Articles | Volume 16, issue 15
https://doi.org/10.5194/acp-16-9563-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-16-9563-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia
Nansen Environmental and Remote Sensing Centre/Bjerknes
Centre for Climate Research, Bergen, Norway
Victoria V. Miles
Nansen Environmental and Remote Sensing Centre/Bjerknes
Centre for Climate Research, Bergen, Norway
Richard Davy
Nansen Environmental and Remote Sensing Centre/Bjerknes
Centre for Climate Research, Bergen, Norway
Martin W. Miles
Uni Research Climate/Bjerknes Centre for Climate
Research, Bergen, Norway, Institute of Arctic and Alpine Research,
University of Colorado, Boulder, Colorado, USA
Anna Kurchatova
Institute of the Earth's Cryosphere, Tyumen Oil and Gas
University, Tyumen, Russia
Related authors
Petra Bauerová, Josef Keder, Adriana Šindelářová, Ondřej Vlček, William Patiño, Jaroslav Resler, Pavel Krč, Jan Geletič, Hynek Řezníček, Martin Bureš, Kryštof Eben, Michal Belda, Jelena Radović, Vladimír Fuka, Radek Jareš, and Igor Ezau
EGUsphere, https://doi.org/10.5194/egusphere-2024-1222, https://doi.org/10.5194/egusphere-2024-1222, 2024
Short summary
Short summary
We implemented an observation campaign focused on street-level air quality and vertical meteorological profile measurement in Prague using low-cost sensors and remote sensing devices. Low-cost sensors have undergone long-term field testing, own data correction and drift evaluation procedures. A high level of NO2 pollution was confirmed due to the traffic load in streets, peaks of aerosol pollution appeared more under inversion conditions. The data will be further used for PALM model validation.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021, https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Short summary
House heating by wood-burning stoves is cozy and needed in boreal cities, e.g., Bergen, Norway. But smoke (aerosols) from stoves may reduce urban air quality. It can be transported over long distance excessively polluting some neighborhoods. Who will suffer the most? Our modelling study looks at urban pollution in unprecedented meter-sized details tracing smoke pathways and turbulent dispersion in a typical city. We prototype effective policy scenarios to mitigate urban air quality problems.
Igor Esau, Victoria Miles, Andrey Soromotin, Oleg Sizov, Mikhail Varentsov, and Pavel Konstantinov
Adv. Sci. Res., 18, 51–57, https://doi.org/10.5194/asr-18-51-2021, https://doi.org/10.5194/asr-18-51-2021, 2021
Short summary
Short summary
Persistent warm urban temperature anomalies – urban heat islands – significantly enhance already amplified climate warming in the Arctic. This study presents the surface urban heat islands in all circum-Arctic settlements with more than 3000 inhabitants. It reveals strong and persistent urban temperature anomalies during both summer and winter seasons that vary in different cities from 0.5 °C to more than 6.0 °C.
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 20, 625–647, https://doi.org/10.5194/acp-20-625-2020, https://doi.org/10.5194/acp-20-625-2020, 2020
Short summary
Short summary
Exceedances of legal thresholds for urban air pollution are of wide concern. We demonstrate the usefulness of very high-resolution modelling for the assessment of air pollution in the urban space on the example of Bergen, Norway. Vulnerability maps highlight areas with high pollutant loading and pathways for pollutant dispersion. This supports the understanding of urban air pollution beyond existing, scarce monitoring networks and possibly the mitigation of impacts on the local population.
Mikhail Varentsov, Pavel Konstantinov, Alexander Baklanov, Igor Esau, Victoria Miles, and Richard Davy
Atmos. Chem. Phys., 18, 17573–17587, https://doi.org/10.5194/acp-18-17573-2018, https://doi.org/10.5194/acp-18-17573-2018, 2018
Short summary
Short summary
This study reports on the urban heat island (UHI) in a typical Arctic city in winter. Using in situ observations, remote sensing data and modeling, we show that the urban temperature anomaly reaches up to 11 K with a mean value of 1.9 K. At least 50 % of this anomaly is caused by the UHI effect, driven mostly by heating. The rest is created by natural microclimatic variability over the hilly terrain. This is a strong argument in support of energy efficiency measures in the Arctic cities.
Tobias Wolf-Grosse, Igor Esau, and Joachim Reuder
Atmos. Chem. Phys., 17, 7261–7276, https://doi.org/10.5194/acp-17-7261-2017, https://doi.org/10.5194/acp-17-7261-2017, 2017
Short summary
Short summary
In this publication we used a number of very high (10 m) resolution simulations in order to assess the circulation in a coastal mountain city under high-air-pollution conditions. We found that forcings of the valley circulation through local surface inhomogeneities can have a distinct impact on the pollution distribution in the urban area. The work serves as a proof of concept for the applied high-resolution simulations to assess pollution conditions in the urban area under the given conditions.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
I. Esau, R. Davy, S. Outten, S. Tyuryakov, and S. Zilitinkevich
Nonlin. Processes Geophys., 20, 589–604, https://doi.org/10.5194/npg-20-589-2013, https://doi.org/10.5194/npg-20-589-2013, 2013
S. D. Outten and I. Esau
Atmos. Chem. Phys., 13, 5163–5172, https://doi.org/10.5194/acp-13-5163-2013, https://doi.org/10.5194/acp-13-5163-2013, 2013
Petra Bauerová, Josef Keder, Adriana Šindelářová, Ondřej Vlček, William Patiño, Jaroslav Resler, Pavel Krč, Jan Geletič, Hynek Řezníček, Martin Bureš, Kryštof Eben, Michal Belda, Jelena Radović, Vladimír Fuka, Radek Jareš, and Igor Ezau
EGUsphere, https://doi.org/10.5194/egusphere-2024-1222, https://doi.org/10.5194/egusphere-2024-1222, 2024
Short summary
Short summary
We implemented an observation campaign focused on street-level air quality and vertical meteorological profile measurement in Prague using low-cost sensors and remote sensing devices. Low-cost sensors have undergone long-term field testing, own data correction and drift evaluation procedures. A high level of NO2 pollution was confirmed due to the traffic load in streets, peaks of aerosol pollution appeared more under inversion conditions. The data will be further used for PALM model validation.
Tian Tian, Richard Davy, Leandro Ponsoni, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1865, https://doi.org/10.5194/egusphere-2024-1865, 2024
Short summary
Short summary
We introduced a modulating factor to the surface heat flux in the EC-Earth3 model to address the lack of parameterization for turbulent exchange over sea ice leads and correct the bias in Arctic sea ice. Three pairwise experiments showed that the amplified heat flux effectively reduces the overestimated sea ice, especially during cold periods, thereby improving agreement with observed and reanalysis data for sea ice area, volume, and ice edge, particularly in the North Atlantic Sector.
Stephen Outten and Richard Davy
Weather Clim. Dynam., 5, 753–762, https://doi.org/10.5194/wcd-5-753-2024, https://doi.org/10.5194/wcd-5-753-2024, 2024
Short summary
Short summary
The North Atlantic Oscillation is linked to wintertime weather events over Europe. One feature often overlooked is how much the climate variability explained by the NAO has changed over time. We show that there has been a considerable increase in the percentage variance explained by the NAO over the 20th century and that this is not reproduced by 50 CMIP6 climate models, which are generally biased too high. This has implications for projections and prediction of weather events in the region.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Basile de Fleurian, Richard Davy, and Petra M. Langebroek
The Cryosphere, 16, 2265–2283, https://doi.org/10.5194/tc-16-2265-2022, https://doi.org/10.5194/tc-16-2265-2022, 2022
Short summary
Short summary
As temperature increases, more snow and ice melt at the surface of ice sheets. Here we use an ice dynamics and subglacial hydrology model with simplified geometry and climate forcing to study the impact of variations in meltwater on ice dynamics. We focus on the variations in length and intensity of the melt season. Our results show that a longer melt season leads to faster glaciers, but a more intense melt season reduces glaciers' seasonal velocities, albeit leading to higher peak velocities.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021, https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Short summary
House heating by wood-burning stoves is cozy and needed in boreal cities, e.g., Bergen, Norway. But smoke (aerosols) from stoves may reduce urban air quality. It can be transported over long distance excessively polluting some neighborhoods. Who will suffer the most? Our modelling study looks at urban pollution in unprecedented meter-sized details tracing smoke pathways and turbulent dispersion in a typical city. We prototype effective policy scenarios to mitigate urban air quality problems.
Igor Esau, Victoria Miles, Andrey Soromotin, Oleg Sizov, Mikhail Varentsov, and Pavel Konstantinov
Adv. Sci. Res., 18, 51–57, https://doi.org/10.5194/asr-18-51-2021, https://doi.org/10.5194/asr-18-51-2021, 2021
Short summary
Short summary
Persistent warm urban temperature anomalies – urban heat islands – significantly enhance already amplified climate warming in the Arctic. This study presents the surface urban heat islands in all circum-Arctic settlements with more than 3000 inhabitants. It reveals strong and persistent urban temperature anomalies during both summer and winter seasons that vary in different cities from 0.5 °C to more than 6.0 °C.
Natalia Gnatiuk, Iuliia Radchenko, Richard Davy, Evgeny Morozov, and Leonid Bobylev
Biogeosciences, 17, 1199–1212, https://doi.org/10.5194/bg-17-1199-2020, https://doi.org/10.5194/bg-17-1199-2020, 2020
Short summary
Short summary
We analysed the ability of 34 climate models to reproduce main factors affecting the coccolithophore Emiliania huxleyi blooms in six Arctic and sub-Arctic seas. Furthermore, we proposed a procedure of ranking and selecting these models based on the model’s skill in reproducing 10 important oceanographic, meteorological, and biochemical variables in comparison with observation data and demonstrated that the proposed methodology shows a better result than commonly used all-model averaging.
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 20, 625–647, https://doi.org/10.5194/acp-20-625-2020, https://doi.org/10.5194/acp-20-625-2020, 2020
Short summary
Short summary
Exceedances of legal thresholds for urban air pollution are of wide concern. We demonstrate the usefulness of very high-resolution modelling for the assessment of air pollution in the urban space on the example of Bergen, Norway. Vulnerability maps highlight areas with high pollutant loading and pathways for pollutant dispersion. This supports the understanding of urban air pollution beyond existing, scarce monitoring networks and possibly the mitigation of impacts on the local population.
Mikhail Varentsov, Pavel Konstantinov, Alexander Baklanov, Igor Esau, Victoria Miles, and Richard Davy
Atmos. Chem. Phys., 18, 17573–17587, https://doi.org/10.5194/acp-18-17573-2018, https://doi.org/10.5194/acp-18-17573-2018, 2018
Short summary
Short summary
This study reports on the urban heat island (UHI) in a typical Arctic city in winter. Using in situ observations, remote sensing data and modeling, we show that the urban temperature anomaly reaches up to 11 K with a mean value of 1.9 K. At least 50 % of this anomaly is caused by the UHI effect, driven mostly by heating. The rest is created by natural microclimatic variability over the hilly terrain. This is a strong argument in support of energy efficiency measures in the Arctic cities.
Peter W. Thorne, Fabio Madonna, Joerg Schulz, Tim Oakley, Bruce Ingleby, Marco Rosoldi, Emanuele Tramutola, Antti Arola, Matthias Buschmann, Anna C. Mikalsen, Richard Davy, Corinne Voces, Karin Kreher, Martine De Maziere, and Gelsomina Pappalardo
Geosci. Instrum. Method. Data Syst., 6, 453–472, https://doi.org/10.5194/gi-6-453-2017, https://doi.org/10.5194/gi-6-453-2017, 2017
Short summary
Short summary
The term system-of-systems with respect to observational capabilities is frequently used, but what does it mean and how can it be assessed? Here, we define one possible interpretation of a system-of-systems architecture that is based upon demonstrable aspects of observing capabilities. We develop a set of assessment strands and then apply these to a set of atmospheric observational networks to decide which observations may be suitable for characterising satellite platforms in future work.
Tobias Wolf-Grosse, Igor Esau, and Joachim Reuder
Atmos. Chem. Phys., 17, 7261–7276, https://doi.org/10.5194/acp-17-7261-2017, https://doi.org/10.5194/acp-17-7261-2017, 2017
Short summary
Short summary
In this publication we used a number of very high (10 m) resolution simulations in order to assess the circulation in a coastal mountain city under high-air-pollution conditions. We found that forcings of the valley circulation through local surface inhomogeneities can have a distinct impact on the pollution distribution in the urban area. The work serves as a proof of concept for the applied high-resolution simulations to assess pollution conditions in the urban area under the given conditions.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
I. Esau, R. Davy, S. Outten, S. Tyuryakov, and S. Zilitinkevich
Nonlin. Processes Geophys., 20, 589–604, https://doi.org/10.5194/npg-20-589-2013, https://doi.org/10.5194/npg-20-589-2013, 2013
S. D. Outten and I. Esau
Atmos. Chem. Phys., 13, 5163–5172, https://doi.org/10.5194/acp-13-5163-2013, https://doi.org/10.5194/acp-13-5163-2013, 2013
Related subject area
Subject: Biosphere Interactions | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Using Orbiting Carbon Observatory-2 (OCO-2) column CO2 retrievals to rapidly detect and estimate biospheric surface carbon flux anomalies
Annual evapotranspiration retrieved from satellite vegetation indices for the eastern Mediterranean at 250 m spatial resolution
Development of a 10-year (2001–2010) 0.1° data set of land-surface energy balance for mainland China
Evaluation of the smoke-injection height from wild-land fires using remote-sensing data
Technical Note: Comparing the effectiveness of recent algorithms to fill and smooth incomplete and noisy time series
Andrew F. Feldman, Zhen Zhang, Yasuko Yoshida, Abhishek Chatterjee, and Benjamin Poulter
Atmos. Chem. Phys., 23, 1545–1563, https://doi.org/10.5194/acp-23-1545-2023, https://doi.org/10.5194/acp-23-1545-2023, 2023
Short summary
Short summary
We investigate the conditions under which satellite-retrieved column carbon dioxide concentrations directly hold information about surface carbon dioxide fluxes, without the use of inversion models. We show that OCO-2 column carbon dioxide retrievals, available at 1–3 month latency, can be used to directly detect and roughly estimate extreme biospheric CO2 fluxes. As such, these OCO-2 retrievals have value for rapidly monitoring extreme conditions in the terrestrial biosphere.
D. Helman, A. Givati, and I. M. Lensky
Atmos. Chem. Phys., 15, 12567–12579, https://doi.org/10.5194/acp-15-12567-2015, https://doi.org/10.5194/acp-15-12567-2015, 2015
Short summary
Short summary
We present an empirical method to retrieve actual evapotranspiration (ET) at a spatial resolution of 250m for the eastern Mediterranean based on observed relationships between satellite vegetation indices and eddy covariance ET. Our model was successfully evaluated against two physically based models and calculated ET from water catchment balances along rainfall gradient. In the absence of high-resolution models, our model is expected to contribute to the ecohydrological study of this region.
X. Chen, Z. Su, Y. Ma, S. Liu, Q. Yu, and Z. Xu
Atmos. Chem. Phys., 14, 13097–13117, https://doi.org/10.5194/acp-14-13097-2014, https://doi.org/10.5194/acp-14-13097-2014, 2014
M. Sofiev, T. Ermakova, and R. Vankevich
Atmos. Chem. Phys., 12, 1995–2006, https://doi.org/10.5194/acp-12-1995-2012, https://doi.org/10.5194/acp-12-1995-2012, 2012
J. P. Musial, M. M. Verstraete, and N. Gobron
Atmos. Chem. Phys., 11, 7905–7923, https://doi.org/10.5194/acp-11-7905-2011, https://doi.org/10.5194/acp-11-7905-2011, 2011
Cited articles
Archegova, I. B.: Thermal regime of tundra soils under reclamation and restoration of natural vegetation, Eurasian Soil Sci+., 40, 854–859, 2007.
Barichivich, J., Briffa, K. R., Myneni, R., van der Schrier, G., Dorigo, W., Tucker, C. J., Osborn, T. J., and Melvin, T. M.: Temperature and snow-mediated moisture controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011, Remote Sens., 6, 1390–1431, 2014.
Beck, P. and Goetz, S.: Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences, Environ. Res. Lett., 6, 045501, https://doi.org/10.1088/1748-9326/6/4/045501, 2011.
Bhatt, U. S., Walker, D. A., Raynolds, M. K., Bieniek, P. A., Epstein, H. E., Comiso, J. C., Pinzon, J. E., Tucker, C. J., and Polyakov, I. V.: Recent declines in warming and vegetation greening trends over pan-Arctic tundra, Remote Sens., 5, 4229–4254, 2013.
Brunsell, N. A., Mechem, D. B., and Anderson, M. C.: Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning, Atmos. Chem. Phys., 11, 3403–3416, https://doi.org/10.5194/acp-11-3403-2011, 2011.
Bulygina, O., Groisman, P. Y., Razuvaev, V., and Korshunova, N.,: Changes in snow cover characteristics over Northern Eurasia since 1966, Environ. Res. Lett., 6, 045204, https://doi.org/10.1088/1748-9326/6/4/045204, 2011.
Bunn, A. and Goetz, S.: Trends in Satellite-Observed Circumpolar Photosynthetic Activity from 1982 to 2003: The influence of seasonality, cover type, and vegetation density, Earth Interact., 10, 1–19, 2006.
Cohen, J. L., Furtado, J. C., Barlow, M. A., Alexeev, V. A., and Cherry, J. E.: Arctic warming, increasing snow cover and widespread boreal winter cooling, Environ. Res. Lett., 7, 014007, https://doi.org/10.1088/1748-9326/7/1/014007, 2012.
d'Arrigo, R. D., Malmstrom, C. M., Jacoby, G. C., Los, S. O., and Bunker, D. E.: Correlation between maximum latewood density of annual tree rings and NDVI based estimates of forest productivity, Int. J. Remote Sens., 21, 2329–2336, 2000.
Devi, N., Hagedorn, F., Moiseev, P., Bugmann, H., Shiyatov, S., Mazepa, V., and Rigling, R.: Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century, Glob. Change Biol., 14, 1581–1591, 2008.
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Boulanger-Lapointe, N., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Dorrepaal, E., Elumeeva, T. G., Gill, M., Gould, W. A., Harte, J., Hik, D. S., Hofgaard, A., Johnson, D. R., Johnstone, J. F., Jónsdóttir, I. S., Jorgenson, J. C., Klanderud, K., Klein, J. A., Koh, S., Kudo, G., Lara, M., Lévesque, E., Magnússon, B., May, J. L., Mercado-Diaz, J. A., Michelsen, A., Molau, U., Myers-Smith, I. H., Oberbauer, S. F., Onipchenko, V. G., Rixen, C., Schmidt, N. M., Shaver, G. R., Spasojevic, M. J., Bórhallsdóttir, B. E., Tolvanen, A., Troxler, T., Tweedie, C. E., Villareal, S., Wahren, C.-H., Walker, X., Webber, P. J., Welker, J. M., and Wipf, S.: Plot-scale evidence of tundra vegetation change and links to recent summer warming, Nature Climate Change, 2, 453–457, 2012.
Elsakov, V. and Teljatnikov, M.: Effects of interannual climatic fluctuations of the last decade on NDVI in north-eastern European Russia and Western Siberia, Contemporary Problems of the Earth's Remote Sensing, 10, 260–271, 2013.
Epstein, H. E., Raynolds, M. K., Walker, D. A., Bhatt, U. S., Tucker, C. J., and Pinzon, J. E.: Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades, Environ. Res. Lett., 7, 015506, https://doi.org/10.1088/1748-9326/7/1/015506, 2012.
Esau, I., Davy, R., and Outten, S.: Complementary explanation of temperature response in the lower atmosphere, Environ. Res. Lett., 7, 044026, https://doi.org/10.1088/1748-9326/7/4/044026, 2012.
Frey, K. and Smith, L.: How well do we know northern land cover: Comparison of four global vegetation and wetland products with a new ground-truth database for West Siberia, Global Biogeochem. Cy., 21, GB1016, https://doi.org/10.1029/2006GB002706, 2007.
Frost, G., Epstein, H., Walker, D., Matyshak, G., and Ermokhina, K.: Patterned-ground facilitates shrub expansion in Low Arctic tundra, Environ. Res. Lett., 8, 015035, https://doi.org/10.1088/1748-9326/8/1/015035, 2013.
Frost, G. V. and Epstein, H. E.: Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s, Glob. Change Biol., 20, 1264–1277, 2014.
Goetz, S. J., Bunn, A. G., Fiske, G. J., and Houghton, R. A.: Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance, Proc. Natl. Acad. Sci. USA, 102, 13521–13525, 2005.
Guay, K., Beck, P., Berner, L., Goetz, S., Baccini, A., and Buermann, W.: Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment, Glob. Change Biol.y, 20, 3147–3158, 2014.
Croisman, P. and Gutman, G. (Eds.): Environmental changes in Siberia: Regional changes and their consequences, Springer, Amsterdam, 2013.
Hicks Pries, C. E. H., Schuur, E. A. G., Vogel, J. G., and Natali, S. M.: Moisture drives surface decomposition in thawing tundra, J. Geophys. Res. Biogeosci., 118, 1133–1143, 2013.
Hinzman, L. D., Bettez, N. D., Bolton, W. R., et al.: Evidence and implications of recent climate change in northern Alaska and other Arctic regions, Clim. Change, 72, 251–298, 2005.
Ippolitov, I. I., Loginov, S. V., Kharyutkina, E. V., and Moraru, E. I.: Climate variability over the Asian territory of Russia during 1975–2012, Geography and Natural Resources, 35, 310–318, 2014.
Jeong, J.-H., Kug, J.-S., Kim, B.-M., Min, S.-K., Linderholm, H. W., Ho, C.-H., Rayner, D., Chen, D., and Jun, S.-Y.: Greening in the circumpolar high-latitude may amplify warming in the growing season, Clim. Dynam., 38, 1421–1431, 2011.
Juszak, I., Eugster, W., Heijmans, M. M. P. D., and Schaepman-Strub, G.: Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra, Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-41, in review, 2016.
Keeling, C. D., Chin, J. F. S., and Whorf, T. P.: Increased activity of northern vegetation inferred from atmospheric CO2 measurements, Nature, 382, 146–149, 1996.
Kornienko, S. and Yakubson, K.: A study of transformation of vegetation cover in over some areas of Taz peninsula using satellite imagery, Arctic: Ecology and Economics, 4, 46–57, 2011.
Koronatova, N. and Milyaeva, E.: Plant community succession in post-mined quarries in the northern-taiga zone of West Siberia, Contemp. Probl. Ecol., 4, 513–518, 2011.
Kumpula, T., Pajunen, A., Kaarlejarvi, E., Forbes, B. C., and Stammler, F.: Land use and land cover change in Arctic Russia: Ecological and social implications of industrial development, Global. Environ. Chang., 21, 550–562, 2011.
Kumpula, T., Forbes, F., Stammler, F., and Meschtyb, N.: Dynamics of a coupled system: Multi-resolution remote sensing in assessing social-ecological responses during 25 years of gas field development in Arctic Russia, Remote Sens., 4, 1046–1068, 2012.
Lapenis, A., Shvidenko, A., Shepaschenko, D., Nilsson, S., and Aiyyer, A.: Acclimation of Russian forests to recent changes in climate, Glob. Change Biol., 11, 2090–2102, 2005.
Leibman, M., Khomutov, A., Gubarkov, A., Mullanurov, D., and Dvornikov, Y.: The research station “Vaskiny Dachi”, Central Yamal, West Siberia, Russia – A review of 25 years of permafrost studies, Fennia, 193, 3–30, 2015.
Lloyd, A. and Bunn, A.: Responses of the circumpolar boreal forest to 20th century climate variability, Environ. Res. Lett., 2, 045013, https://doi.org/10.1088/1748-9326/2/4/045013, 2007.
Lloyd, A., Yoshikawa, K., Fastie, C. L., Hinzman, L., and Fraver, M.: Effects of permafrost degradation on woody vegetation at arctic treeline on the Seward Peninsula, Alaska, Permafrost Periglac., 14, 93–101, 2003.
MacDonald, G., Kremenetski, K., and Beilman, D.: Climate change and the northern Russian treeline zone, Phil. Trans. Roy. Soc. B, 363, 2283–2299, 2008.
Macias-Fauria, M., Forbes, B., Zetterberg, P., and Kumpula, T.: Eurasian Arctic greening reveals teleconnections, Nature Climate Change, 2, 613–618, 2012.
Melnikov, E. S., Leibman, M. O., Moskalenko, N. G., and Vasiliev, A. A.: Active-layer monitoring in the cryolithozone of West Siberia, Polar Geography, 28, 267–285, 2004.
Moskalenko, N.: Impact of climate warming on vegetation cover and permafrost in West Siberia northern taiga, Natural Science, 5, 144–148, 2013.
Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.: Increased plant growth in the northern high latitudes from 1981 to 1991, Nature, 386, 698–702, 1997.
Nauta, A. L., Heijmans, M., Blok, D., Limpens, J., Elberling, B., Gallagher, A., Li, B., Petrov, R. E., Maximov, T. C., van Huissteden, J., and Berendse, F.: Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source, Nature Climate Change, 5, 67–70, 2015.
Outten, S. and Esau, I.: A link between Arctic sea ice and recent cooling trends over Eurasia, Climatic Change, 110, 1069–1075, 2011.
Outten, S., Davy, R., and Esau, I.: Eurasian winter cooling: Intercomparison of Reanalyses and CMIP5 data sets, Atmos. Ocean. Sci. Lett., 6, 324–331, 2013.
Pavlov, A. V. and Moskalenko, N. G.: The thermal regime of soils in the north of Western Siberia, Permafrost Periglac., 13, 43–51, 2002.
Raynolds, M. K., Walker, D. A., Epstein, H. E., Pinzon, J. E., and Tucker, C. J.: A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI, Remote Sens. Lett., 3, 403–411, 2012.
Raynolds, M. K., Walker, D. A., Ambrosius, K. J., Brown, J., Everett, K. R., Kanevskiy, M., Kofinas, G. P., Romanovsky, V. E., Shur, Y., and Webber, P. J.: Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska, Glob. Change Biol., 20, 1211–1224, 2014.
Shulgina, T., Genina, E., and Gordov, E.: Dynamics of climatic characteristics influencing vegetation in Siberia, Environ. Res. Lett., 6, 045210, https://doi.org/10.1088/1748-9326/6/4/045210, 2011.
Shuman, J. K. and Shugart, H. H.: Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model, Environ. Res. Lett., 4, 045024, https://doi.org/10.1088/1748-9326/4/4/045024, 2009.
Solano, R., Didan, K., Jacobson, A., and Huete, A.: MODIS Vegetation Index User's Guide (MOD13 Series), 2010, available at: http://vip.arizona.edu, last access: 27 July 2016.
Sorokina, N.: Anthropological changes in the northern taiga ecosystems of West Siberia (Nadym area), PhD thesis, Institute for the Earth's Cryosphere, 2003
Streletskiy, D., Shiklomanov, N., and Nelson, F.: Permafrost, infrastructure, and climate change: a GIS-based landscape approach to geotechnical modeling, Arct. Antarct. Alp. Res., 44, 368–380, 2012.
Sturm, M., McFadden, J., Liston II, G. F. C., Racine, C., and Holmgren, J.: Snow–shrub Interactions in Arctic tundra: A hypothesis with climatic implications, J. Climate, 14, 336–343, 2001.
Urban, M., Forkel, M., Eberle, J., Hüttich, C., Schmullius, C., and Herold, M.: Pan-Arctic climate and land cover trends derived from multi-variate and multi-scale analyses (1981–2012), Remote Sens., 6, 2296–2316, 2014.
Tang, Q. and Leng, G.: Damper summer warming accompanied with cloud cover increase over Eurasia from 1982 to 2009, Environ. Res. Lett., 7, 014004, https://doi.org/10.1088/1748-9326/7/1/014004, 2012.
Walker, D., Leibman, M., Epstein, H., Forbes, B., Bhatt, U., Raynolds, M., Comiso, J., Gubarkov, A., Khomutov, A., Jia, G., Kaarlejarvi, E., Kaplan, J., Kumpula, T., Kuss, P., Matyshak, G., Moskalenko, N., Orekhov, P., Romanovsky, V., Ukraientseva, N., and Yu, Q.: Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index, Environ. Res. Lett., 4, 045004, https://doi.org/10.1088/1748-9326/4/4/045004, 2009.
Walker, M., Wahren, C., Hollister, R., Henryd, G., Ahlquist, L., Alatalo, J., Bret-Harte, M., Calef, M., Callaghan, T., Carroll, A., Epstein, H., Jonsdottir, I., Klein, J., Magnusson, B., Molau, U., Oberbauer, S., Rewa, S., Robinson, C., Shaver, G., Suding, K., Thompson, C., Tolvanen, A., Totland, Ø, Turner, P. L., Tweedie, C., Webber, P., and Wookey, P.: Plant community responses to experimental warming across the turndra biome, Proc. Natl. Acad. Sci., 5, 1342–1346, 2006.
Yakubson, K., Kornienko, S., Razumov, S., Dubrovin, V., Kritsuk, L., and Yastreba, N.: Geoindicators of the environmental change in areas of intensive oil and gas development and methods of their evaluation, Georesources, Geoenergetics, Geopolitics, 2, 1–22, available at: http://oilgasjournal.ru/vol_6/kornienko.swf (last access: 27 July 2016), 2012.
Yu, Q., Epstein, H. E., Engstrom, R., Shiklomanov, N., and Strelestskiy, D.: Land cover and land use changes in the oil and gas regions of Northwestern Siberia under changing climatic conditions, Environ. Res. Lett., 10, 124020, https://doi.org/10.1088/1748-9326/10/12/124020, 2015.
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., and Schneider, A.: The footprint of urban climates on vegetation phenology, Geophys. Res. Lett., 31, L12209, https://doi.org/10.1029/2004GL020137, 2004.
Zhao, T., Bergen, K., Brown, D., and Shugart, H.: Scale dependence in quantification of land-cover and biomass change over Siberian boreal forest landscapes, Landscape Ecol., 24, 1299–1313, 2009.
Zhou, L., Tucker, C., Kaufmann, R., and Slayback, D.: Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999, J. Geophys. Res., 106, 20069–20083, 2001.
Short summary
Vegetation cover in the remote and cold areas of northern West Siberia is rapidly changing. Analysis of summer maximum vegetation productivity index collected over 15 years (2000–2014) by Terra/Aqua satellites revealed “greening” over the northern (tundra/tundra-forest) and widespread “browning” over the southern (taiga) parts of the region. The vegetation changes around 28 urbanized areas were different. Many Siberian cities become greener even against wider browning trends at the background.
Vegetation cover in the remote and cold areas of northern West Siberia is rapidly changing....
Special issue
Altmetrics
Final-revised paper
Preprint