Articles | Volume 16, issue 6
https://doi.org/10.5194/acp-16-3927-2016
https://doi.org/10.5194/acp-16-3927-2016
Research article
 | 
23 Mar 2016
Research article |  | 23 Mar 2016

Development of the Ensemble Navy Aerosol Analysis Prediction System (ENAAPS) and its application of the Data Assimilation Research Testbed (DART) in support of aerosol forecasting

Juli I. Rubin, Jeffrey S. Reid, James A. Hansen, Jeffrey L. Anderson, Nancy Collins, Timothy J. Hoar, Timothy Hogan, Peng Lynch, Justin McLay, Carolyn A. Reynolds, Walter R. Sessions, Douglas L. Westphal, and Jianglong Zhang

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Juli Rubin on behalf of the Authors (08 Jan 2016)  Author's response   Manuscript 
ED: Publish as is (03 Mar 2016) by Michael Schulz
AR by Juli Rubin on behalf of the Authors (03 Mar 2016)
Download
Short summary
This work tests the use of an ensemble prediction system for aerosol forecasting, including an ensemble adjustment Kalman filter for MODIS AOT assimilation. Key findings include (1) meteorology and source-perturbed ensembles are needed to capture long-range transport and near-source aerosol events, (2) adaptive covariance inflation is recommended for assimilating spatially heterogeneous observations and (3) the ensemble system captures sharp gradients relative to a deterministic/variational system.
Altmetrics
Final-revised paper
Preprint