Geophys Res-Atmos*, 112, 2007.
- Kanaya, Y., Pochanart, P., Liu, Y., Li, J., Tanimoto, H., Kato, S., Suthawaree, J., Inomata, S., Taketani, F., Okuzawa, K., Kawamura, K., Akimoto, H., and Wang, Z. F.: Rates and regimes of photochemical ozone production over Central East China in June 2006: a box model analysis using comprehensive measurements of ozone precursors, *Atmos Chem Phys*, 9, 7711-7723, 2009.
- Liu, Z., Wang, Y., Gu, D., Zhao, C., Huey, L. G., Stickel, R., Liao, J., Shao, M., Zhu, T., Zeng, L., Amoroso, A., Costabile, F., Chang, C. C., and Liu, S. C.: Summertime photochemistry during CAREBeijing-2007: ROx budgets and O<sub>3</sub> formation, *Atmos Chem Phys*, 12, 7737-7752, 2012.
- Mao, J. Q., Ren, X. R., Chen, S. A., Brune, W. H., Chen, Z., Martinez, M., Harder, H., Lefer, B., Rappengluck, B., Flynn, J., and Leuchner, M.: Atmospheric oxidation capacity in the summer of Houston 2006: Comparison with summer measurements in other metropolitan studies, *Atmos Environ*, 44, 4107-4115, 2010.
- Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher, R., Brune, W. H., Frost, G. J., Williams, E. J., Stroud, C. A., Jobson, B. T., Roberts, J. M., Hall, S. R., Shetter, R. E., Wert, B., Fried, A., Alicke, B., Stutz, J., Young, V. L., White, A. B., and Zamora, R. J.: OH and HO<sub>2</sub> concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999, *J Geophys Res-Atmos*, 108, 2003.

Ren, X. R., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Simpas, J. B., Brune, W. H.,

Schwab, J. J., Demerjian, K. L., He, Y., Zhou, X. L., and Gao, H. G.: OH and HO<sub>2</sub> chemistry in the urban atmosphere of New York City, *Atmos Environ*, 37, 3639-3651, 2003.

- Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, *Atmos Chem Phys*, 3, 161-180, 2003.
- Shirley, T. R., Brune, W. H., Ren, X., Mao, J., Lesher, R., Cardenas, B., Volkamer, R., Molina, L. T., Molina, M. J., Lamb, B., Velasco, E., Jobson, T., and Alexander, M.: Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003, *Atmos Chem Phys*, 6, 2753-2765, 2006.
- Stone, D., Whalley, L. K., and Heard, D. E.: Tropospheric OH and HO<sub>2</sub> radicals: field measurements and model comparisons, *Chem Soc Rev*, 41, 6348-6404, 2012.
- Wang, T., Tham, Y. J., Xue, L. K., Li, Q. Y., Zha, Q. Z., Wang, Z., Poon, C. N., Dube, W. P., Blake, D. R., Louie, P. K. K., Luk, C. W. Y., Tsui, W., Brown, S. S.: Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China, J. Geophys. Res., 121, 5, 2016.
- Xue, L. K., Wang, T., Guo, H., Blake, D. R., Tang, J., Zhang, X. C., Saunders, S. M., and Wang, W. X.: Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China: results from the Mt. Waliguan Observatory, *Atmos Chem Phys*, 13, 8551-8567, 2013.
- Xue, L. K., Wang, T., Gao, J., Ding, A. J., Zhou, X. H., Blake, D. R., Wang, X. F., Saunders, S. M., Fan, S. J., Zuo, H. C., Zhang, Q. Z., and Wang, W. X.: Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes, *Atmos Chem Phys*, 14, 13175-13188, 2014a.
- Xue, L. K., Wang, T., Louie, P. K. K., Luk, C. W. Y., Blake, D. R., and Xu, Z.: Increasing External Effects Negate Local Efforts to Control Ozone Air Pollution: A Case Study of Hong Kong and Implications for Other Chinese Cities, *Environ Sci Technol*, 48, 10769-10775, 2014b.
- Xue, L. K., Wang, T., Wang, X. F., Blake, D. R., Gao, J., Nie, W., Gao, R., Gao, X. M., Xu, Z.,

- Ding, A. J., Huang, Y., Lee, S. C., Chen, Y. Z., Wang, S. L., Chai, F. H., Zhang, Q. Z., and Wang, W. X.: On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation, *Environ Pollut*, 195, 39-47, 2014c.
- Xue, L. K., Saunders, S. M., Wang, T., Gao, R., Wang, X. F., Zhang, Q. Z., and Wang, W. X.: Development of a chlorine chemistry module for the Master Chemical Mechanism, *Geosci Model Dev*, 8, 3151-3162, 2015.

Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, *Atmos. Chem. Phys.*, 3, 2067-2082, 2003.