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Abstract. Primary emissions from anthropogenic and bio-

genic sources as well as secondary formation are responsi-

ble for the pollution levels of ambient air in major urban ar-

eas. These sources release fine particles into the air that neg-

atively impact human health and the environment. Organic

molecular markers, which are compounds that are unique to

specific PM2.5 sources, can be utilized to identify the major

emission sources in urban areas. In this study, 43 representa-

tive PM2.5 samples, for both daytime and nighttime periods,

were built from individual samples collected in an urban site

of the Monterrey metropolitan area (MMA) during the spring

and fall of 2011 and 2012. The samples were analyzed for or-

ganic carbon, elemental carbon, and organic molecular mark-

ers. Several diagnostic tools were employed for the prelimi-

nary identification of emission sources. Organic compounds

for eight compound classes were quantified. The n-alkanoic

acids were the most abundant, followed by n-alkanes, wood

smoke markers, and levoglucosan/alkenoic acids. Polycyclic

aromatic hydrocarbons (PAHs) and hopanes were less abun-

dant. The carbon preference index (0.7–2.6) for n-alkanes

indicates a major contribution of anthropogenic and mixed

sources during the fall and the spring, respectively. Hopanes

levels confirmed the contribution from gasoline and diesel

engines. In addition, the contribution of gasoline and diesel

vehicle exhaust was confirmed and identified by the PAH

concentrations in PM2.5. Diagnostic ratios of PAHs showed

emissions from burning coal, wood, biomass, and other fossil

fuels. The total PAHs and elemental carbon were correlated

(r2
= 0.39–0.70) across the monitoring periods, reinforcing

that motor vehicles are the major contributors of PAHs.

Cholesterol levels remained constant during the spring and

fall, showing evidence of the contribution of meat-cooking

operations, while the isolated concentrations of levoglucosan

suggested occasional biomass burning events. Finally, source

attribution results obtained using the CMB (chemical mass

balance) model indicate that emissions from motor vehicle

exhausts are the most important, accounting for the 64 % of

the PM2.5, followed by meat-cooking operations with 31 %

The vegetative detritus and biomass burning had the small-

est contribution (2.2 % of the PM2.5). To our knowledge, this

is only the second study to explore the organic composition

and source apportionment of fine organic aerosol based on

molecular markers in Mexico and the first for the MMA.

Particularly molecular marker were quantified by solvent ex-

traction with dichloromethane, derivatization, and gas chro-

matography with mass spectrometry (GC/MS).

1 Introduction

Fine organic aerosol (OA) has a major role in environmen-

tal and human health impacts (Peng et al., 2009). Some re-

searchers have recently estimated that fine OA constitutes

23–38 % of the PM2.5 mass in urban areas (Qin et al., 2006;

Viana et al., 2006; Duan et al., 2007; Upadhyay et al., 2011).

In addition, OA along with elemental carbon (EC) can ac-

count for up to 31–57 % of the PM2.5 mass (Duan et al.,

2007; Upadhyay et al., 2011; Martínez et al., 2012).

Atmospheric fine OA is a complex mixture of hundreds

of organic compounds that are directly emitted or are gener-

ated by atmospheric chemical processes. Many of these or-

ganic compounds are toxic or carcinogenic (Spurny, 2000;
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Pope et al., 2002), but can be useful as markers to iden-

tify the source of the aerosols being measured at a specific

site. Organic markers that have been used in the past in-

clude levoglucosan, cholesterol, nicotine, n-alkanes, hopanes

(pentacyclic triterpenes), and polycyclic aromatic hydrocar-

bons (PAHs). Levoglucosan is a pyrolysis decomposition and

combustion product of cellulose; therefore, it can be used

as a tracer for biomass burning sources (Fraser and Lak-

shmanan, 2000; Robinson et al., 2006a; Alves et al., 2011;

Gonçalves et al., 2011). Cholesterol and nicotine are good

markers for meat-cooking operations (Rogge et al., 1991;

Schauer et al., 2001b; Robinson et al., 2006b) and cigarette

smoke (Eatough et al., 1989; Hildemann et al., 1991; Rogge

et al., 1994; Kavouras et al., 1998), respectively. Hopanes are

biomarkers of fuel oil combustion, coal combustion, and lu-

bricants, and are useful to identify engine emissions (Rogge

et al., 1993a; Oros and Simoneit, 2000; Simoneit et al., 2004;

Schnelle-Kreis et al., 2005). PAHs are semi-volatile com-

pounds formed from incomplete fossil fuel combustion pro-

cesses (Rogge et al., 1993a; Marr et al., 2004; Sklorz et al.,

2007). Finally, n-alkanes are indicators of fossil fuel utiliza-

tion and biogenic emissions (Simoneit et al., 2004; Young

and Wang, 2002). Additional details about specific organic

markers and their emission sources can be found elsewhere

(Simoneit et al., 1991; Simoneit, 1999; Lin et al., 2010; Blan-

chard et al., 2014).

The diagnostic ratios between homologues in series of

biomolecules are another feature used to identify the ori-

gin of fine OA are. For n-alkanes and alkanoic acids, the

odd- and even-carbon preferences are indicators of biogenic

sources (Tsapakis et al., 2002). A lack of carbon preference

is indicative of fossil sources. For the case of PAHs, some

ratios can be used to identify emissions from fossil fuel com-

bustion (Zhang et al., 2005).

Source apportionment studies based on organic molecu-

lar markers have accomplished a better understanding of the

emission sources in urban areas. This approach considers

two main principles: (1) that organic molecular markers are

present in relatively high concentrations in emissions from

a specific source and in lower concentrations in the remain-

ing sources, and (2) that they react slowly enough in the at-

mosphere to be conserved during transport from the source

to the observation/receptor site (Schauer et al., 1996; Lin

et al., 2010). The use of organic molecular markers in the

last decade has proven to be a powerful method to identify

and attribute emission sources in urban areas (Alves et al.,

2001; Fraser et al., 2003; Abas et al., 2004; Kalaitzoglou

et al., 2004; Zheng et al., 2005; Feng et al., 2006; Huang

et al., 2006; Li et al., 2006; Park et al., 2006; Alves et al.,

2007; Chow et al., 2007; Ke et al., 2007; Stone et al., 2008;

Amador-Muñoz et al., 2010; Yin et al., 2010; Pietrogrande

et al., 2011; Perrone et al., 2012; Giri et al., 2013; Villalo-

bos et al., 2015; Watson et al., 2015; Zheng et al., 2015). In

spite of recent research interest on organic molecular mark-

ers for source apportionment, the application of this approach

started in the 1980s (Simoneit, 1985, 1986; Eatough et al.,

1989; Simoneit and Mazurek, 1989) and continued in the

1990s (Simoneit et al., 1990, 1991; Schauer et al., 1996; Si-

moneit, 1999; Schauer and Cass, 2000), especially with the

development of organic source profiles for primary emission

sources (Rogge et al., 1991, 1993a, b, c, 1994, 1997; Fraser et

al., 1999; Schauer et al., 1999) and alternative receptor mod-

els (Paatero 1997; Wold et al., 2001). Furthermore, improved

source apportionment methods have been developed (Chen

et al., 2011; Kelly et al., 2013; Watson et al., 2015), while

other methods have been suggested to be dropped as recep-

tor models (Hopke, 2015). More detailed information about

source apportionment methods can be found elsewhere (Reff

et al., 2007; Viana et al., 2008; Lin et al., 2010; Nozière et

al., 2015).

For the Monterrey metropolitan area (MMA), the third

largest urban center of Mexico, there is a growing concern to

determine the emission sources of fine OA. It was recently

determined that fine OA accounts for 36–71 % of PM2.5

mass in this urban center (Mancilla et al., 2015). Previously,

Martínez et al. (2012) estimated an OA fraction of ∼ 40 %

of the PM2.5 for the MMA. According to a recent tunnel

study, PM2.5 emissions from gasoline-powered vehicles (one

of the major emission sources in the MMA) contain as much

as 55 % of carbonaceous material (Mancilla and Mendoza,

2012). To date, only one study has addressed the chemical

characterization of fine OA in the MMA, but it focused ex-

clusively on the levels of PAHs (González-Santiago, 2009).

More importantly, the present study would be the second of

this kind in Mexico and the first one for the MMA; previ-

ously, Stone et al. (2008) reported an evaluation of molecu-

lar organic markers for source apportionment at Mexico City.

This city has a temperate and wet climate, while the MMA

has a dry and extreme climate with scarce rains. It is well

known that climate conditions can affect the air quality in

urban areas. Extreme climates, including high temperatures,

could increase the concentrations of air pollutants. For exam-

ple, warm and dry climates promote photochemical reactions

in the atmosphere producing secondary OA. The unique ge-

ography and the changeable climate as well as the typical

industries of the region make the MMA unique and different

from other Mexican cities.

2 Methodology

2.1 Sampling site

The MMA has a population of 4.2 million inhabitants (IN-

EGI, 2011) and is considered the largest urban area in north-

eastern Mexico and the third-largest urban center in the coun-

try. The MMA is composed of 12 municipalities that over-

all cover an area of 6680 km2 (SEDESOL et al., 2007), as

shown in Fig. 1. The MMA has a vehicular fleet of 1.7 mil-

lion vehicles (INEGI, 2010) with a composition of approx-
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Figure 1. Location and municipalities of the Monterrey metropolitan area (MMA); the sampling site was set up in the downtown.

imately 73 % gasoline-powered vehicles (passenger cars),

25 % diesel-powered vehicles (buses and trucks) and 3 %

motorcycles. In addition, industrial activity in the MMA

is dominated by manufacturing industries, construction and

electricity, transport, restaurants, and other local services.

The MMA has a network of air quality monitoring stations

(Sistema Integral de Monitoreo Ambiental, SIMA). For this

study, PM2.5 samples were collected at only one site placed

in the facilities of the downtown monitoring station of the

SIMA network (25◦40′32′′ N, 100◦20′18′′W), 556 m.a.s.l.

(meters above sea level). The sampling site is affected mainly

by traffic and emissions from a wide range of industrial ac-

tivities (e.g., steel and cement production). The vegetation

around the sampling site includes dispersed and scarce grass,

shrubs, and street tree systems in the immediate vicinity as

well as in the periphery. The sampling site selection was

based on coefficients of divergence (COD) analysis using the

24 h average PM2.5 concentrations recorded in 2009 by the

SIMA network. Details about this analysis can be found else-

where (Mancilla et al., 2015).

2.2 Sampling periods and instruments

The samples were collected during the spring and fall of

2011 and 2012 (Table 1). For every sampling day, two con-

secutive 12 h samples were taken to obtain information for

daytime and nighttime periods. The daytime sampling was

performed from 06:00 to 18:00 (local time), while nighttime

samples were collected from 18:00 to 06:00 the next day. For

the spring and fall 2011 campaigns, sampling periods were

performed on alternate days. For example, for the spring of

2011, the first sampling day was on 28 May, the second on

30 May, and so on. For the campaigns of 2012, both were

conducted for 14 consecutive sampling days.

Carbonaceous aerosol samples were collected using high-

volume filter-based instruments with a PM2.5 inlet (TE-

6001-2.5, Tisch Environmental Inc.), operating at a flow of

1.13 m3 min−1. The flow rates for the high-volume sam-

plers were calibrated at the start and end of each monitor-

ing campaign. For each high-volume sampler, the calibration

was carried out using a calibration orifice (NIST Traceable

Calibration Certificate). The samplers were mounted on the

rooftop of the monitoring station 3 m above the ground. One

high-volume sampler was used for each campaign, except for

the campaign of fall 2012, in which two high-volume sam-

plers were deployed and operated simultaneously to collect

pairs of samples for each diurnal and nighttime sampling

period. Fine particles were collected on 8 in.×10 in. quartz

microfiber filters (Whatman QMA). Filters were previously

pre-fired for 8 h at 600 ◦C in a furnace to remove residual car-

bon and stored in baked aluminum foil within sealed plastic

bags (Ziploc®) until they were used. After sampling, loaded

8 in.×10 in. filters were stored in tall 8 oz. glass jars (VWR,

IR221-0250). Loaded filters were placed in a cooler with blue

ice for immediate transport from the sampling site to the lab-

oratory. All loaded filters were stored in a freezer at −20 ◦C

to prevent the evaporation of volatile compounds until they

were analyzed. A total of 111 samples and 10 field blanks

were collected throughout the study.

www.atmos-chem-phys.net/16/953/2016/ Atmos. Chem. Phys., 16, 953–970, 2016



956 Y. Mancilla et al.: Organic composition and source apportionment of fine aerosol

Table 1. Monitoring experiments conducted for this study.

Campaign Period Sampling days Samples Field blanks

Spring 2011 28 May to 11 June 7∗ 14 2

Fall 2011 22 October to 3 November 7∗ 14 2

Spring 2012 6 to 19 June 14 27 2

Fall 2012 13 to 26 October 14 56 4

∗ Non-consecutive days.

2.3 Ambient measurements

For spring 2011, analyses for each 12 h sample were carried

out as discussed by Mancilla et al. (2015). Even though the

samples collected for spring 2011 exhibited high levels of

OC, some concentrations for different organic compounds of

interest were low (0.03 to 0.16 ng m−3). In addition, the OC

concentrations for the last three campaigns (fall 2011, spring

2012, and fall 2012) were on average up to 35 % lower than

OC concentrations of spring 2011. Based on these findings,

composites were formed for the last three campaigns to en-

sure higher levels of collected mass used to identify the or-

ganic molecular markers. Weekday–weekend and daytime–

nighttime differences of fine OC levels were investigated

and considered in order to pool sample filters into week-

day and weekend composites for the last three campaigns

(Mancilla et al., 2015). Each composite included only day-

time or nighttime samples collected during weekdays (Mon–

Thu) or weekend (Fri–Sun). Sample groups for composites

varied from two to six sample filters. Thereafter, the number

of individual samples (or filters) was reduced from 111 to 43

representative samples. The composites made for this study

are described in Table 2.

Solvent-extractable molecular markers were quantified us-

ing gas chromatography mass spectrometry (GC/MS) using

dichloromethane (DCM) and methanol (MeOH) (high purity,

99.9 %, Fisher Scientific). Filters were spiked with 50 µL of

the following deuterated internal standards (Sigma Aldrich):

n-hexadecane-d34, n-hexatriacontane-d74, n-eicosane-d42,

n-triacontane-d62, vanillin-d3, benzophenone-d5, chrysene-

d12, dibenz(a,h)anthracene-d14, naphthalene-d8, pyrene-

d10, benzo(e)pyrene-d12, coronene-d12, decanoic acid-d19,

palmitic acid-d31, stearic acid-d35, levoglucosan-13c6, and

cholesterol-d6. Each individual filter or sample composite

was extracted three times with DCM. During each extrac-

tion, enough DCM was added and then ultrasonic agitation

was applied for 20 min using a sonicator (Bransonic®, model

5510R-DTH). The extracts were combined and then con-

centrated by evaporation under a gentle flow of ultra-high-

purity nitrogen until the extract reached a volume of∼ 5 mL.

The extracts were filtered through a pre-fired quartz filter,

subsequently reduced in volume to 250 µL, and then sepa-

rated into three fractions. One fraction was a direct portion

of the 250 µL extract for direct analysis by GC/MS, and the

other two fractions were used for chemical derivatizations.

One fraction was methylated using diazomethane (CH2N2)

to convert carboxylic acids to their respective methyl es-

ters. Another fraction was silylated using a combination

of BSTFA (N,O-bis(trimethylsilyl)trifluoroacetamide) and

TMCS (trimethylchlorosilane) to convert sterols and sug-

ars to their respective trimethylsilyl esters. For methylation,

50 µL of a CH2N2 solution was combined in a vial with 50 µL

of extract. For the silylation, 50 µL of BSTFA+TMCS (mo-

lar ratio 99 : 1) was combined with 50 µL sample extract.

Then, the mixture was allowed to react for 3 h at 65 ◦C.

The quantification and identification of organic compounds

was based on comparisons with authentic standards, reten-

tion times, literature mass spectra, and fragmentation pat-

terns using HP ChemStation. A detailed description of the

extraction and analysis procedures as well as the chromato-

graph and column used can be found in Brown et al. (2002).

2.4 Molecular diagnostic ratios

To investigate the origin of fine organic aerosols, the follow-

ing diagnostic ratios were used.

2.4.1 Carbon preference index (CPI)

The CPI is an indicator of the measure of odd- or even-carbon

homologues series of organic compounds within a sample.

Based on several studies (Abas and Simoneit, 1996; Tsapakis

et al., 2002; Harrad et al., 2003), the CPI for n-alkanes (odd

to even ratio) was calculated as

CPI=

∑
(C17 to C33)∑ (C16 to C32) , (1)

and that for n-alkanoic acids (even to odd ratio) as

CPI=

∑
(C10 to C32)∑
(C11 to C31)

. (2)

The CPI is an important indicator that is used to deter-

mine whether emissions come from natural or anthropogenic

sources. For both n-alkanes and n-alkanoic acids, values of

CPI > 1 indicate that hydrocarbons and carboxylic acids are

emitted from natural sources. In contrast, values of CPI≤ 1

(or close to 1) indicate that they are emitted from anthro-

pogenic sources (Gogou et al., 1996; Alves et al., 2001; Ge-

lencsér, 2004).
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Table 2. Characteristics of individual and composite samples for each monitoring campaign. Values for PM2.5 are the averages obtained from

the SIMA network. OC concentration values are the average values reported by Mancilla et al. (2015). SD represents standard deviation, I

indicates that the dates included were analyzed individually, C indicates that the dates included were pooled to form a composite, D represents

daytime sampling, N represents nighttime sampling, 1 refers to weekday sampling, and 2 refers to weekend sampling.

Campaign Description Dates included PM2.5 OC

(µg m−3) SD (µg m−3) SD

Spring 2011 ID1 30 May, 1, 9, 11 Jun 20.3 8.7 8.2 2.7

ID2 28 May, 3, 5 Jun 22.5 15.1 10.7 5.7

IN1 30 May, 1, 9, 11 Jun 25.1 10.2 6.3 1.5

IN2 28 May, 3, 5 Jun 31.7 22.6 8.5 4.3

Fall 2011 CD1 24 Oct, 1 Nov 18.5 3.2 8.7 1.6

CD1 26 Oct, 3 Nov 18.1 12.4 8.2 5.4

CN1 24 Oct, 1 Nov 13.5 1.6 4.7 0.3

CN1 26 Oct, 3 Nov 12.9 9.4 5.5 2.5

CD2 22, 28, 30 Oct 20.8 11.6 9.3 3.3

CN2 22, 28, 30 Oct 15.1 6.1 6.7 2.1

Spring 2012 CD1 11, 12 Jun 17.1 3.7 7.6 2.5

CD1 13, 14 Jun 19.3 1.7 6.2 0.6

CD1 18, 19 Jun 12.6 0.7 5.1 0.9

CD1 6, 7 Jun 18.3 2.0 8.8 1.0

CN1 11, 12 Jun 20.3 0.5 4.3 0.8

CN1 13, 14 Jun 15.2 0.1 3.3 0.1

CN1 18, 6, 7 Jun 9.3 1.5 4.0 0.8

CD2 8, 9, 10 Jun 18.4 3.7 8.3 0.7

CD2 15, 16, 17 Jun 10.7 2.2 4.6 0.6

CN2 8, 9, 10 Jun 18.8 6.6 5.3 1.0

CN2 15, 16, 17 Jun 9.3 3.1 – 2.8 0.6 –

Fall 2012 CD2 13, 14, 27 Oct 15.8 2.9 9.3 1.3

CN2 13, 14, 28 Oct 8.9 2.7 6.8 1.1

CD1 15, 16 Oct 17.6 4.1 10.1 3.1

CN1 15, 16 Oct 23.4 11.4 11.4 3.9

CD1 17, 18 Oct 17.6 11.9 13.7 6.2

CN1 17, 18 Oct 13.4 2.4 8.7 1.9

CD2 19, 20, 21 Oct 29.7 5.5 10.9 2.1

CN2 19, 20, 21 Oct 23.1 1.1 6.6 2.1

CD1 22, 23 Oct 23.6 3.9 8.1 0.2

CN1 22, 23 Oct 13.7 2.2 4.5 0.3

CD1 24, 25 Oct 13.9 1.6 9.3 3.9

CN1 24, 25 Oct 10.8 1.0 5.3 0.6

Another useful indicator that is used to specify the ori-

gin of the emissions is the carbon number with maximum

concentration (Cmax). Hydrocarbons and carboxylic acids of

high molecular weight (>C25) are emitted from biogenic

sources, while those with lower molecular weight (≤C25)

are mainly emitted from fossil fuel combustion processes

(Alves et al., 2001; Young and Wang, 2002; Gelencsér,

2004).

2.4.2 Diagnostic ratios of PAHs

Other indicators that have been used as markers of differ-

ent source emissions of OA are the PAH diagnostic ratios

(DRs) (Dvorská et al., 2011; Katsoyiannis et al., 2011). The

DRs calculated in this study are shown in Table 3. The val-

ues listed in this table can be found elsewhere (Ravindra et

al., 2008; Tobiszewski and Namieśnik, 2012).

2.5 Chemical mass balance model

The CMB is a single-sample receptor model that can be

stated in terms of the contribution from p independent

sources to all chemical species as follows:

xij =

p∑
k=1

gikfkj + eij , (3)

www.atmos-chem-phys.net/16/953/2016/ Atmos. Chem. Phys., 16, 953–970, 2016
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Table 3. PAH diagnostic ratios for different source categories. The PAH abbreviations are IP: indeno(123cd)pyrene; BgP: benzo(ghi)perylene;

BAA: benz(a)anthracene; CRY: chrysene; FLT: fluoranthene; PYR: pyrene; BeP: benzo(e)pyrene; BaP: benzo(a)pyrene.

Diagnostic ratio Value Source Reference

IP / (IP+BgP) < 0.20 Petrogenic Katsoyiannis et al. (2011)

> 0.20 Pyrogenic Katsoyiannis et al. (2011)

0.20–0.50 Petroleum combustion Yunker et al. (2002)

> 0.50 Coal, grass, and wood combustion Yunker et al. (2002)

BAA / (BAA+CRY) < 0.20 Petrogenic Katsoyiannis et al. (2011)

0.20–0.35 Coal combustion Akyüz and Cabuk (2010)

> 0.35 Pyrogenic, vehicle emissions Katsoyiannis et al. (2011)

FLT / (FLT+PYR) < 0.40 Petrogenic Katsoyiannis et al. (2011)

> 0.40 Pyrogenic Katsoyiannis et al. (2011)

0.40–0.50 Fuel combustion Katsoyiannis et al. (2011)

> 0.50 Diesel emissions Ravindra et al. (2008)

(BaP+BeP) /BgP > 0.60 Traffic Katsoyiannis et al. (2011)

< 0.60 Non-traffic Katsoyiannis et al. (2011)

where xij is the measured concentration of species j in sam-

ple i, fkj is the concentration of species j in the emissions of

source k, gik is the contribution of source k to sample i, and

eij is the model error. This model considers a prior knowl-

edge of the source profiles and that the components of the

source emissions do not undergo changes during their trans-

port from the source to the receptor. CMB provides an effec-

tive variance-weighted least-squares solution to the overde-

termined set of mass balance equations (Eq. 1). CMB takes

into account the known uncertainties in the ambient mea-

surements and the source emission data to minimize the chi-

square (χ2) goodness-of-fit parameter for each sample i:

χ2
=

m∑
j=1


xj −

p∑
k=1

gjkfk

σ 2
xj
+

p∑
k=1

σgjkfk

 , (4)

where σxj is the standard deviation of the concentration of

species j , σgjk is the standard deviation of the gjk , and is m

the total number of species. The US EPA-CMB8.2 software

has been successfully used to apportion source contributions

to ambient PM2.5 (Ke et al., 2007; Stone et al., 2008; Wat-

son et al., 2008; Kleeman et al., 2009; Schneidemesser et al.,

2009; Yin et al., 2010; Perrone et al., 2012; Villalobos et al.,

2015) and was also used in the current study. More details

about CMB can be found elsewhere (e.g., Henry et al., 1984;

Watson et al., 2008).

2.6 Source profiles

The source profiles used in this work were taken from the

most comprehensive studies available. The selection of the

source profiles was based on previous source apportionment

studies carried out for Mexican urban areas. Firstly, Stone et

al. (2008) used CMB with organic molecular markers profiles

to estimate contributions from gasoline- and diesel-powered

vehicles, vegetative detritus, and biomass burning in Mex-

ico City. Secondly, Martinez et al. (2012) based their factor

analysis on trace elements identified primary sources such as

industrial sources, motor vehicle exhaust and biomass burn-

ing in the MMA. Finally, from these studies, seven primary

source profiles were selected.

The source profiles for gasoline- and diesel-powered ve-

hicles were taken from Schauer et al. (2002) and Fraser et

al. (2002), respectively. In the MMA, the gasoline vehicle

fleet seems to be rather well maintained and of a recent model

year, while the diesel vehicle fleet is composed of heavy-

duty vehicles such as trucks and buses. Therefore, the pro-

files reported for catalyst-equipped gasoline-powered motor

vehicles emissions and heavy-duty trucks from dynamometer

tests were used.

From evidence of industrial sources in Mexican urban at-

mospheres, source profiles for natural gas combustion and

fuel oil combustion were taken from Rogge et al. (1993c)

and Rogge et al. (1997), respectively.

Finally, source profiles for meat-cooking operations, vege-

tative detritus, and biomass burning were taken from Schauer

et al. (1999), Rogge et al. (1993b), and Schauer et al. (2001a),

respectively. Most traditional restaurants activities of the

region of study include meat charbroiling operations. For

biomass burning, given the existence of softwood and hard-

wood sources in the region (Zurita, 2009), the softwood pine

and hardwood oak profiles were used in this study. These

last profiles were used separately because they are highly

collinear. Regarding vegetative detritus, a source profile was

included based on the contributions determined by Stone et

al. (2008) in Mexico City along with the fact that the MMA is

surrounded by rural areas with vast green covers. Therefore,
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it is possible to have an impact from transport of biogenic

emissions.

For individual organic compound quantification, an

uncertainty of ±20 % of the measured concentration

was used for all ambient samples and source profiles

(Schauer et al., 2000; SRM 1649a, 2007; SRM 1649b,

2009; Fraser et al., 2003; Schantz et al., 2005). A de-

tailed description of the source profiles and settings

used to perform the CMB in this study can be found

in Fraser et al. (2003). For the current application, the

fitting species for CMB included 20 organic compounds

along with EC and overall OC. The molecular markers

included seven n-alkanes (C27-C33), four petroleum

biomarkers (17a(H),21b(H)-29-norhopane, 17a(H),21b(H)-

hopane, 22R+S 17a(H),21b(H)-30-homohopane, and

22R+S 17a(H),21b(H)-30-bishomohopane), five polycyclic

aromatic hydrocarbons (benzo[a]anthracene, benzoflu-

oranthenes, benzo[a]pyrene, indeno[123-cd]pyrene and

benzo[ghi]perylene), two saturated fatty acids (C16:0 and

C18:0), cholesterol, and levoglucosan.

3 Results and discussion

3.1 Resolved organic aerosols

The results for the chemical characterization of the fine or-

ganic aerosol for the MMA are summarized in Table S1. In

this and other sections, averaged values for concentrations

and other parameters are given± 1 standard deviation. Most

of the PM2.5 daytime concentrations were 20 % higher than

nighttime concentrations. The concentrations of OC and EC

were on average 32 % higher during the daytime than the

nighttime. In addition, the OC and EC accounted together for

28–49 and 46–55 % of the PM2.5 for spring and fall, respec-

tively. In the spring, the daytime carbonaceous fraction was

1.6–1.8 times higher than the corresponding nighttime frac-

tion, whereas during the fall it was 1.1–1.2 times higher. The

average OC /EC ratios ranged from 7.4 to 12.6 during this

study. Detailed information and analysis of the carbonaceous

aerosol for this study can be found in Mancilla et al. (2015).

All samples collected during this study were analyzed for

eight organic compound classes except those samples col-

lected in the spring of the 2011 campaign, for which car-

boxylic acids, wood smoke markers, and nitro-PAH com-

pounds were not included for the chemical analysis. There-

fore, the overall contribution of the resolved organic com-

pounds to OC in the spring of 2011 is not directly compa-

rable to that of the last three campaigns. The data for seven

of the eight resolved compound classes are shown in Fig. 2.

For the last three campaigns, the n-alkanoic acids were the

most abundant, followed by n-alkanes, wood smoke mark-

ers, and levoglucosan/alkenoic acids. The PAHs and triter-

pene hydrocarbons were less abundant. The same tendency

was observed in the spring of 2011, except that the n-alkanes

were the most abundant. The concentrations of nitro-PAH

were neglected because their levels were below the detection

limit of the method.

The daytime and nighttime concentrations of the resolved

organics for spring 2011 accounted for 0.49± 0.52 and

0.46± 0.41 % of the ambient OC, respectively. These con-

tributions were much lower than the following three cam-

paigns due to the fact that some compounds classes were not

included. For spring 2012 and all fall campaigns, the total

daytime concentrations of the resolved organics accounted

for 7.58± 4.89 and 2.64± 1.82 to 4.67± 1.76 %, respec-

tively, while the total nighttime concentrations accounted for

11.0± 6.3 and 3.2± 2.4 to 8.0± 4.0 %, respectively. These

observations are consistent with the findings that, typically,

around 84 % of the fine OC is either non-extractable or will

not elute from the GC column (Schauer and Cass, 2000). In

the following sections the organic composition of the fine or-

ganic aerosols will be analyzed using several diagnostic ra-

tios to identify the primary emission sources. Then the rela-

tive contribution of each primary source to the PM2.5 will be

calculated by using the CMB receptor model.

3.2 n-Alkanes and hopanes

The n-alkanes have two main sources: petroleum product

utilization and natural vegetation waxes. The latter source

consists of the longer-chain plant lipids (>C20) such as n-

alkanes (Simoneit and Mazurek, 1982). In this study, the n-

alkanes in the range of C17–C33 were detected. For the sam-

ples collected for spring 2011 and fall 2011, the average day-

time and nighttime concentrations of n-alkanes were 1.6 and

2.3 times higher for the fall than the spring, respectively. This

is consistent with the high contribution of the OC to PM2.5

and the lowest OC /EC ratios exhibited during the fall (Man-

cilla et al., 2015). In addition, the average temperature in the

fall was 18.7–22.1 ◦C vs. 27.8–29.4 ◦C in the spring. Low

temperatures typically promote the utilization of petroleum

products. In Mexico, the government sets the tariff rates for

electric energy consumption with regard to the temperature;

during the cold seasons the government removes the sub-

sidy on domestic electric energy due to the demand for fos-

sil fuels in those seasons, and the sampling years of this

study were not the exception (SENER, 2013). The average

CPI values of n-alkanes in the spring were 1.5± 0.3 (range:

1.1–1.9) in the daytime and 1.7± 0.5 (range: 1.1–2.6) in the

nighttime, while the CPI values in the fall were 1.0± 0.3

(range: 0.7–1.2) in the daytime and 0.9± 0.1 (range: 0.7–

1.0) in the nighttime. The CPI values in the spring suggest the

mixed contribution of anthropogenic and biogenic emission

sources, whereas those values in the fall indicated a domi-

nance of anthropogenic emissions. In addition, the contribu-

tion of anthropogenic emission sources is confirmed by the

presence of petroleum biomarkers (hopanes: range of 0.06

to 2.36 ng m−3) and n-alkanes≤C25 (Fig. 3). For the fall,

the average daytime and nighttime concentrations of hopanes
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Figure 2. Concentrations of the resolved organic compound classes in the MMA. For (a) the n-alkanoic and alkenoic acids and wood smoke

tracer were not included in the chemical analysis. For (b), (c) and (d) the n-alkanoic acids are divided by a factor of 10.

were 2.3 and 4.2 times higher than in the spring, respectively.

Similarly, the presence of biogenic emissions due to Cmax

was found at C27, C29, or C31 (Fig. 3). This carbon num-

ber dominance and trace levels of hopanes are characteristics

of plant wax emissions and urban traffic emissions, respec-

tively (Standley and Simoneit, 1987; Cass, 1998; Simoneit et

al., 2004).

For spring 2012 and fall 2012, the behavior of n-alkanes

was the opposite of 2011. The average daytime and nighttime

concentrations of n-alkanes were 1.5 and 2.0 times higher

in the spring than in the fall, respectively. The EC levels

remained similar to those of 2011, but the OC levels were

higher during fall 2012, increasing the OC /EC ratios. Some

of these ratios exhibited high peaks suggesting a contribution

from primary emission sources with elevated OC /EC ratios

like biomass burning (Mancilla et al., 2015). The average

temperature in the fall was 23.5–26.4 ◦C vs. 28.0–30.7 ◦C in

the spring. The average fall temperatures were not consistent

with the average of 2011. In the fall of 2012, the warmer tem-

peratures might have promoted less utilization of some fuels

compared to 2011 in which lower temperatures could have

promoted their utilization, increasing the n-alkanes’ concen-

trations in fall 2011. The average CPI values of n-alkanes

in spring 2012 were 0.9± 0.1 (range: 0.8–1.1) in the day-

time and 1.2± 0.1 (range: 1.2–1.3) in the nighttime, while

the CPI values in fall 2012 were 1.3± 0.1 (range: 1.0–1.4) in

the daytime and 1.5± 0.2 (range: 1.3–1.6) in the nighttime.

From these CPI values, it appears that biogenic emissions are

relevant in all sampling periods. For spring 2012 daytime, the

emissions appear to be heavily dominated by anthropogenic

emissions due to the low CPI value exhibited. The presence

of petroleum biomarkers supports the relative contribution of

anthropogenic emissions. However, in 2012 the hopane lev-

els were∼ 35 % lower at daytime and∼ 43 % lower at night-

time than those in the previous year. The low hopane levels

(range of 0.10 to 1.49 ng m−3) highlight the possible pres-

ence of biogenic emissions (Fig. 2).

3.3 PAHs

Twelve PAH compounds – fluoranthene (FLT),

acephenanthrylene (ACE), pyrene (PYR),

benzo(a)anthracene (BAA), chrysene (CRY),

benzo(k)fluoranthene+ benzo(b)fluoranthene (BFA),

benzo(a)pyrene+ benzo(e)pyrene (BaP+BeP), perylene

(PER), indeno(123cd)pyrene (IP), benzo(ghi)perylene

(BgP), dibenz(ah)anthracene (DaA), and coronene (Cor) –

were identified in the MMA fine samples. For both sampling

years, the average daytime and nighttime concentrations

of PAHs were 1.4–5.9 and 1.4–2.4 times higher in the fall

than in the spring, respectively. This is consistent with the

high contribution of the OC to the PM2.5 during the falls.
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Figure 3. Carbon number distribution of n-alkanes in the Monterrey metropolitan area (MMA) for (a) spring 2011, (b) fall 2011, (c) spring

2012, and (d) fall 2012. The black line represents the daytime concentrations, while the dotted line represents the nighttime concentrations.

Independent of the season, the daytime concentrations were

1.3–1.6 times higher than nighttime concentrations. These

seasonal differences are consistent with the results of Guo et

al. (2003) and Li et al. (2006), where PAH levels were 2–4

and 14.4 times higher in the cold seasons than in the warm

seasons, respectively.

As illustrated in Fig. 4, the high-molecular-weight (HMW)

PAHs were the most abundant for the MMA. The presence of

HMW PAHs such as BaP+BeP, IP, and BgP is an indication

of gasoline-powered vehicle emissions (Katsoyiannis et al.,

2011; Tobiszewski and Namieśnik, 2012). In addition, a pos-

sible contribution of diesel-powered vehicles is indicated by

the low concentrations of the low-molecular-weight (LMW)

PAHs such as FLT, PYR, and CRY. To identify the emission

sources of PAH, diagnostic ratios were calculated (Table 4).

These ratios should be used with caution because PAHs are

emitted from a variety of emission sources, particularly com-

bustion sources, and their profiles can be modified due to

their reactivity (Tsapakis et al., 2002). From these ratios, the

source could be determined (e.g., pyrogenic and petrogenic

sources). Then, these qualitative conclusions will be consid-

ered for the source apportionment to estimate the relative

contribution of primary emission sources. The average ratios

of IP / (IP+BgP) indicate that ambient PAHs in the MMA

originated from gasoline and diesel combustion, whereas the

ratios of BAA / (BAA+CRY) show the presence of petro-

genic sources as well as vehicle emissions. To complement

these results, the ratios of (BaP+BeP) /BgP identified a

marked contribution of non-traffic sources for the spring of

2011, traffic sources for fall 2011 and spring 2012, and mixed

sources for fall 2012. The presence of gas-phase PAHs was

not evaluated and thus no information on gas–particle parti-

tioning of these semivolatile species is available. Thus, only

diagnostic ratios for HMW PAHs were calculated for this

study because those PAHs exhibit low volatility (Kavouras

et al., 1999).

In this study, the average total concentrations of the quan-

tified PAHs (TPAHs) were 2.42± 2.45 ng m−3 (range: 0.65–

8.31 and 4.11± 2.62 ng m−3 (range: 1.42–11.97 ng m−3)

during 2011 and 2012, respectively, whilst those quanti-

fied by González-Santiago (2009) at two different sites in

the MMA were 1.30± 1.64 ng m−3 (range: 0.05–6.93) and

1.70± 1.88 ng m−3 (range: 0.07–9.14 ng m−3). The lowest

concentrations were obtained during the spring because its

average temperature was statistically higher than during the

fall seasons (p< 0.05). The volatility of PAH increases with

temperature; as a result low concentrations are obtained in

comparison with fall and winter seasons. For this study the

concentrations of PAH were lower during the spring than

concentrations during fall; this pattern was exhibited during

the two sampling years. González-Santiago (2009) identified

only 6 PAHs, while in this study were 12 identified. In the

current study, the total concentrations calculated for the six

common PAHs were from 3 to 8 times higher than those esti-

mated by González-Santiago (2009). Similar concentrations

(between 0.04 and 1.78 ng m−3) were also reported for six

individual PAHs in urban samples collected in Mexico City

(Stone et al., 2008). Of the same PAHs identified among
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Table 4. Average diagnostic ratios of PAHs in MMA. D represents daytime and N represents nighttime.

Season Period IP / (IP+BgP) BAA / (BAA+CRY) FLT / (FLT+PYR) (BaP+BeP) /BgP

Spring 2011 D 0.41± 0.05 0.34± 0.28 0.50± 0.03 0.19± 0.24

N 0.46± 0.02 0.62± 0.30 0.49± 0.10 0.07± 0.06

Fall 2011 D 0.35± 0.10 0.50± 0.03 0.55± 0.12 2.67± 0.75

N 0.51± 0.26 0.17± 0.29 0.66± 0.25 4.63± 4.49

Spring 2012 D 0.33± 0.13 0.01± 0.003 0.72± 0.20 4.48± 2.19

N 0.47± 0.34 0.06± 0.12 0.89± 0.02 10.40± 2.45

Fall 2012 D 0.34± 0.04 0.35± 0.07 0.60± 0.06 0.55± 0.08

N 0.36± 0.02 0.40± 0.09 0.68± 0.05 0.52± 0.13

Figure 4. Mass concentration distribution of PAHs in the Monter-

rey metropolitan area (MMA) for (a) spring 2011, (b) fall 2011,

(c) spring 2012, and (d) fall 2012. Coronene was included in all

monitoring campaigns except in spring 2011.

these studies, their levels were in the same concentration

range. However, the TPAH levels in the MMA compared

to those calculated by Marr et al. (2006) (20–100 ng m−3)

in Mexico City were found at appreciably lower concentra-

tions. In addition, Marr et al. (2006) suggest that vehicles are

the major source of PAHs. They demonstrated that PAHs and

carbon monoxide (CO) concentrations are well correlated in

Mexico City and, given that 99 % of CO emissions are emit-

ted by motor vehicles, this source is a major contribution of

PAH emissions. For the current study, daytime correlations

(r) of +0.76 (p > 0.05) were found between TPAH and CO,

reinforcing the conclusion that motor vehicles are one major

source of PAH emissions for the MMA. The concentrations

of CO during this study were obtained from the SIMA net-

work.

The TPAH concentrations were compared with the EC

and OC levels. TPAH concentrations measured in the

MMA exhibited fair daytime correlations with EC (r =

+0.79; p > 0.05), but low correlations with OC (r =+0.57;

p > 0.05). According to Marr et al. (2004), the strong corre-

lation between TPAH and EC indicated the relative contribu-

tion of diesel-powered vehicle exhaust, while weak correla-

tions may be due to the low concentrations of EC determined

during this study (Mancilla et al., 2015). Furthermore, the

weak correlation between TPAH and EC suggests the pres-

ence of emission sources with an elevated OC /EC.

3.4 n-Alkanoic acids

The carboxylic acids or n-alkanoic acids are mainly de-

rived from biogenic emissions (Rogge et al., 1993b). How-

ever, these acids have also been identified in several pri-

mary sources such as cooking operations (Rogge et al., 1991;

Schauer et al., 2001b) and fossil fuel combustion (Schauer

et al., 2002). The n-alkanoic acids from C10 to C32 were

quantified only for the three last monitoring campaigns. The

n-alkanoic acids were the most abundant, accounting for

69± 16 % at daytime and 78± 11 % of the total resolved

organics at nighttime for both spring and fall. The daytime

and nighttime concentration levels were 2 times higher in the

spring than in the fall. As can be seen in Fig. 5, the n-alkanoic

acids measured in the MMA were dominated by hexade-

canoic acid (palmitic acid) and octadecanoic acid (stearic

acid). This dominance is consistent with measurements in

other locations (Fraser et al., 2002; Simoneit 2004; Li et al.,

2006).

The average CPI values of n-alkanoic acids in the fall

of 2011 were 4.3± 1.0 (range: 3.3–5.3) during the day and

5.0± 0.4 (range: 4.6–5.4) at night. For the 2012 year the CPI
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Figure 5. Carbon number distribution of n-alkanoic acids in the

Monterrey metropolitan area (MMA) for (a) fall 2001, (b) spring

2012, and (c) fall 2012. The black line represents the daytime con-

centrations while the dot line represents the nighttime concentra-

tions.

values in the spring were 3.6± 0.6 (range: 2.9–4.5) during

the day and 4.7± 0.8 (range: 3.9–5.8) at night, while the

CPI values in the fall were 4.7± 0.3 (range: 4.3–5.1) during

the day and 5.3± 1.1 (range: 4.0–6.8) at night. These ele-

vated CPI values indicated the significant influence of bio-

genic sources such as microbial and plant wax sources. The

n-alkanoic acids <C20 are derived in part from microbial

sources, while those >C20 are from vascular plant waxes

(Guo et al., 2003; Yue and Fraser, 2004; Simoneit et al.,

2004). Figure 5 clearly shows the influence of long-chain

(>C20) plant wax particles for the MMA. The CPI values in

this study were consistent with those obtained by Wang and

Kawamura (2005) (CPI: 5.3–10) and Yue and Fraser (2004)

(CPI: 3.2–11.2). Regardless of the elevated CPI values ob-

tained for the MMA, the values were not as high as those

reported by the other mentioned studies due to a scarcity of

green vegetation covers in the MMA.

The alkenoic acids only included cis-9-octadecenoic acid

(oleic acid) and trans-9-octadecenoic acid (elaidic acid).

The concentrations of cis-9-octadecenoic acid ranged from

0.96 to 15.38 ng m−3, while the concentrations of trans-9-

octadecenoic acid ranged from 2.11 to 13.35 ng m−3. The ra-

tio of octadecanoic acid to cis-9-octadecenoic acid has been

used as an indicator of the atmospheric chemical process-

ing (aging) of aerosols, since the unsaturated acids are sus-

ceptible to atmospheric oxidation (Brown et al., 2002; Yue

and Fraser, 2004). In this study, the average ratios were 5.0

(range: 1.5–9.4) during the day and 3.8 (range: 2.5–4.9) at

night for the spring, vs. 20.3 (range: 4.7–38.6) during the

day and 21.0 (range: 10.5–29.1) at night for the fall. The

transport of aerosols from local and rural sources can lead

to the loss of cis-9-octadecenoic acid producing high ratios

of octadecanoic acid to cis-9-octadecenoic acid. Similarly,

air mass stagnation may lead to high oxidant concentrations

in an urban atmosphere producing high ratios (Brown et al.,

2002; Yue and Fraser, 2004). Therefore, these ratios suggest

that the ambient organic aerosols for the MMA were aged

and might be produced from transport and atmospheric oxi-

dation. Air circulation patterns (HYSPLIT backward trajec-

tories) during these monitoring campaigns suggested long-

range transport from the northeast and southeast (Mancilla et

al., 2015). As expected, the lowest and highest octadecanoic

acid to cis-9-octadecenoic acid ratios obtained for the MMA

were consistent with the highest OC /EC ratios estimated for

the MMA for the same campaign; high OC /EC ratios iden-

tified transport and stagnation scenarios for the spring and

fall, respectively (Mancilla et al., 2015). In addition, these

results are in line with those reported by Brown et al. (2002)

and Yue and Fraser (2004), who obtained ratios of 5–11 and

1.0–21.5, respectively.

In addition, a minor biogenic contribution can be identi-

fied by the presence of terpenoic acids such as cis-pinonic

acid and pinic acid. These acids are known to be a secondary,

particle-phase products of pinene, which is emitted from

plants, particularly conifers (Plewka et al., 2006; Sheesley

et al., 2004). Both pinonic and pinic acid exhibited higher

concentrations in the spring than in the fall (Table S1 in the

Supplement), indicating biogenic emissions from softwood

sources.

3.5 Meat-cooking and biomass burning tracers

The major tracers for meat-cooking particles are the steroids,

while those for biomass burning are the anhydrosaccharides

and methoxyphenols. All of these organic tracers were in-

termittent in only 80 % of the total OA samples/composites

collected during this study.

There was no clear trend between spring and fall sam-

ples during the two sampling years for steroids (Table S1).

However, the evidence of cooking operations’ impact on the

MMA was confirmed by the presence of cholesterol and stig-

masterol along with hexadecanoic acid, octadecanoic acid,

and oleic acid. Although cholesterol is considered a good

marker for meat cooking, studies have reported unexpectedly

high levels of cholesterol from non-cooking-related sources
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such as soil and prescribed burns (Sheesley et al., 2004; Lee

et al., 2005; Robinson et al., 2006a).

Anhydrosaccharides are tracers from burning cellulose

and hemicelluloses, whereas the methoxyphenols are a tracer

from burning of lignin (Giri et al., 2013). Levoglucosan, a

combustion and pyrolysis product of cellulose, is the main

biomarker used to track biomass burning emissions (Schauer

et al., 2001a). Levoglucosan was not detected in all collected

samples. The levoglucosan found in the samples indicates

that biomass burning is impacting the MMA to some extent

(Table S1). The levoglucosan concentrations varied by sam-

pling dates, ranging from non-detectable levels to 54 ng m−3

for spring. In contrast, levoglucosan was detected in all fall

samples, ranging from 0.14 to 28 ng m−3. The intermittent

peaks of levoglucosan concentrations during the springtime

can be explained by the fact that northeastern Mexico’s at-

mosphere is highly influenced by forest wildfires and pre-

scribed agricultural burnings during the spring (Mendoza et

al., 2005); this is in line with the idea that high OC /EC

ratios obtained, in a parallel study, were influenced in part

by regional transport emissions (Mancilla et al., 2015). In

the case of the fall seasons, the levoglucosan levels can be

associated with local biomass burning due to mild temper-

atures encountered during these seasons; a local contribu-

tion can be associated with high OC /EC ratios and stag-

nation conditions determined for this period (Mancilla et al.,

2015). The high OC /EC rations during spring may have a

contribution from primary sources with elevated OC /EC ra-

tios. The low and variable levoglucosan concentrations in this

study indicate that wood/vegetation smoke episodes were oc-

casional at the urban site. Average levoglucosan concentra-

tions of 112.9 and 151.3 ng m−3 were reported at urban and

peripheral sites for Mexico City, respectively (Stone et al.,

2008). Based on an average concentration of levoglucosan,

Mexico City exhibited from 5 to 7 times higher levels than

the MMA. These results are consistent with the concentra-

tions of OC and EC obtained in Mexico City; the EC con-

centrations were up to 2 times higher than those observed in

the MMA, whereas the OC concentrations were from 2 to

6 times higher. A study conducted in Houston, TX, during

August–September reported elevated concentrations of lev-

oglucosan: up to 234 ng m−3 (Yue and Fraser, 2004). Simi-

larly, a study conducted for 14 cities in China during sum-

mer and winter also reported elevated levoglucosan concen-

trations of 259 ng m−3 (Wang et al., 2006). However, in those

studies the vegetation around the sampling sites included a

vast number of parks and woody shrubs, suggesting a major

biomass burning contribution contrary to the MMA. Apart

from those studies, Zheng et al. (2002) reported elevated lev-

oglucosan concentrations of 166–307 ng m−3 for urban areas

of similar surroundings to the MMA. In this case, it is also

possible that the levoglucosan emissions reported come from

industries that have implemented biomass burning processes

for energy generation. As can be seen from the previous com-

parison, the contribution of biomass burning is minor for the

MMA in comparison with other urban locations. In addition,

biomass burning contributions are inconsistent with those re-

ported in similar locations to the MMA.

Resin acids such as dehydroabietic acid, pimaric acid,

and isopimaric acid (Table S1) are secondary tracers from

biomass burning (Schauer et al., 2001a). Dehydroabietic acid

was the most abundant resin acid, ranging from 1.94 to 4.39

and 1.95 to 3.69 ng m−3 for spring and fall, respectively.

Then, pimaric acid ranged from not detectable levels to 0.09

and from 0.15 to 0.35 ng m−3 for spring and fall, respectively.

Finally, isopimaric acid ranged from not detectable levels to

0.03 ng m−3 and from 0.06 to 0.12 ng m−3 for spring and fall,

respectively. The results for resin acids are in line with those

obtained for levoglucosan. These results support the low im-

pact from biomass burning emissions in the MMA, espe-

cially from softwood burning (e.g., conifer wood) during the

spring and fall campaigns. In addition, the higher concentra-

tions of resin acids in fall than in spring are associated with

photochemical activity due to stagnation events in fall.

3.6 Source apportionment

CMB was applied using the quantification of individual or-

ganic compounds found in the collected PM2.5 samples. The

relative contributions for gasoline-powered vehicles, diesel-

powered vehicles, natural gas combustion, fuel oil com-

bustion, meat-cooking operations, vegetative detritus, and

biomass burning were estimated. From the source categories

selected, the ones corresponding to natural gas and fuel oil

combustion were not determined as significant for some am-

bient samples. These two sources were determined to have

contributions that were not statistically different from zero

or were slightly negative and thus were excluded from the

model. Model performance was determined by r2 values

ranging between 0.58 and 0.85 and chi-squared (χ2) values

between 2.97 and 8.85. Similar values for r2 and χ2 have

been obtained in Fraser et al. (2003) and Schneidemesser

et al. (2009). The latter study used composites to perform

the CMB. Another performance metric calculated by EPA-

CMB8.2 is the percent mass explained. Theoretically, values

ranging from 80 to 120 % are acceptable. This ideally can

occur when ambient data are not impacted heavily by SOA

because CMB is only able to account accurately for primary

sources. In spite of this limitation, CMB results with low

percent mass explained values have been reported by some

studies. In these cases, the high levels of unexplained mass

have been associated with secondary production (Fraser et

al., 2003; Zheng et al., 2005). For the 43 ambient samples

fed to CMB in this study, 18 samples exhibited low percent

mass explained values (ranging from 20 to 77 %), whereas 14

samples had values around 100 %. These results are in line

with the relatively high and low OC /EC ratios obtained for

spring and fall, respectively (Mancilla et al., 2015). Finally,

11 samples were discarded due to poor performance param-

eters calculated. These samples were not exclusively from
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a particular monitoring campaign; there were samples from

both springs and falls. A detailed description of the CMB

performance and relative contributions for each sample can

be found in Table S2.

The average contributions of primary sources are shown

in Table 5. The vehicle exhaust and meat-cooking operation

emissions were the highest for all monitoring campaigns.

When examining the seasonal variation, the gasoline- and

diesel-powered vehicles in falls were up to 5 times higher

than in springs, when cold weather increases the demand for

petroleum products due to low temperatures. The opposite

occurred for meat-cooking operations, their spring emissions

were 3 times higher than in fall seasons. The natural gas com-

bustion, vegetative detritus, and biomass burning emissions

were very low and more constant throughout the springs and

falls. With regard to the daytime and nighttime variations,

the vehicle exhaust were much higher during daytime when

traffic is heavier. For the meat-cooking operations, the emis-

sions were somewhat higher during nighttime during spring

and more constant between daytime and nighttime during

fall. For the rest of the sources, the daytime and nighttime

emissions were relatively constant. No similar studies have

been conducted in the MMA; this is the first source appor-

tionment study based on molecular organic markers for this

region. However, these results are similar to those obtained

for the MMA using a factor analysis based on trace elements

(Martinez et al., 2012) and those for Mexico City based on

molecular organic markers (Stone et al., 2008).

The average contribution of each emission category to

the identified PM2.5 mass is shown in Fig. 6. The uniden-

tified mass was on average 35± 24 % of the measured PM2.5

concentrations. This value is 1.5 times greater than the

∼ 23 % of secondary organic aerosol contribution to the to-

tal PM2.5 mass concentration (SOC /PM2.5) estimated in

Mancilla et al. (2015) for the MMA. The average secondary

contribution used for this comparison was based on the

minimum OC /EC ratios observed and reported in Man-

cilla et al. (2015). These ratios may take into account pri-

mary sources with elevated values of OC /EC ratios such as

biomass burning and kitchen operations as well as fossil fuel

combustion sources. The mass not identified by CMB may

include secondary organic and inorganic aerosol and trace

elements. Thus, the levels of unidentified mass resolved by

CMB are reasonable given that the secondary aerosol esti-

mated in Mancilla et al. (2015) was in fact only SOA. There-

fore, the 12 % of difference between 35 and 23 % might be

attributed to secondary inorganic aerosol and other chemical

species. As indicated in Fig. 6, the emissions from motor ve-

hicle exhausts (gasoline and diesel) are the most important,

accounting for the 64 % of the identified PM2.5 emissions,

followed by meat-cooking operations (31 %) and industries

(2.8 %). Vegetative detritus and biomass burning were the

least emitted, with only 2.2 % of the identified PM2.5 emis-

sions. The relatively high contribution of the meat-cooking

operations was expected given the high traditional restau-

Figure 6. CMB contributions to the (a) average identified ambi-

ent PM2.5 in the MMA and to the (b) overall PM2.5 including the

unidentified mass of the measured PM2.5 concentrations.

rant activity in the MMA, which contributes 16 % of the

local gross domestic product. With regard to biomass burn-

ing, several studies have demonstrated that Mexico City has

a large contribution of biomass burning emissions due to for-

est fires (Moffet et al., 2008; Stone et al., 2008; Yokelson et

al., 2007). However, the MMA can be affected by other types

of biomass burning (e.g., shrub and grassland fires, agricul-

tural waste and garbage burning) that may be ignored. There-

fore, the contribution of biomass burning in the MMA might

be higher because the source profile used for the CMB was

only for wood combustion instead of using a source profile

for other types of biomass burning (Simoneit et al., 2005). In

addition, it is important to point out the potential of indus-

trial sources that appeared in previous studies conducted in

the MMA and the rest of the country. The MMA is the third

largest urban center of the country, with approximately 9700

industries (SIEM, 2016). In the MMA the main emissions

from industrial sources come from the combustion of natu-

ral gas; low emissions come from the use of fuel oil. In this

study the natural gas profile did not fit well and was discarded

from the CMB, but the fuel oil profile did. The combustion

of natural gas emits a low quantity of particles; therefore, its

contribution to the airborne particles is not significant.
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Table 5. Contributions and uncertainty of primary sources to seasonal average ambient PM2.5 for daytime and nighttime in the MMA (in

µg m−3).

Source category Spring 2011 Fall 2011 Spring 2012 Fall 2012

Daytime Nighttime Daytime Nighttime Daytime Nighttime Daytime Nighttime

Gasoline-powered vehicles 2.37± 0.56 2.46± 0.46 3.70± 0.78 2.24± 0.51 1.43± 0.41 ∗ 7.51± 1.27 3.19± 0.54

Diesel-powered vehicles 7.34± 0.86 3.81± 0.53 13.67± 1.59 13.10± 1.55 2.93± 0.41 ∗ 13.85± 1.58 5.15± 0.62

Vegetative detritus 0.22± 0.04 0.22± 0.04 0.13± 0.03 0.27± 0.05 0.40± 0.06 ∗ 0.42± 0.07 0.31± 0.05

Meat-cooking operations 8.24± 1.54 11.13± 1.85 3.26± 0.71 3.86± 0.71 9.74± 1.20 ∗ 3.22± 0.53 3.37± 0.47

Natural gas combustion 0.01± 0.01 N.I. 0.05± 0.03 0.03± 0.01 0.01± 0.01 ∗ 0.10± 0.02 0.04± 0.01

Biomass burning 0.20± 0.05 0.17± 0.05 0.17± 0.05 0.07± 0.02 0.16± 0.04 ∗ 0.01± 0.01 0.01± 0.01

Fuel oil combustion N.I. N.I. 4.18± 3.55 3.60± 1.20 N.I. ∗ N.I. 0.22± 0.48

N.I. means not important. ∗ Samples were discarded due to poor CMB performance.

4 Conclusions

Spring and fall sampling campaigns were performed in 2011

and 2012 at one representative site to conduct a chemical

characterization of the fine OC in PM2.5 in the MMA. The

identified organic compound classes represented a low frac-

tion of the ambient OC: 0.5 % for spring 2011 and 2.6 to

11 % for the last three campaigns. The average CPI values

derived from the n-alkanes (0.9–1.7) and n-alkanoic acids

(2.9–6.8) demonstrated that anthropogenic emission sources

(e.g., fossil fuel combustion) were dominant, while biogenic

(e.g., plant waxes, microbial origin) emission sources con-

tribute at least sometimes to the fine OA in the MMA.

The PAH diagnostic ratios indicate that gasoline- and

diesel-powered vehicles are the main emission sources of this

class of organic compounds in PM2.5. However, other pyro-

genic sources such as coal, grass, and wood combustion were

also identified as contributors to the fine OA. The quantified

levels of cholesterol and levoglucosan confirm the high and

low contribution of cooking operations and biomass burning,

respectively. Low levoglucosan concentrations suggest low

episodic or transport effects of emissions of biomass burning

on PM2.5 in the MMA.

In a parallel study, significant SOA formation was found

in the MMA. The chemical speciation of the OC confirmed

the aging of primary emissions and the SOA from biogenic

volatile organic compounds. On the one hand, the identified

octadecanoic acid and cis-9-octadecenoic acid along with

other secondary organic markers point out the SOA forma-

tion in the MMA atmosphere. The average ratios of octade-

canoic acid to cis-9-octadecenoic acid (3.8–21) indicate ag-

ing of the fine OA due to photochemical activity and trans-

port. On the other hand, the presence of the cis-pinonic

and pinic acids confirmed the SOA derived from biogenic

sources. This is in line with the transport and stagnation

events that predominated during spring and fall, respectively.

The emissions from vehicle exhausts are the most impor-

tant, accounting for 64 % of the identified PM2.5 emissions.

By contrast, vegetative detritus and biomass burning were the

lowest contributors, with barely 2.2 % of the identified PM2.5

emissions.

Finally, a comparison with other studies indicates that the

MMA exhibits similar concentrations patterns of the organic

molecular markers identified in this study.

The Supplement related to this article is available online

at doi:10.5194/acp-16-953-2016-supplement.
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