Articles | Volume 16, issue 2
https://doi.org/10.5194/acp-16-953-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-953-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers
Y. Mancilla
CORRESPONDING AUTHOR
School of Engineering and Sciences, Tecnológico de
Monterrey, Monterrey, Mexico
A. Mendoza
School of Engineering and Sciences, Tecnológico de
Monterrey, Monterrey, Mexico
M. P. Fraser
School of Sustainable Engineering and the Built
Environment, Arizona State University, Tempe, Arizona, USA
P. Herckes
School of Molecular Sciences, Arizona State
University, Tempe, Arizona, USA
Related authors
No articles found.
Chiara Giorio, Anne Monod, Valerio Di Marco, Pierre Herckes, Denise Napolitano, Amy Sullivan, Gautier Landrot, Daniel Warnes, Marika Nasti, Sara D'Aronco, Agathe Gérardin, Nicolas Brun, Karine Desboeufs, Sylvain Triquet, Servanne Chevaillier, Claudia Di Biagio, Francesco Battaglia, Frédéric Burnet, Stuart J. Piketh, Andreas Namwoonde, Jean-François Doussin, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2024-4140, https://doi.org/10.5194/egusphere-2024-4140, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
A comparison between the solubility of trace metals in pairs of total suspended particulate (TSP) and fog water samples collected in Henties Bay, Namibia, during the AEROCLO-sA field campaign is presented. We found enhanced solubility of metals in fog samples which we attributed to metal-ligand complexes formation in the early stages of particle activation into droplets which can then remain in a kinetically stable form in fog or lead to the formation of colloidal nanoparticles.
Iván Y. Hernández Paniagua, Kevin C. Clemitshaw, and Alberto Mendoza
Atmos. Chem. Phys., 17, 9163–9185, https://doi.org/10.5194/acp-17-9163-2017, https://doi.org/10.5194/acp-17-9163-2017, 2017
Short summary
Short summary
In this study, we describe trends in ground-level O3 within the Monterrey metropolitan area (MMA) during 1993–2014. A wind sector analysis of mixing ratios of O3 precursors revealed that the dominant sources of emissions are located in the industrial regions within the MMA and surrounding area. During 1993–2014, O3 increased within the MMA, whereas within Mexico City it decreased. The number of exceedances of the O3 standard will very likely increase.
Beatriz Sayuri Oyama, Maria de Fátima Andrade, Pierre Herckes, Ulrike Dusek, Thomas Röckmann, and Rupert Holzinger
Atmos. Chem. Phys., 16, 14397–14408, https://doi.org/10.5194/acp-16-14397-2016, https://doi.org/10.5194/acp-16-14397-2016, 2016
Short summary
Short summary
Vehicular emissions have a strong impact on air pollution in big cities; hence, the study was performed in São Paulo city, where light- (LDVs) and heavy-duty vehicles (HDVs) run on different fuels. We find that organic aerosol emission from LDVs and HDVs is a complex process involving oxidation of fuel constituents, NOx chemistry, and condensation of unburned fuel hydrocarbons on new or existing particles. The obtained emission patterns can be used to study processing of young aerosol in Brazil.
K. Pohl, M. Cantwell, P. Herckes, and R. Lohmann
Atmos. Chem. Phys., 14, 7431–7443, https://doi.org/10.5194/acp-14-7431-2014, https://doi.org/10.5194/acp-14-7431-2014, 2014
J. Brito, L. V. Rizzo, P. Herckes, P. C. Vasconcellos, S. E. S. Caumo, A. Fornaro, R. Y. Ynoue, P. Artaxo, and M. F. Andrade
Atmos. Chem. Phys., 13, 12199–12213, https://doi.org/10.5194/acp-13-12199-2013, https://doi.org/10.5194/acp-13-12199-2013, 2013
B. Ervens, Y. Wang, J. Eagar, W. R. Leaitch, A. M. Macdonald, K. T. Valsaraj, and P. Herckes
Atmos. Chem. Phys., 13, 5117–5135, https://doi.org/10.5194/acp-13-5117-2013, https://doi.org/10.5194/acp-13-5117-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 2: Seasonal and temporal trends in refractory black carbon originated from fossil fuel combustion and biomass burning
Significant role of biomass burning in heavy haze formation in Nanjing, a megacity in China: molecular-level insights from intensive PM2.5 sampling on winter hazy days
Widespread trace bromine and iodine in remote tropospheric non-sea-salt aerosols
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Non biogenic source is an important but overlooked contributor to aerosol isoprene-derived organosulfates during winter in northern China
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
The Critical Role of Aqueous-Phase Processes in Aromatic-Derived Nitrogen-Containing Organic Aerosol Formation in Cities with Different Energy Consumption Patterns
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Characterization of atmospheric water-soluble brown carbon in the Athabasca Oil Sands Region, Canada
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Seasonal Investigation of Ultrafine Particle Composition in an Eastern Amazonian Rainforest
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Measurement report: Sources and meteorology influencing highly-time resolved PM2.5 trace elements at 3 urban sites in extremely polluted Indo Gangetic Plain in India
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
Observations of high time-resolution and size-resolved aerosol chemical composition and microphyscis in the central Arctic: implications for climate-relevant particle properties
Brown carbon aerosol in rural Germany: sources, chemistry, and diurnal variations
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025, https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Short summary
Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
Atmos. Chem. Phys., 25, 45–71, https://doi.org/10.5194/acp-25-45-2025, https://doi.org/10.5194/acp-25-45-2025, 2025
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Ting Yang, Yu Xu, Yu-Chen Wang, Yi-Jia Ma, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3823, https://doi.org/10.5194/egusphere-2024-3823, 2024
Short summary
Short summary
Previous measurement-model comparisons of atmospheric isoprene levels showed a significant unidentified source of isoprene in some northern Chinese cities during winter. Here, the first combination of large-scale observations and field combustion experiments provides novel insights into biomass burning emissions as a significant source of isoprene-derived organosulfates during winter in northern cities, China.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024, https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Short summary
We characterized water-soluble oxidative potential (OP) levels in wintertime PM2.5 in the south and north of Beijing. Our results show that the volume-normalized dithiothreitol (DTTv) in the north was comparable to that in the south, while the mass-normalized dithiothreitol (DTTm) in the north was almost twice that in the south. Traffic-related emissions and biomass burning were the main sources of DTTv in the south, and traffic-related emissions contributed the most to DTTv in the north.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Yi-Jia Ma, Yu Xu, Ting Yang, Lin Gui, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2602, https://doi.org/10.5194/egusphere-2024-2602, 2024
Short summary
Short summary
The abundance, potential precursors, and main formation mechanisms of NOCs in PM2.5 during winter were compared among cities with different energy consumption. We found that the aerosol NOC pollution during winter is closely associated with the intensity of precursor emissions and the efficiency of aqueous-phase processes in converting these emissions into NOCs. The overall results highlight the importance of emission reduction strategies in controlling aerosol NOCs pollution during winter.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2743, https://doi.org/10.5194/egusphere-2024-2743, 2024
Short summary
Short summary
In-situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below cloud base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
EGUsphere, https://doi.org/10.5194/egusphere-2024-2584, https://doi.org/10.5194/egusphere-2024-2584, 2024
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca Oil Sands Region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (summer 2021) found that oil sands operations were a measurable source of brown carbon. Industrial aerosol emissions may impact atmospheric reaction chemistry and albedo. These findings demonstrate that fluorescence spectroscopy can be applied to monitor brown carbon in the ASOR.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Ashutosh Kumar Shukla, Sachchida Nand Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and Andre Stephan Henry Prevot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1385, https://doi.org/10.5194/egusphere-2024-1385, 2024
Short summary
Short summary
Our study delves into the elemental composition of aerosols across the Indo-Gangetic Plain (IGP), revealing distinct patterns during pollution episodes. We found significant increases in Cl-rich and SFC1 sources, indicating dynamic emissions and agricultural burning impacts. Surges in Cl-rich particles during cold periods highlight their role in particle growth under specific conditions.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiaa Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-1912, https://doi.org/10.5194/egusphere-2024-1912, 2024
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol-climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Locally wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1848, https://doi.org/10.5194/egusphere-2024-1848, 2024
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase were determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at rural location in central Europe.
Cited articles
Abas, M. R. B. and Simoneit, B.: Composition of extractable organic matter
of air particles from Malaysia: initial study, Atmos. Environ., 30,
2779–2793, 1996.
Abas, M. R. B., Rahman, N. A., Omar, N. Y. M. J., Maah, M. J., Samah, A. A.,
Oros, D. R., Otto, A., and Simoneit, B. R. T.: Organic composition of
aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia,
Atmos. Environ., 38, 4223–4241, https://doi.org/10.1016/j.atmosenv.2004.01.048, 2004.
Akyüz, M. and Çabuk, H.: Gas-particle partitioning and seasonal
variation of polycyclic aromatic hydrocarbons in the atmosphere of
Zonguldak, Turkey., Sci. Total Environ., 408, 5550–5558, 2010.
Alves, C., Pio, C., and Duarte, A.: Composition of extractable organic
matter of air particles from rural and urban portuguese areas, Atmos.
Environ., 35, 5485–5496, 2001.
Alves, C., Oliveira, T., Pio, C., Silvestre, A. J. D., Fialho, P., Barata,
F., and Legrand, M.: Characterisation of carbonaceous aerosols from the
Azorean Island of Terceira, Atmos. Environ., 41, 1359–1373, 2007.
Alves, C. A., Vicente, A., Monteiro, C., Gonçalves, C., Evtyugina, M.,
and Pio, C.: Emission of trace gases and organic components in smoke
particles from wildfire in a mixed-evergreen forest in Portugal, Sci. Total
Environ., 409, 1466–1475, 2011.
Amador-Muñoz, O., Villalobos-Pietrini, R., Agapito-Nadales, M. C.,
Munive-Colín, Z., Hernández-Mena, L., Sánchez-Sandoval, M.,
Gómez-Arroyo, S., Bravo-Cabrera, J. L., and Guzmán-Rincón, J.:
Solvent extracted organic matter and polycyclic aromatic hydrocarbons
distributed in size-segregated airborne particles in a zone of México
City: seasonal behavior and human exposure, Atmos. Environ., 44, 122–130,
2010.
Blanchard, C. L., Chow, J. C., Edgerton, E. S., Watson, J. G., Hidy, G. M.,
and Shaw, S.: Organic aerosols in the southeastern United States: speciated
particulate carbon measurements from the SEARCH network 2006–2010, Atmos.
Environ., 95, 327–333, 2014.
Brown, S. G., Herckes, P., Ashbaugh, L., Hannigan, M. P., Kreidenweis, S.
M., and Collett Jr, J. L.: Characterization of organic aerosol in Big Bend
National Park, Texas, Atmos. Environ., 36, 5807–5818, https://doi.org/10.1016/s1352-2310(02)00578-2, 2002.
Cass, G. R.: Organic molecular tracers for particulate air pollution
sources, Trend. Anal. Chem., 17, 356–366, 1998.
Chen, L.-W. A., Watson, J. G., Chow, J. C., DuBois, D. W., and Herschberger,
L.: PM2.5 source apportionment: reconciling receptor models for U. S.
nonurban and urban long-term networks, J. Air Waste Manage. Assoc. 61,
1204–1217, 2011.
Chow, J. C., Watson, J. G., Lowenthal, D. H., Chen, L. W. A., Zielinska, B.,
Mazzoleni, L. R., and Magliano, K. L.: Evaluation of organic markers for
chemical mass balance source apportionment at the Fresno Supersite, Atmos.
Chem. Phys., 7, 1741–1754, https://doi.org/10.5194/acp-7-1741-2007, 2007.
Dvorská, A., Lammel, G., and Klánová, J.: Use of diagnostic
ratios for studying source apportionment and reactivity of ambient
polycyclic aromatic hydrocarbons over central Europe, Atmos. Environ., 45,
420–427, https://doi.org/10.1016/j.atmosenv.2010.09.063, 2011.
Duan, J., Tan, J., Cheng, D., Bi, X., Deng, W., Sheng, G., Fu, J., and Wong,
M. H.: Sources and characteristics of carbonaceous aerosol in two largest
cities in Pearl River Delta Region, China, Atmos. Environ., 41, 2895–2903,
https://doi.org/10.1016/j.atmosenv.2006.12.017, 2007.
Eatough, D. J., Benner, C. L., Tang, H., Landon, V., Richards, G., Caka, F.
M., Crawford, J., Lewis, E. A., Hansen, L. D., and Eatough, N. L.: The
chemical composition of environmental tobacco smoke III. Identification of
conservative tracers of environmental tobacco smoke, Environ. Int., 15,
19–28, 1989.
Feng, J., Hu, M., Chan, C. K., Lau, P. S., Fang, M., He, L., and Tang, X.: A
comparative study of the organic matter in PM2.5 from three chinese
megacities in three different climatic zones, Atmos. Environ., 40,
3983–3994, https://doi.org/10.1016/j.atmosenv.2006.02.017, 2006.
Fraser, M. P. and Lakshmanan, K.: Using levoglucosan as a molecular marker
for the long-range transport of biomass combustion aerosols, Environ. Sci.
Technol., 34, 4560–4564, 2000.
Fraser, M. P., Cass, G. R., and Simoneit, B. R. T.: Particulate organic
compounds emitted from motor vehicle exhaust and in the urban atmosphere,
Atmos. Environ., 33, 2715–2724, 1999.
Fraser, M. P., Yue, Z. W., Tropp, R. J., Kohl, S. D., and Chow, J. C.:
Molecular composition of organic fine particulate matter in Houston, TX,
Atmos. Environ., 36, 5751–5758, https://doi.org/10.1016/s1352-2310(02)00725-2, 2002.
Fraser, M. P., Yue, Z. W., and Buzcu, B.: Source apportionment of fine
particulate matter in Houston, TX, using organic molecular markers, Atmos.
Environ., 37, 2117–2123, https://doi.org/10.1016/S1352-2310(03)00075-X, 2003.
Gelencsér, A.: Carbonaceous aerosol: atmospheric and oceanographic
sciences library, Springer Publications, Dordrecht, the Netherlands, 184–190,
2004.
Giri, B., Patel, K. S., Jaiswal, N. K., Sharma, S., Ambade, B., Wang, W.,
Simonich, S. L. M., and Simoneit, B. R. T.: Composition and sources of organic
tracers in aerosol particles of industrial central India, Atmos. Res.,
120–121, 312–324, 2013.
Gogou, A., Stratigakis, N., Kanakidou, M., and Stephanou, E. G.: Organic
aerosols in eastern Mediterranean: components source reconciliation by using
molecular markers and atmospheric back trajectories, Org. Geochem, 25,
79–96, https://doi.org/10.1016/S0146-6380(96)00105-2, 1996.
Gonçalves, C., Alves, C., Fernandes, A. P., Monteiro, C., Tarelho, L.,
Evtyugina, M., and Pio, C.: Organic compounds in PM2.5 emitted from
fireplace and woodstove combustion of typical portuguese wood species,
Atmos. Environ., 45, 4533–4545, 2011.
González-Santiago, O.: Determinación del contenido de PAH's en
partículas PM2.5 en una zona de alto tráfico vehicular y otra
con potencial exposición industrial del Área Metropolitana de
Monterrey, Ph.D. thesis, Facultad de Ciencias Químicas, Universidad
Autónoma de Nuevo León (UANL), Mexico, 104 pp., 2009.
Guo, Z. G., Sheng, L. F., Feng, J. L., and Fang, M.: Seasonal variation of
solvent extractable organic compounds in the aerosols in Qingdao, China,
Atmos. Environ., 37, 1825–1834, 2003.
Harrad, S., Hassoun, S., Callén Romero, M. S., and Harrison, R. M.:
Characterisation and source attribution of the semi-volatile organic content
of atmospheric particles and associated vapour phase in Birmingham, UK,
Atmos. Environ., 37, 4985–4991, 2003.
Henry, R. C., Lewis, C. W., Hopke, P. K., and Williamson, H. J.: Review of
receptor model fundamentals, Atmos. Environ., 18, 1507–1515, 1984.
Hildemann, L. M., Markowski, G. R., and Cass, G. R.: Chemical composition of
emissions from urban sources of fine organic aerosol, Environ. Sci.
Technol., 25, 744–759, 1991.
Hopke, P. K.: It is time to drop principal components analysis as a
“receptor model”, J. Atmos. Chem., 72, 127–128, 2015.
Huang, X.-F., He, L.-Y., Hu, M., and Zhang, Y.-H.: Annual variation of
particulate organic compounds in PM2.5 in the urban atmosphere of Beijing,
Atmos. Environ., 40, 2449–2458. https://doi.org/10.1016/j.atmosenv.2005.12.039, 2006.
INEGI: Estadísticas de vehículos de motor registrados en
circulación, available at:
http://www.inegi.org.mx/est/lista_cubos/consulta.aspx?p=adm&c=8 (last access: 22 January 2016),
2010.
INEGI: Censo de población y vivienda 2010, available at:
www.inegi.org.mx/sistemas/consulta_resultados/iter2010.aspx?c=27329&s=est (last access: 9 October 2015), 2011.
Kalaitzoglou, M., Terzi, E., and Samara, C.: Patterns and sources of
particle-phase aliphatic and polycyclic aromatic hydrocarbons in urban and
rural sites of western Greece, Atmos. Environ., 38, 2545–2560, 2004.
Katsoyiannis, A., Sweetman, A. J., and Jones, K. C.: PAH molecular
diagnostic ratios applied to atmospheric sources: a critical evaluation
using two decades of source inventory and air concentration data from UK,
Environ. Sci. Technol., 45, 8897–8906, 2011.
Kavouras, I. G., Stratigakis, N., and Stephanou, E. G.: Iso and
anteiso-Alkanes: specific tracers of environmental tobacco smoke in indoor
and outdoor particle-size distributed urban aerosols, Environ. Sci.
Technol., 32, 1369–1377, 1998.
Kavouras, I. G., Lawrence, J., Koutrakis, P., Stephanou, E. G., Oyola, P.:
Measurements of particulate aliphatic and polynuclear aromatic hydrocarbons
in Santiago de Chile: source reconciliation and evaluation of sampling
artifacts, Atmos. Environ., 33, 4977–4986, 1999.
Ke, L., Ding, X., Tanner, R. L., Schauer, J. J., and Zheng, M.: Source
contributions to carbonaceous aerosols in the Tennessee Valley Region,
Atmos. Environ., 41, 8898–8923, 2007.
Kelly, K. E., Kotchenruther, R., Kuprov, R., and Silcox, G. D.: Receptor
model source attributions for Utah's Salt Lake City airshed and the impacts
of wintertime secondary ammonium nitrate and ammonium chloride aerosol, J.
Air Waste Manage. Assoc., 63, 575–590, 2013.
Kleeman, M. J., Riddle, S. G., Robert, M. A., Jakober, C. A., Fine, P. M.,
Hays, M. D., Schauer, J. J., and Hannigan, M. P.: Source apportionment of fine
(PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe
winter pollution episode, Environ. Sci. Technol., 43, 272–279, 2009.
Lee, S., Baumann, K., Schauer, J. J., Sheesley, R. J., Naeher, L. P.,
Meinardi, S., Blake, D. R., Edgerton, E. S., Russell, A. G., and Clements, M.:
Gaseous and particulate emissions from prescribed burning in Georgia,
Environ. Sci. Technol., 39, 9049–9056, 2005.
Li, M., McDow, S. R., Tollerud, D. J., and Mazurek, M. A.: Seasonal
abundance of organic molecular markers in urban particulate matter from
Philadelphia, PA, Atmos. Environ., 40, 2260–2273, https://doi.org/10.1016/j.atmosenv.2005.10.025, 2006.
Lin, L., Lee, M. L., and Eatough, D. J.: Review of recent advances in
detection of organic markers in fine particulate matter and their use for
source apportionment, J. Air Waste Manage. Assoc., 60, 3–25, 2010.
Mancilla, Y. and Mendoza, D.: A tunnel study to characterize PM2.5
emissions from gasoline-powered vehicles in Monterrey, Mexico, Atmos.
Environ., 59, 449–460, 2012.
Mancilla, Y., Herckes, P., Fraser, M. P., and Mendoza, A.: Secondary organic
aerosol contributions to PM2.5 in Monterrey, Mexico: Temporal and seasonal
variation, Atmos. Res., 153, 348–359, 2015.
Marr, L. C., Grogan, L. A., Wöhrnschimmel, H., Molina, L. T., Molina, M.
J., Smith, T. J., and Garshick, E.: Vehicle traffic as a source of
particulate polycyclic aromatic hydrocarbon exposure in the Mexico City
metropolitan area, Environ. Sci. Technol., 38, 2584–2592, https://doi.org/10.1021/es034962s, 2004.
Marr, L. C., Dzepina, K., Jimenez, J. L., Reisen, F., Bethel, H. L., Arey,
J., Gaffney, J. S., Marley, N. A., Molina, L. T., and Molina, M. J.: Sources
and transformations of particle-bound polycyclic aromatic hydrocarbons in
Mexico City, Atmos. Chem. Phys., 6, 1733–1745, https://doi.org/10.5194/acp-6-1733-2006,
2006.
Martinez, M. A., Caballero, P., Carrillo, O., Mendoza, A., and Mejía,
M. G.: Chemical characterization and factor analysis of PM2.5 in two sites
of Monterrey, Mexico, J. Air Waste Manage. Assoc., 62, 817–827, 2012.
Mendoza, A., García, M. R., Vela, P., Lozano, D. F., and Allen, D.:
Trace gases and particulate matter emissions from wildfires and agricultural
burning in northeastern Mexico during the 2000 fire season, J. Air Waste
Manage. Assoc., 55, 1797–1808, 2005.
Moffet, R. C., de Foy, B., Molina, L. T., Molina, M. J., and Prather, K. A.:
Measurement of ambient aerosols in northern Mexico City by single particle
mass spectrometry, Atmos. Chem. Phys., 8, 4499–4516,
https://doi.org/10.5194/acp-8-4499-2008, 2008.
Noziere, B., Kalberer, M., Claeys, M., Allan, J., D'Anna, B., Decesari, S.,
Finessi, E., Glasius, M., Grgic, I., Hamilton, J. F., Hoffmann, T., Linuma,
Y., Jaoui, M., Kahnt, A., Kampf, C. J., Kourtchev, I., Maenhaut, W., Marsden,
N., Saarikoski, S., Schnelle-Kreis, J., Surratt, J. D., Szidat, Sönke,
Szmigielski, R., and Wisthalder, A.: The molecular identification of organic
compounds in the atmosphere: state of the art and challenges, Chem. Rev., 115, 3919–3983, 2015.
Oros, D. R. and Simoneit, B. R. T.: Identification and emission rates of
molecular tracers in coal smoke particulate matter, Fuel, 79, 515–536, 2000.
Paatero, P.: Least squares formulation of robust non-negative factor
analysis. Chemometr. Intell. Lab., 37, 23–35, 1997.
Park, S. S., Bae, M.-S., Schauer, J. J., Kim, Y. J., Yong Cho, S., and Jai
Kim, S.: Molecular composition of PM2.5 organic aerosol measured at an urban
site of Korea during the ACE-Asia campaign, Atmos. Environ., 40, 4182–4198,
https://doi.org/10.1016/j.atmosenv.2006.02.012, 2006.
Peng, R. D., Bell, M. L., Geyh, A. S., McDermott, A., Zeger, S. L., Samet,
J. M., and Dominici, F.: Emergency admissions for cardiovascular and
respiratory diseases and the chemical composition of fine particle air
pollution, Environ. Health Persp., 117, 957–963, 2009.
Perrone, M. G., Larsen, B. R., Ferrero, L., Sangiorgi, G., De Gennaro, G.,
Udisti, R., Zangrano, R., Gambaro, A., and Bolzacchini, E.: Source of high PM2.5
concentrations in Milan, northern Italy: Molecular marker data and CMB
modelling, Sci. Total Environ., 414, 343–355, 2012.
Pietrogrande, M. C., Abbaszade, G., Schnelle-Kreis, J., Bacco, D.,
Mercuriali, M., and Zimmermann, R.: Seasonal variation and source estimation
of organic compounds in urban aerosol of Augsburg, Germany, Environ.
Pollut., 159, 1861–1868, 2011.
Plewka, A., Gnauk, T., Brüggemann, E., and Herrmann, H.: Biogenic
contributions to the chemical composition of airborne particles in a
coniferous forest in Germany, Atmos. Environ., 40, 103–115, https://doi.org/10.1016/j.atmosenv.2005.09.090, 2006.
Pope, C. A. III, Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D.,
Ito, K., and Thurston, G. D.: Lung cancer, cardiopulmonary mortality, and
long-term exposure to fine particulate air pollution, J. Amer. Med. Assoc.,
287, 1132–1141, 2002.
Qin, Y., Kim, E., and Hopke, P. K.: The concentrations and sources of PM2.5
in metropolitan New York City, Atmos. Environ., 40, S312–S332, 2006.
Ravindra, K., Sokhi, R., and Van Grieken, R.: Atmospheric polycyclic
aromatic hydrocarbons: source attribution, emission factors and regulation,
Atmos. Environ., 42, 2895–2921, https://doi.org/10.1016/j.atmosenv.2007.12.010, 2008.
Reff, A., Eberly, S. I., and Bhave, P. V.: Receptor modeling of ambient
particulate matter data using positive matrix factorization: review of
existing methods, J. Air Waste Manage. Assoc., 57, 146–154, 2007.
Robinson, A. L., Subramanian, R., Donahue, N. M., Bernardo-Bricker, A., and
Rogge, W. F.: Source apportionment of molecular markers and organic aerosol.
2. Biomass smoke, Environ. Sci. Technol., 40, 7811–7819, https://doi.org/10.1021/es060782h, 2006a.
Robinson, A. L., Subramanian, R., Donahue, N. M., Bernardo-Bricker, A., and
Rogge, W. F.: Source apportionment of molecular markers and organic aerosol.
3. Food cooking emissions, Environ. Sci. Technol., 40, 7820–7827, https://doi.org/10.1021/es060781p, 2006b.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,
B. R. T.: Sources of fine organic aerosol. 1. Charbroilers and meat cooking
operations, Environ. Sci. Technol., 25, 1112–1125, https://doi.org/10.1021/es00018a015,
1991.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,
B. R. T.: Sources of fine organic aerosol. 2. Noncatalyst and
catalyst-equipped automobiles and Heavy-duty diesel trucks, Environ. Sci.
Technol., 27, 636–651, 1993a.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,
B. R. T.: Sources of fine organic aerosol. 4. Particulate abrasion products
from leaf surfaces of urban plants, Environ. Sci. Technol., 27, 2700–2711,
https://doi.org/10.1021/es00049a008, 1993b.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,
B. R. T.: Sources of fine organic aerosol. 5. Natural gas home appliances,
Environ. Sci. Technol., 27, 2736–2744, 1993c.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R. and Simoneit, B.
R. T.: Sources of fine organic aerosol. 6. Cigarette smoke in the urban
atmosphere, Environ. Sci. Technol., 28, 1375–1388, 1994.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,
B. R. T.: Sources of fine organic aerosol. 8. Boilers burning No. 2
distillate fuel oil, Environ. Sci. Technol., 31, 2731–2737, 1997.
Schantz, M., Poster, D., Kucklick, J., Wise, S., McDow, S., and Lewtas, J.:
NISTIR 7303, Intercomparison program for organic speciation in PM2.5 air
particulate matter: description and results for tiral III. NIST, 1–250,
2005.
Schauer, J. J. and Cass, G. R.: Source apportionment and particle-phase air
pollutants using organic compounds as tracers, Environ. Sci. Technol., 34,
1821–1832, 2000.
Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R.,
and Simoneit, B. R. T.: Source apportionment of airborne particulate matter
using organic compounds as tracers, Atmos. Environ., 30, 3837–3855, 1996.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.:
Measurement of Emissions from Air Pollution Sources. 1. C1 through C29
organic compounds from meat charbroiling, Environ. Sci. Technol., 33,
1566–1577, 1999.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.:
Measurement of Emissions from Air Pollution Sources. 3. C1−C29 Organic
Compounds from Fireplace Combustion of Wood, Environ, Sci. Technol., 35,
1716–1728, https://doi.org/10.1021/es001331e, 2001a.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.:
Measurement of Emissions from Air Pollution Sources. 4. C1−C27 Organic
Compounds from Cooking with Seed Oils, Environ. Sci. Technol., 36, 567–575,
https://doi.org/10.1021/es002053m, 2001b.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.:
Measurement of Emissions from Air Pollution Sources. 5. C1−C32 Organic
Compounds from Gasoline-Powered Motor Vehicles, Environ, Sci. Technol., 36,
1169–1180, https://doi.org/10.1021/es0108077, 2002.
Schneidemesser, E. von., Schauer, J. J., Hagler, G. S. W., and Bergin, M.:
Concentrations and sources of carbonaceous aerosol in the atmosphere of
Summit, Greenland, Atmos. Environ., 43, 4155–4162, 2009.
Schnelle-Kreis, J., Sklorz, M., Peters, A., Cyrys, J., and Zimmermann, R.:
Analysis of particle-associated semi-volatile aromatic and aliphatic
hydrocarbons in urban particulate matter on a daily basis, Atmos. Environ.,
39, 7702–7714, 2005.
SEDESOL, INEGI & CONAPO.: Delimitación de las zonas metropolitanas en
México 2005, México, 38 pp., 2007.
SENER: Prospectiva del sector eléctrico 2013–2027, 1–230, available at:
http://www.smartgridmexico.org/site/es/documentos/documentos-rectores-sener/2-prospectiva-del-sector-electrico-2013-2027?format=html
(last access: 21 January 2016), 2013.
Sheesley, R. J., Schauer, J. J., Bean, E., and Kenski, D.: Trends in
secondary organic aerosol at a remote site in Michigan's
upper peninsula, Environ. Sci. Technol., 38, 6941–6500, 2004.
SIEM: Secretaría de economía, estadísticas, available at: http://www.siem.gob.mx/siem/portal/estadisticas/xmun.asp?edo=19, 2016.
Simoneit, B. R. T.: Application of molecular Mmarker analysis to vehicular
exhaust for source reconciliations, Int. J. Environ. An. Ch., 22, 203–233,
1985.
Simoneit, B. R. T.: Characterization of organic-constituents in aerosols in
relation to their origin and transport – a review, Int. J. Environ. An. Ch.,
23, 207–237, 1986.
Simoneit, B. R. T.: A review of biomarker compounds as source indicators and
tracers for air pollution, Environ. Sci. Pollut. R., 6, 159–169, 1999.
Simoneit, B. R. T. and Mazurek, M. A.: Organic matter of the
troposphere-II. Natural background of biogenic lipid matter in aerosols
over the rural western United States, Atmos. Environ., 16, 2139–2159, 1982.
Simoneit, B. R. T. and Mazurek, M. A.: Organic tracers in ambient aerosols
and rain, Aerosol Sci. Tech., 10, 267–291, 1989.
Simoneit, B. R. T., Cardoso, J. N., and Robinson, N.: An assessment of the
origin and composition of higher molecular weight organic matter in aerosols
over Amazonia, Chemosphere, 21, 1285–1301, 1990.
Simoneit, B. R. T, Sheng G. Y., Chen, X. J., Fu, J. M., Zhang, J., and Xu, Y.
P.: Molecular marker study of extractable organic-matter in aerosols from
urban areas of China. Atmos. Environ., 25, 2111–2129, 1991.
Simoneit, B. R. T., Kobayashi, M., Mochida, M., Kawamura, K., Lee, M., Lim,
H.-J., Turpin, B., and Komazaki, Y.: Composition and major sources of
organic compounds of aerosol particulate matter sampled during the ACE-Asia
campaign, J. Geophys. Res-Atmos., 109, 1–22, https://doi.org/10.1029/2004JD004598,
2004.
Simoneit, B. R. T., Medeiros, O. M., and Didyk, B. M.: Combustion products
of plastics as indicators for refuse burning in the atmosphere, Environ.
Sci. Technol., 39, 6961–6970, 2005.
Sklorz, M., Schnelle-Kreis, J., Liu, Y., Orasche, J., and Zimmermann, R.: Daytime resolved
analysis of polycyclic aromatic hydrocarbons in urban aerosol samples-Impact of sources and meteorological conditions,
Chemosphere, 67, 934–943, 2007.
Spurny, K. R.: Aerosol chemistry and its environmental effects, in: Aerosol Chemical Processes in the Environment, edited by: Spurny,
K. R., Florida, Lewis, 3–21, 2000.
SRM 1649a: Urban Dust/Organics, National Institute of Standards and
Technology, US Department of Commerce: Gaithersburg, MD, 6 December 2007.
SRM 1649b: Urban Dust/Organics, National Institute of Standards and
Technology, US Department of Commerce: Gaithersburg, MD, 23 February 2009.
Standley, L. J. and Simoneit, B. R. T.: Characterization of extractable
plant wax, resin, and thermally matured components in smoke particles from
prescribed burns, Environ. Sci. Technol., 21, 163–169, 1987.
Stone, E. A., Snyder, D. C., Sheesley, R. J., Sullivan, A. P., Weber, R. J.,
and Schauer, J. J.: Source apportionment of fine organic aerosol in Mexico
City during the MILAGRO experiment 2006, Atmos. Chem. Phys., 8, 1249–1259,
https://doi.org/10.5194/acp-8-1249-2008, 2008.
Tobiszewski, M. and Namieśnik, J.: PAH diagnostic ratios for the
identification of pollution emission sources, Environ. Pollut., 162,
110–119, https://doi.org/10.1016/j.envpol.2011.10.025, 2012.
Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Kavouras, I. G., Koutrakis,
P., Oyola, P., and von Baer, D.: The composition and sources of PM2.5
organic aerosol in two urban areas of Chile, Atmos. Environ., 36, 3851–3863,
https://doi.org/10.1016/s1352-2310(02)00269-8, 2002.
Upadhyay, N., Clements, A., Fraser, M., and Herckes, P.: Chemical speciation
of PM2.5 and PM10 in south Phoenix, AZ, J. Air Waste Manage. Assoc., 61,
302–310, 2011.
Viana, M., Chi, X., Maenhaut, W., Querol, X., Alastuey, A., Mikuška, P.,
and Večeřa, Z.: Organic an elemental carbon concentrations in
carbonaceous aerosols during summer and winter sampling campaigns in
Barcelona, Spain, Atmos. Environ., 40, 2180–2193, 2006.
Viana, M., Kuhlbusch, T. A. J., Querol, X., Alastuey, A., Harrison, R. M.,
Hopke, P. K., Winiwarter, W., Vallius, M., Szidat, S., Prévôt, A. S.
H., Hueglin, C., Bloemen, H., Wåhlin, P., Vecchi. R., Miranda, A. I.,
Kasper-Giebl, A., Maenhaut, W., and Hitzenberger. R.: Source apportionment
of particulate matter in Europe: A review of methods and results, J. Aerosol
Sci., 39, 827–849, 2008.
Villalobos, A. M., Amonov, M. O., Shafer, M. M., Devi, J. J., Gupta, T.,
Tripathi, S. N., Rana, K. S., Mckenzie, M., Bergin, M. H., Schauer, J. J.:
Source apportionment of carbonaceous fine particulate matter (PM2.5) in two
contrasting cities across the Indo-Gangetic Plain, Atmos. Pollut. Res., 6,
398–405, 2015.
Wang, G. and Kawamura, K.: Molecular characteristics of urban organic
aerosols from Nanjing: a case study of a mega-city in China, Environ. Sci.
Technol., 39, 7430–7438, 2005.
Wang, G., Kawamura, K., Lee, S., Ho, K., and Cao, J.: Molecular, seasonal,
and spatial distributions of organic aerosols from fourteen Chinese cities,
Environ. Sci. Technol., 40, 4619–4625, 2006.
Watson, J. G., Chen, L.-W. A., Chow, J. C., Doraiswamy, P., and Lowenthal,
D. H.: Source apportionment: Findings from the U. S. supersites program, J.
Air Waste Manage. Assoc., 58, 265–288, 2008.
Watson, J. G, Chow, J. C., Lowenthal, D. H., Chen, L.-W. A., Shaw, S.,
Edgerton, E. S., and Blanchard, C. L.: PM2.5 source apportionment with
organic markers in the southeastern aerosol research and characterization
(SEARCH) study, J. Air Waste Manage. Assoc., 65, 1104–1118, 2015.
Wold, S., Sjöström, M., and Eriksson, L.: PLS-regression: a basic
tool of chemometrics, Chemometr. Intell. Lab., 58, 109–130, 2001.
Yin, J., Harrison, R. M., Chen, Q., Rutter, A., and Schauer, J. J.: Source
apportionment of fine particles at urban background and rural sites in the
UK atmosphere, Atmos. Environ., 44, 841–851, 2010.
Yokelson, R. J., Urbanski, S. P., Atlas, E. L., Toohey, D. W., Alvarado, E.
C., Crounse, J. D., Wennberg, P. O., Fisher, M. E., Wold, C. E., Campos, T.
L., Adachi, K., Buseck, P. R., and Hao, W. M.: Emissions from forest fires
near Mexico City, Atmos. Chem. Phys., 7, 5569–5584,
https://doi.org/10.5194/acp-7-5569-2007, 2007.
Young, L.-H. and Wang, C.-S.: Characterization of n-alkanes in PM2.5 of the
Taipei aerosol, Atmos. Environ., 36, 477–482, https://doi.org/10.1016/s1352-2310(01)00298-9, 2002.
Yue, Z. and Fraser, M. P.: Polar organic compounds measured in fine
particulate matter during TexAQS 2000, Atmos. Environ., 38, 3253–3261, 2004.
Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette,
D., and Sylvestre, S.: PAHs in the Fraser River basin: a critical appraisal
of PAH ratios as indicators of PAH source and composition, Org. Geochem., 33, 489–515, 2002.
Zhang, X. L., Tao, S., Liu, W. X., Yang, Y., Zuo, Q., and Liu, Z.: Source
diagnostic of polycyclic aromatic hydrocarbons based on species ratios: a
multimedia approach, Environ. Sci. Technol., 39, 9109–9114, 2005.
Zheng, M., Cass, G. R., Ke, L., Wang, F., Schauer, J. J., Edgerton, E. S.,
and Russell, A. G.: Source apportionment of daily fine particulate matter at
Jefferson Street, Atlanta, GA, during summer and winter, J. Air Waste
Manage. Assoc., 57, 228–242, 2015.
Zheng, M., Cass, G. R., Schauer, J. J., and Edgerton, E. S.: Source
apportionment of PM2.5 in the southeastern United States using
solvent-extractable organic compounds as tracers, Environ. Sci. Technol.,
36, 2361–2371, 2002.
Zurita, O.: Guía de árboles y otras plantas nativas en la zona
metropolitana de Monterrey, Fondo Editorial de Nuevo León, ISBN:
978-607-7577-15-7, 82 pp., 2009.
Short summary
Chemical characterization of fine aerosol was conducted due to air pollution by fine particles in the last decade. The diagnostic ratios and CMB receptor model based on organic markers showed that gasoline- and diesel-powered vehicles are the main emission sources (CMB = 64 %) of this class of organic compounds in PM2.5. Other pyrogenic sources as contributors to fine aerosols. Fine particles are related to human health impacts. In addition, these results can be useful for policy making.
Chemical characterization of fine aerosol was conducted due to air pollution by fine particles...
Altmetrics
Final-revised paper
Preprint