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Abstract. An ensemble-based forecast and data assimila-

tion system has been developed for use in Navy aerosol

forecasting. The system makes use of an ensemble of the

Navy Aerosol Analysis Prediction System (ENAAPS) at

1×1◦, combined with an ensemble adjustment Kalman filter

from NCAR’s Data Assimilation Research Testbed (DART).

The base ENAAPS-DART system discussed in this work

utilizes the Navy Operational Global Analysis Prediction

System (NOGAPS) meteorological ensemble to drive of-

fline NAAPS simulations coupled with the DART ensem-

ble Kalman filter architecture to assimilate bias-corrected

MODIS aerosol optical thickness (AOT) retrievals. This

work outlines the optimization of the 20-member ensemble

system, including consideration of meteorology and source-

perturbed ensemble members as well as covariance inflation.

Additional tests with 80 meteorological and source members

were also performed. An important finding of this work is

that an adaptive covariance inflation method, which has not

been previously tested for aerosol applications, was found

to perform better than a temporally and spatially constant

covariance inflation. Problems were identified with the con-

stant inflation in regions with limited observational cover-

age. The second major finding of this work is that combined

meteorology and aerosol source ensembles are superior to

either in isolation and that both are necessary to produce a

robust system with sufficient spread in the ensemble mem-

bers as well as realistic correlation fields for spreading ob-

servational information. The inclusion of aerosol source en-

sembles improves correlation fields for large aerosol source

regions, such as smoke and dust in Africa, by statistically

separating freshly emitted from transported aerosol species.

However, the source ensembles have limited efficacy during

long-range transport. Conversely, the meteorological ensem-

ble generates sufficient spread at the synoptic scale to enable

observational impact through the ensemble data assimilation.

The optimized ensemble system was compared to the Navy’s

current operational aerosol forecasting system, which makes

use of NAVDAS-AOD (NRL Atmospheric Variational Data

Assimilation System for aerosol optical depth), a 2-D varia-

tional data assimilation system. Overall, the two systems had

statistically insignificant differences in root-mean-squared

error (RMSE), bias, and correlation relative to AERONET-

observed AOT. However, the ensemble system is able to

better capture sharp gradients in aerosol features compared

to the 2DVar system, which has a tendency to smooth out

aerosol events. Such skill is not easily observable in bulk

metrics. Further, the ENAAPS-DART system will allow for

new avenues of model development, such as more efficient li-

dar and surface station assimilation as well as adaptive source
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functions. At this early stage of development, the parity with

the current variational system is encouraging.

1 Introduction

In support of monitoring aerosol impacts on air quality and

climate, many of the world’s major weather and climate

centers have engaged in the rapid development of opera-

tional aerosol data assimilation and forecasting capabilities

(Tanaka et al., 2003; Zhang et al., 2008; Benedetti et al.,

2009; Colarco et al., 2010; Sekiyama et al., 2010; Pérez et

al., 2011). Operational forecasting centers are also making

use of aerosol predictions to correct radiances for assimila-

tion in numerical weather prediction (NWP) systems (e.g.,

Merchant et al., 2006; Wang and Niu, 2013; Bogdanoff et al.,

2015), further motivating the development of aerosol fore-

casting and assimilation systems. As aerosol forecasting ca-

pabilities are further developed, many lessons can be learned

from the NWP community. For example, forecast skill can be

enhanced by moving from deterministic to ensemble-based

simulations (Kalnay, 2003). By using the ensemble average

forecast, the most uncertain aspects of the forecast tend to be

minimized, generally leading to an increase in skill (Kalnay,

2003). Additionally, ensemble systems provide a means for

quantifying forecast uncertainty. Finally, ensemble systems

provide an opportunity to apply ensemble Kalman filter

(EnKF) data assimilation technologies, which are relatively

easy to implement and allow for flow-dependent corrections

to the predicted state fields (Evensen, 1994; Houtekamer

and Mitchell, 1998). As a result, ensemble-based forecasts

are used by nearly all the major operational weather centers

(Buizza et al., 2005). The successful use of ensembles in the

NWP community (Houtekamer et al., 2005; Whitaker et al.,

2008; Szunyogh et al., 2008; Bowler et al., 2008; Miyoshi et

al., 2010) has led to increased interest in the use of both sin-

gle and multi-model ensembles for aerosol forecasting sys-

tems (Sekiyama et al., 2010; Sessions et al., 2015).

Current operational aerosol forecasts for the United States

Navy are made by the Fleet Numerical Meteorological and

Oceanography Center (FNMOC) and use the deterministic

Navy Aerosol Analysis Prediction System (NAAPS; Chris-

tensen et al., 1997; Witek et al., 2007; Reid et al., 2009)

combined with the Navy Variational Data Assimilation Sys-

tem for Aerosol Optical Depth (NAVDAS-AOD) (Zhang et

al., 2008, 2011). NAAPS is an offline aerosol model driven

by Navy global meteorological models; formerly the Navy

Operational Global Analysis Prediction System (NOGAPS;

Hogan and Rosmand, 1991) and currently the Navy Global

Environmental Model (NAVGEM; Hogan et al., 2014). As

an initial exploration of aerosol forecast uncertainty and its

dependencies on underlying meteorology, a 1◦ resolution,

20-member ensemble version of NAAPS (ENAAPS) driven

by the NOGAPS or NAVGEM meteorology ensemble was

created. Forecasts using ENAAPS were initially run off of

the analysis fields from the NAVDAS-AOD data assimila-

tion system. Encouraged by successes using aerosol EnKF

data assimilation within an NWP framework (e.g., Sekiyama

et al., 2010; Schutgens et al., 2010a, b; Pagowski and Grell,

2012; Khade et al., 2013), here we investigate the use of

ENAAPS for operational aerosol forecasting purposes by re-

placing the NAVDAS-AOD data assimilation system with

the NCAR Data Assimilation Research Testbed (DART) im-

plementation of an EnKF. This system is referred to as the

ENAAPS-DART system. In this paper, we describe the im-

plementation of DART within the ENAAPS framework and

document the initial tuning and evaluation using the opera-

tional 2DVar system as a control for 2- and 6-month sim-

ulation periods in 2013. In Sect. 2, we describe the model,

the numerical experiments conducted, and the evaluation

method. In Sect. 3, we describe results for the 2-month tun-

ing period (6-week valid simulation) followed by a 6-month

run for more robust comparison of the optimized system to

the current NAVDAS-AOD control. In Sect. 4, we discuss

the nature of the outcomes, and the positive and negative as-

pects of adopting an ensemble data assimilation system. We

conclude with key points and lessons learned from the exper-

iments conducted.

2 Model and numerical experiment

2.1 NAAPS and ENAAPS

NAAPS is a global offline aerosol mass transport model

based on the Danish Eulerian Hemispheric Model (Chris-

tensen et al., 1997) that produces deterministic 6-day fore-

casts of a combined anthropogenic and biogenic fine, smoke,

sea salt, and dust aerosol on 25 vertical levels at 1/3◦ every

6 h. While operational runs are generated at FNMOC, quasi-

operational offline NAAPS runs are made in parallel at NRL

with the latest model updates. A 1◦ reanalysis version of

NAAPS for retrospective studies is also frequently employed

and used as a baseline (Lynch et al., 2015). NAAPS and its

reanalyses have historically been driven by operational mete-

orological fields from the US Navy Operational Global Anal-

ysis and Prediction System (NOGAPS; Hogan et al., 1991)

with a late 2013 transition to the Navy Global Environment

Model (NAVGEM; Hogan et al., 2014). Because this study

occurs during the transition period where many changes to

NAVGEM were taking place, here we solely utilize NO-

GAPS data fields. A thorough description of basic NAAPS

characteristics can be found in Witek et al. (2007) and Reid

et al. (2009), but a brief synopsis is provided here, includ-

ing a few key differences between the NAAPS implementa-

tion used in this work and the literature. Smoke emissions

from biomass burning are derived from satellite-based ther-

mal anomaly data used to construct smoke source functions

via the Fire Locating and Modeling of burning Emissions
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(FLAMBE) database (Reid et al., 2009; Hyer et al., 2013).

However, for simulations conducted in this work, a version of

FLAMBE that derives smoke emissions from MODIS ther-

mal anomaly data only is used, consistent with the NAAPS

decadal reanalysis (Lynch et al., 2015). Dust is emitted dy-

namically as a function of friction velocity, surface wetness,

and surface erodibility using NAAPS standard friction ve-

locity to the fourth power method, but with the erodibility

map of Ginoux et al. (2001). The sea salt aerosol source

is dynamic in nature with emissions as a function of sur-

face wind speed as described in Witek et al. (2007). A com-

bined anthropogenic and biogenic fine aerosol species (ABF)

is represented in NAAPS, which accounts for a combined

sulfate, primary organic aerosol, and a first-order approxi-

mation of secondary organic aerosol. Anthropogenic emis-

sions come from the ECMWF MACC inventory (Lamarque

et al., 2010). The Navy’s current operational aerosol forecast-

ing system uses NAAPS coupled to a two-dimensional vari-

ational (2DVar) data assimilation system (NAVDAS-AOD,

Zhang et al., 2008, 2014) for assimilating aerosol optical

thickness (AOT) retrievals (Zhang et al., 2005; Zhang and

Reid, 2006, 2009; Hyer et al., 2011; Shi et al., 2011) to gen-

erate forecast initial conditions every 6 h. NAAPS with the

NAVDAS-AOD data assimilation has been fully operational

at FNMOC since 2010. The operational system serves as a

member of the International Cooperative for Aerosol Pre-

diction (ICAP) multi-model ensemble (Sessions et al., 2015)

and is the baseline for comparison in this work.

With the exception of data assimilation (Sect. 2.2), the

architecture of ENAAPS-DART is very similar to the de-

terministic version of NAAPS/NAVDAS-AOD. The model

physical parameterizations are the same. However, instead

of deterministic NOGAPS meteorology fields, NOGAPS en-

semble meteorology fields are used. The NOGAPS ensemble

meteorology fields (20 members) are generated operationally

at FNMOC at 0.5◦ resolution out to 6 days. These fields are

created by perturbing initial conditions (wind, temperature,

specific humidity, and surface pressure) using an ensemble

transform method as discussed in McLay et al. (2010).

For ENAAPS, all 20 NOGAPS meteorology ensemble

members are used for driving the model simulations, trun-

cated to 1◦ to match the deterministic NAAPS reanalysis. As

discussed in Sect. 2.3, both meteorology and source ensem-

bles are tested in this work.

2.2 Ensemble data assimilation and DART

A core rationale for developing ENAAPS was to experiment

with ensemble data assimilation techniques which have been

successfully implemented at operational centers on an ex-

perimental basis (e.g., Sekiyama et al., 2010). For aerosol

applications, a number of data assimilation methodologies

have been tested both regionally and globally and shown to

improve model performance (Collins et al., 2001; Yu et al.,

2003; Generoso et al., 2007; Adhikary et al., 2008; Zhang

et al., 2008; Benedetti et al., 2009; Schutgens et al., 2010a,

b; Zhang et al., 2011; Schwartz et al., 2014; Rubin et al.,

2014; Sekiyama et al., 2010). While the premise of these dif-

ferent approaches is the same (i.e., combine the model pre-

diction and observations in a way that minimizes the analy-

sis error), the representation of the model forecast error dif-

fers. The variational approach, which is used in the current

NAVDAS-AOD system, uses a static model forecast error.

On the other hand, the EnKF is based on the use of an ensem-

ble of model forecasts to define the error where each forecast

is considered to be a random draw from the probability dis-

tribution of the model’s state given all previously used obser-

vations. The use of ensembles to sample the error allows the

error to evolve nonlinearly in time, with the flow-dependent

covariances between different state components determining

how observations impact the ensemble estimate. This is op-

posed to univariate NAVDAS-AOD assimilation, which uses

a static horizontal correlation model with an assumed length

scale of 200 km around an observation (Zhang et al., 2008).

EnKF representation of flow dependencies and the model er-

ror should, in theory, provide a more accurate adjustment of

forecasts to new observations, resulting in a reduced error in

the analysis state (Hamill and Whitaker, 2005). The focus in

this work is to put an EnKF assimilation system into place

to take advantage of ENAAPS and the ability of the EnKF to

correct aerosol fields with flow-dependent covariances. The

ensemble adjustment Kalman filter (EAKF) algorithm (An-

derson, 2001), a variant of the more traditional EnKF imple-

mentation, has been set up with a 6 h cycle, with analyses

generated at 00:00, 06:00, 12:00, and 18:00 UTC each day.

DART has been developed since 2002 at the National

Center for Atmospheric Research (NCAR) and is an open-

source community facility for ensemble-based data assim-

ilation research and development (Anderson et al., 2009).

DART has been successfully applied to a host of meteoro-

logical and atmospheric composition data assimilation prob-

lems (e.g., Arellano et al., 2007; Khade et al., 2013; Raeder

et al., 2012; Hacker and Angevine, 2013, and many more)

and provides the option to interface to a number of differ-

ent filter types, including EAKF, EnKF, and kernel and par-

ticle filters. ENAAPS was interfaced with DART to take ad-

vantage of its EAKF algorithm and is further referred to as

the ENAAPS-DART system. ENAAPS passes aerosol mass

concentrations for each species as well as model-predicted

AOT to DART every 6 h for assimilation of MODIS AOT re-

trievals. The posterior (analysis) aerosol mass concentrations

are then passed back to ENAAPS to initialize the next model

prediction cycle.

2.3 Experimental design

This study was conducted in two phases: (a) a 2-month spin-

up and simulation period for the July and August 2013 period

to develop and optimize the DART EAKF implementation in

ENAAPS and (b) a 6-month April through September 2013
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run to compare ENAAPS to a NAAPS baseline. These ex-

periments are described in detail below.

2.3.1 DART EAKF implementation and optimization

As ensemble data assimilation systems can be sensitive

to system design, a number of short experiments for July

through August 2013 were run with ENAAPS-DART for

system optimization. This time period is coincident with the

peak of the African dust season, significant pollution events,

and continental-scale boreal fire outbreaks. The application

of ensemble data assimilation to atmospheric prediction is

complicated as the model data sets are large, multivariate,

and multidimensional (Anderson, 2007). In atmospheric ap-

plications, it is always the case that the ensemble size is too

small, resulting in sampling error and an under-prediction of

the model uncertainty (Anderson and Lei, 2013). The under-

prediction of model uncertainty, represented as insufficient

variance in the ensemble members, can lead to poor per-

formance and, in some cases, filter divergence in which the

observations no longer impact the model state (Anderson,

2007). Important considerations in the system setup include

ensemble size and the means for generating the ensembles.

Additionally, several tuning techniques have been developed

for alleviating the sampling issue for large models, includ-

ing covariance inflation for increasing ensemble spread (An-

derson and Anderson, 1999; Anderson, 2007, 2009) and lo-

calization for spatially limiting the impact of an observation

(Hamill et al., 2001; Houtekamer and Mitchell, 2001).

The effectiveness of the ensemble data assimilation sys-

tem is highly dependent on having sufficient spread in the

ensemble members in order for the observations to impact

the model forecast. The method for generating the ensemble

is an important consideration for an optimal aerosol forecast-

ing system since the ensembles represent the uncertainty in

the model forecast. For aerosol, sources of uncertainty in-

clude meteorology, sources, sinks, and any physics that im-

pact aerosol concentration or intensive properties. Aerosol

source ensembles are first tested since previous studies have

relied on source perturbations alone (Schutgens et al., 2010a,

b). Random perturbations with a 25 % uncertainty are applied

to the aerosol source functions for each species (ABF, smoke,

sea salt, and dust). The random perturbation factor for en-

semble member n and aerosol species i (fi,n) is drawn from

a normal distribution with a mean of 1 and a standard devia-

tion of 0.25. The aerosol source for ensemble member n and

species i (Si,n(xy)) is described as

Si,n(xy)= fi,nSi(xy), (1)

where Si(xy) is the initial aerosol source flux for aerosol type

i at a given location (xy). It should be noted that fi,n is in-

dependent of location. Grid-by-grid perturbations were ini-

tially tested and found to have no impact on ensemble spread;

therefore, this method was excluded. Meteorology ensembles

are evaluated in addition to the source draws, using the 20-

member NOGAPS meteorology ensemble.

A common method in ensemble data assimilation for in-

creasing ensemble spread about the mean is multiplicative

covariance inflation (Anderson, 2007; Anderson and Ander-

son, 1999). In multiplicative inflation, the difference between

the ensemble mean and each ensemble member is increased,

usually in the prior, by a predetermined factor that is greater

than 1 (i.e., 1.1 produces a 10 % increase in the difference).

Sekiyama et al. (2010) used a multiplicative inflation factor

of 1.1 for aerosol predictions, while Schutgens et al. (2010b)

conducted sensitivity tests on the inflation factor and used

values ranging from 1.03 to 1.30. These inflation factors

are applied uniformly in both space and time. An alterna-

tive method to a uniform multiplicative inflation is adaptive

covariance inflation (Anderson, 2009), which creates tempo-

rally and spatially varying inflation factors. This approach is

based on a Bayesian algorithm that estimates the inflation

with time as part of the state update, using a normally dis-

tributed inflation factor associated with each element of the

model state vector. An initial inflation factor of 1 (i.e., no

inflation) was set for all locations and a fixed standard de-

viation of 0.4 was used. In this work, a uniform multiplica-

tive covariance inflation of 1.1 (i.e., 10 %) in a fashion sim-

ilar to Sekiyama et al. (2010) will be tested against the An-

derson (2009) adaptive inflation (AI) algorithm. It should be

noted that several initial tuning experiments were conducted

with the 20-member ensemble in which a range of constant

inflation factors were tested, in a similar fashion to Schutgens

et al. (2010b). Due to the similarities across the experiments

and the prior use of the 10 % inflation in ensemble aerosol

assimilation, only the 10 % inflation results are presented to

limit the number of experiments. AI has not been previously

tested for aerosol applications.

In addition to an under-prediction of model uncertainty,

sampling errors due to small ensemble size can lead to spu-

rious correlations in the background error covariance at far

distances. It has been shown that limiting the distance over

which an observation impacts the state variables, or localiz-

ing, is effective in reducing the effects of these noisy cor-

relations. For aerosol applications, state-space localization

using the Gaspari and Cohn function (Gaspari and Cohn,

1999) and observation-space localization in the local ensem-

ble transform Kalman filter (LETKF) using patch size have

been demonstrated (Sekiyama et al., 2010; Schutgens et al.,

2010a, b). A Gaspari and Cohn (1999) localization function

is used in this work where the covariance magnitude de-

creases to zero at 2 times the selected cutoff length scale from

the observation location. Several length scales were tested in

initial tuning runs of the 20-member ensemble and a length

scale of 1000 km is selected for use in this work. Since the

findings from the localization tuning runs are consistent with

previously mentioned studies, the impact of the localization

length scale on data assimilation performance is not a fo-

cus of this work. The number of ensemble members is held
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Figure 1. Diagnostic regions for evaluated ENAAPS-DART experiments. Black dots indicate AERONET sites with data available for 2013.

fixed for all experiments (20 members) with the exception of

a single 80-member simulation tested. It should be noted that

the single 80-member simulation uses the same localization

length scale as the 20-member ensemble. Optimization of the

80-member ensemble was not conducted due to resource lim-

itations and will be evaluated in future work.

The initial conditions for the ENAAPS-DART experi-

ments are generated using a 24 h ENAAPS forecast initial-

ized with NAAPS/NAVDAS-AOD analysis fields, using the

ensemble meteorology to allow some initial ensemble spread

to develop. Subsequent forecast/assimilation cycles use the

DART/EAKF data assimilation with the 6 h cycling run out

for the July and August 2013 time frame. The performance

of the 2-month experimental simulations is evaluated in sev-

eral ways. The first method is through examination of the

prior 6 h forecast against MODIS AOT observations, before

assimilation occurs, using diagnostics such as RMSE, bias,

ensemble and total spread, number of assimilated observa-

tions, and rank histograms. Rank histograms are generated by

repeatedly tallying the rank of the observation relative to val-

ues from the ensemble sorted from lowest to highest and can

be used for diagnosing errors in the mean and spread of the

ensemble forecast (Hamill, 2001). In order to account for the

effect of observation error in the rank histograms, the forecast

values are randomly perturbed for each ensemble member by

the observation error (Anderson, 1996,; Hamill, 2001; Saetra

et al., 2004). The focus of this observation-space evaluation

relative to MODIS AOT is on the prior since this is a stronger

indicator of how the assimilation is impacting the model fore-

cast. Benchmarks of a good ensemble system include stabil-

ity in ensemble spread, an RMSE that is small and compara-

ble to the total spread, and rank histograms that indicate an

ensemble distribution that is consistent with the observations

(Anderson, 1996). Since aerosol composition and character-

istics are variable depending on the type of aerosol sources

and the location-dependent processes that impact transport,

transformation, and lifetime, the diagnostics are evaluated

regionally. The experimental 6 h AOT forecasts are evalu-

ated over 15 land regions based on AERONET, as indicated

in Fig 1, as well as six ocean regions, including the North-

ern and Southern Hemisphere Pacific and Atlantic oceans,

the Indian Ocean, and the Southern Ocean. Additionally, it is

important to evaluate the posterior fields since these serve as

forecast initial conditions. The assimilation posterior fields

are examined relative to ground-based 550 nm AOT fields

based on NASA AErosol RObotic NETwork (AERONET)

observations (Holben et al., 1998; O’Neill et al., 2003) since

these observations are not assimilated and therefore can be

used as an independent evaluation of the data assimilation

analysis fields. The 550 nm AERONET AOT fields used for

validation are interpolated based on AOT values from the

500 and 675 nm spectral channels, and are derived using a

method described in Zhang and Reid (2006). A total of five

short ensemble experiments for optimization are performed.

These experiments are summarized in Table 1 and account

for the method used for generating the ensemble members,

number of ensemble members, and different covariance in-

flation methods. Using diagnostics, an ENAAPS-DART sys-

tem configuration is selected and compared to the operational

NAAPS/NAVDAS-AOD system.

www.atmos-chem-phys.net/16/3927/2016/ Atmos. Chem. Phys., 16, 3927–3951, 2016
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Table 1. Summary of five ENAAPS-DART experiments conducted for EAKF optimization. The experiments include variations in ensemble

generation (meteorology or source only, meteorology with source ensemble), number of ensemble members, and the covariance inflation

method. The meteorology ensemble uses NOGAPS ensemble meteorology fields and the source ensembles use a 25 % random Gaussian

perturbation to the aerosol source functions.

Experiment name Ensembles Inflation

Source, const Source, 20 members 10 % constant covariance inflation

Source, adaptive Source, 20 members Adaptive inflation

Meteorology, adaptive Meteorology Only, 20 members Adaptive inflation

Met+Source, adaptive Meteorology+Source, 20 members Adaptive inflation

Met+Source, 80 Meteorology+Source, 80 members Adaptive inflation

2.3.2 Baseline evaluation of EAKF versus variational

data assimilation

Once a good configuration was identified, the ENAAPS-

DART system was run out for a 6-month (1 April 2013

to 31 September 2013) period with 6 h cycling. The analy-

sis fields (i.e., data assimilation posterior) from the 6-month

ENAAPS-DART simulation are compared to ground-based

AERONET AOT observations as an independent evalua-

tion. Analysis fields from the NAAPS/NAVDAS-AOD sys-

tem are similarly compared to AERONET AOT for the same

6-month time period. The NAAPS/NAVDAS-AOD simula-

tions are run with a 1◦ resolution and assimilate the same

MODIS AOT observational data set with the same obser-

vational errors (Zhang et al., 2005; Zhang and Reid, 2006,

2009; Hyer et al., 2011; Shi et al., 2011) for consistency.

The impacts of the analysis fields generated from the

EAKF and 2DVar system on 24 h forecasts are also exam-

ined. Due to inconsistencies in the NOGAPS deterministic

and ensemble meteorology, including differences in precip-

itation and wind speed, the 24 h forecast comparisons are

conducted using the same meteorology. The deterministic

24 h forecast is initialized with the NAVDAS-AOD aerosol

fields or with the ensemble mean aerosol fields from the

ENAAPS-DART system (DART deterministic). The ensem-

ble 24 h forecast is initialized with the same NAVDAS-AOD

aerosol fields for all 20 ensemble members (ENAAPS-NAV)

or with the ENAAPS-DART initial conditions.

3 Results

The results from this study are presented in three sections.

First, the aerosol environment for the experimental time

period is examined. This is followed by a section on the

EAKF optimization for ENAAPS-DART over the 6-week,

mid-July through August, time period. Finally, an evalua-

tion of the ENAAPS-DART system relative to the current

operational system, NAAPS/NAVDAS-AOD, over the April

through September time period is conducted.

3.1 Synopsis of global aerosol features

Average ENAAPS-DART AOT fields (Met+Source, adap-

tive) for the boreal spring (April, May) and boreal summer

(June–September) 2013 are shown in Fig. 2. Seasonally av-

eraged AOT for ABF, smoke, dust, and sea salt aerosol are

also presented. Variability in AOT is related to major mon-

soonal patterns and other climate shifts associated with the

spring and summer time periods. Aerosol in Asia is heavily

regulated by the monsoon with the pre-monsoon dry season

exhibiting a peak in aerosol and an observed boreal summer-

time decrease due to removal by heavy precipitation. Smoke

aerosol varies by region, with the observed peaks coinciding

with the regional dry seasons. Some key aerosol features are

discussed for the boreal spring and the boreal summer sea-

sons.

3.1.1 Boreal spring aerosol features

AOT attributed to smoke peaks in the Yucatán Peninsula in

April and May, consistent with previous studies (Reid et

al., 2004; Wang et al., 2006), and extends into the north-

ern region of South America. During peak burning, smoke

transport from these Central American fires impacted Texas

and the southeastern United States. Biomass burning is also

present in Asia during the pre-monsoon months of April and

early May and is concentrated in Peninsular Southeast Asia,

including Thailand and Cambodia.

Dust aerosol in Asia, originating from the Gobi and Tak-

limakan deserts, peaks in spring due to intense frontal activ-

ity that favors lofting and contributes to the observed long-

range dust transport that impacts North America in April.

India is found to have a greater dust loading in the north-

ern/northwestern part of the country, originating from the

Thar Desert in northwestern India. Saharan dust, although

not in its peak during the April and May, dominates the AOT

signal over North Africa, with some outflow over the At-

lantic Ocean. Under conditions of southwesterly flow, North

African dust is transported into Europe and the Mediter-

ranean region. Dust AOT in the Arabian Peninsula is slightly

higher in the northern/northeastern part of the peninsula. This

pattern is consistent with climatology which is attributed to a
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Figure 2. Seasonally averaged AOT (550 nm) fields (posterior), predicted by the ENAAPS-DART system (Met+Source, adaptive), for

the boreal spring (April, May) and summer (June–September) 2013. Results are shown for total AOT and AOT attributed to combined

anthropogenic and biogenic fine (ABF), smoke, dust, and sea salt aerosol, respectively.

dominant high-pressure system that produces transport from

the south/west to the north/east (Shalaby et al., 2015).

The ABF combined aerosol, including both anthropogenic

and biogenic species, is prevalent throughout the Northern

Hemisphere. Peaks in ABF aerosol are observed over Asia in

the boreal spring with plumes extending out over the Pacific

and Indian oceans. ABF is also observed over South America

and is attributed to biogenic aerosol.

3.1.2 Boreal summer aerosol features

Although fires are present throughout the summer months,

the largest boreal fires occur in August in Siberia, with smoke

aerosol transport from these events reaching western North

America. The fires are attributed to a persistent high-pressure

weather pattern in the Russian Arctic that resulted in unusu-

ally high temperatures and long periods of stable air. Wild-

fires are prevalent in the western United States in July and

August, with transport from these events impacting the east-

ern United States. This includes the California Rim Fire, one

of the largest wildfires in California’s history, which occurred

during August 2013 (Peterson et al., 2015). Burning events

also occur in the Amazonian Basin in South America. South-

ern Africa is characterized by large, persistent biomass burn-

ing events that peak in June through September with smoke

transport over the South Atlantic Ocean. In the boreal sum-

mer, biomass burning events in Southeast Asia move fur-

ther south and are concentrated in Borneo, Sumatra, and the

Malaysian Peninsula.

Dust AOT values peak in the summer months over the Sa-

hara region in North Africa, consistent with what has been

shown in the literature (Prospero and Mayol-Bracero, 2013).

The dust from Africa is transported over the Atlantic Ocean

and was found to impact Central America and parts of the

southeastern United States, in June, July, and August. This is

consistent with satellite measurements (Hsu et al., 2012) as
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Figure 3. Monthly averaged AOT (550 nm) for four ENAAPS-DART EAKF optimization experiments, including a source ensemble with

constant inflation (Source, Const), a source ensemble with adaptive inflation (Source, AI), a meteorology ensemble with adaptive inflation

(Met, AI), and a combined meteorology and source ensemble with adaptive inflation (Met+Source, AI). Also shown is the average difference

in AOT between the identified ENAAPS-DART experiment and the combined meteorology and source ensemble experiment (Met+Source,

AI).

well as aerosol records accumulated at Barbados (Prospero

and Lamb, 2003), Puerto Rico (Reid et al., 2003), and Miami

(Prospero, 1999), showing dust transport from the coast of

Africa into the Caribbean Basin. Some transport of Saharan

dust into Europe and the Mediterranean region is also ob-

served in the summer months. Over the Arabian Peninsula,

dust AOT peaks in the summer months, particularly in the

southern region, extending over the Arabian Sea. The dust

loading in India is concentrated in the south/southwest, as a

result of transport from the Arabian Peninsula. In East Asia,

dust AOT is limited to northern China and Mongolia.

Peak buildup of anthropogenic and biogenic fine aerosol in

the eastern United States occurs during the summer months,

consistent with the literature (Hsu et al., 2012). ABF buildup

occurs over Europe during the summer months as well and is

prevalent throughout Asia.

3.2 Ensemble data assimilation optimization

The EAKF optimization experiments focus on an evalua-

tion of covariance inflation methods as well as an evalua-

tion of the method for generating the ensemble (Table 1).

Monthly averaged posterior AOT fields for the EAKF op-

timization experiments, as well as the average difference

in the posterior AOT relative to the combined meteorology

and source ensemble experiment (Met+Source, adaptive),

are presented in Fig. 3. Some key differences are that the

experiments without ensemble meteorology forcing (Source,

AI; Source, Const) tend to produce a smaller AOT, especially

over the Siberian fire region and dust-impacted regions, in-

cluding North Africa, parts of the Arabian Peninsula, India,

and East Asia. At the same time, higher AOT values are gen-

erated near select source regions such as smoke in southern

Africa and dust in parts of Africa, Arabian Peninsula, and

Asia. With the meteorology ensemble (Met, AI), higher AOT

values are predicted relative to the combined ensemble, espe-

cially in regions impacted by fires.

The following sections look in detail at the performance

across the ENAAPS-DART experiments. In addition to bulk

statistics, representative case studies pulled from Sect. 3.1 are

used to further understand the impact of the configurations.

Evaluation of covariance inflation methods

Two covariance inflation methodologies, the constant 10 %

multiplicative inflation and the adaptive inflation, were tested

with the source-only ensemble simulation. Additional 10 %

constant covariance inflation experiments were not con-
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ducted since the results from the source-only experiments

demonstrated the advantage of the AI methodology. The ad-

vantage of the adaptive inflation over the constant covari-

ance inflation will be discussed below. The AI method it-

self requires some tuning to create a stable system. As pre-

viously discussed, large persistent Siberian fires generated

high smoke levels in the Eurasian Boreal region in August

2013. This region provided particular trouble for adaptive

inflation, which under several configurations resulted in a

blow-up of the inflation factor. The inflation factor blow-up

indicates that the discrepancy between the prior and observa-

tional distributions increased over time, producing unrealis-

tic AOT values and aerosol mass concentrations, eventually

leading the model to crash. This type of behavior is indicative

of model shortcomings related to smoke aerosol. An impor-

tant tuning parameter for the adaptive inflation algorithm is

the inflation factor standard deviation (Anderson, 2009). The

selected standard deviation affects how quickly the inflation

factor changes, especially in places like Siberia, where the

observations and prior ensemble are inconsistent. Adaptive

inflation was tested with inflation factor standard deviations

of 0.2, 0.4, and 0.6, with a selected value of 0.4. Other means

were used to prevent the inflation factor from growing too

large, including an applied maximum inflation factor of 1.5,

preventing the inflation from growing beyond 50 %. Addi-

tionally, a spatially uniform damping factor of 0.9 is applied

to the inflation factors before each assimilation cycle. In this

implementation of the adaptive inflation algorithm, the prior

estimates of the inflation factor are assumed to be equal to the

posteriors from the previous cycle, multiplied by a 0.9 damp-

ing factor. The damping factor, therefore, serves as the time

variation model for the inflation. The system was found to be

stable even under the extreme burning conditions in Siberia

with the standard deviation of 0.4, maximum inflation of 1.5,

and a damping factor of 0.9. Results are shown for this stable

AI configuration.

While the 10 % constant covariance inflation and AI have

similar results in well-observed regions, issues occur with the

constant covariance inflation, where there is limited observa-

tional coverage. For the experimental time period, the obser-

vation density for assimilated MODIS AOT is presented in

Fig. 4e. Since the assimilated observations are heavily bias-

corrected and cloud-screened, there are spatial gaps in the ob-

servational coverage, leaving many ocean and coastal regions

with little observational constraint. If the observation den-

sity is compared to the prior ensemble spread, represented

as the standard deviation of the ensemble AOT normalized

by the mean, at the end of the constant inflation experiment

(Fig. 4a), it is apparent that large spread develops where there

is limited observational information, including high latitudes

and spots over the Pacific Ocean. The ensemble spread at the

end of the constant inflation experiment is much greater than

that from AI in the other source-only ensemble experiment

(Fig. 4b). Figure 4 provides a sense of what the ensemble

spread looks like spatially throughout the globe. The change

in ensemble spread is also examined over time for a num-

ber of regions (Fig. 5). For most of the regions shown, the

ensemble spread as a function of time is approximately the

same for the source ensemble experiments with constant and

adaptive inflation (Source, const and Source, adaptive). On

the other hand, a difference is observed between the two ex-

periments for the Southern Hemisphere Pacific Ocean with

a steady growth in spread found for the constant inflation

(Source, const) and a stable spread for the adaptive infla-

tion configuration (Source, adaptive). The Southern Hemi-

sphere Pacific Ocean has very little observational coverage

compared to the other regions shown in Fig. 5. The growth

in spread in the Southern Hemisphere Pacific Ocean for the

constant inflation experiment is a result of having continuous

inflation with no observations to bring the ensemble back to

reality. This demonstrated growth in ensemble spread was

also found across initial tuning experiments in which a range

of constant inflation factors were tested (1.03–1.5). The only

difference was the timescale over which the spread devel-

oped in under-observed regions. The average inflation factor

for the source-only adaptive inflation experiments is shown

in Fig. 4f. The spatial pattern of the inflation factor follows

the observation density spatial pattern with almost no infla-

tion in the Pacific and Southern Ocean, where limited ob-

servations are available. Although spatially and temporally

constant covariance inflation has been the chosen method

for aerosol applications in the past, it is not recommended

since aerosol observations are spatially heterogeneous. On

the other hand, adaptive inflation increases ensemble spread

where there is observational information available, produc-

ing stability, a desirable characteristic for an ensemble sys-

tem. These findings are consistent with idealized experiments

and NWP applications of ensemble systems where a tempo-

rally and spatially varying inflation is recommended over a

constant inflation approach (Anderson, 2009; Li et al., 2009;

Miyoshi et al., 2011).

3.3 Evaluation of ensemble generation

In addition to evaluating the impact of the covariance in-

flation method, the impact of the ensemble generation ap-

proach is examined with a source-only, meteorology-only,

and a combined meteorology and source ensemble exper-

iment. One impact of using the source-only ensemble is

that the ensemble itself has less spread (i.e., smaller stan-

dard deviation in ensemble AOT). The spatial differences be-

tween the experiment ensemble spreads are demonstrated in

Fig. 4a through d, although these differences will vary with

time. When comparing the adaptive inflation experiments, it

is clear that including the meteorology ensemble increases

the spread globally (Fig. 4b through d). This is especially

true over the dusty Sahara and the entire Arabian Peninsula,

where the standard deviation in AOT is on the order of 1 to

15 % (Fig. 4b) compared to the 5 to 50 % range seen with the

inclusion of the meteorology ensemble (Fig. 4c, d). In par-
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Figure 4. The standard deviation of the prior ensemble aerosol optical thickness normalized by the ensemble mean at the end of the ex-

perimental time period (31 August 1800) for four ENAAPS-DART experiments: (a) source-only ensemble with spatially and temporally

constant 10 % covariance inflation, (b) source-only ensemble with adaptive inflation, (c) meteorology-only ensemble with adaptive inflation,

and (d) combined meteorology and source ensemble with adaptive inflation. Also shown are (e) the count of days with MODIS 1◦ gridded

data assimilation quality AOT observations (Zhang et al., 2005, 2006; Hyer et al., 2011) available for assimilation during the 15 July to

31 August 2013 time period, (f) the average inflation factor for the source-only adaptive inflation, (g) the average inflation factor for the

meteorology-only adaptive inflation experiment, and (h) the average inflation factor for the combined meteorology and source ensemble

adaptive inflation experiment. For adaptive covariance inflation, regions with high observation density are coincident with inflation regions.

ticular, a large increase in spread is found at dust source re-

gions. For example, the spread increases from approximately

20 to 50 % in the northern Arabian Peninsula. As discussed

in Sect. 3.1, summertime dust aerosol in the Arabian Penin-

sula comes from the northern region and is transported south.

Similar increases are observed in northern Africa which co-

incide with large dust source regions, such as the Bodélé De-

pression. Since dust emissions are dynamically driven, the

inclusion of the meteorology ensemble, either by itself or

with the source ensemble, greatly increases the spread in

dust aerosol. Likewise, the meteorology ensemble increases

spread for sea salt aerosol, which is also dynamically driven,

over the Southern Ocean for example.

Whether the ensemble includes only the NOGAPS meteo-

rology members or includes both the meteorology and source

members, the ensemble spread is quite comparable, both spa-

tially and temporally (Figs. 4, 5). The meteorology ensem-

ble appears to be the main driver of ensemble spread when

included with a 25 % source-perturbed ensemble. The adap-

tive inflation compensates for differences in spread that result

from including the source ensemble with the meteorology.

For example, in the northwestern United States, an inflation

factor in the range of 1.25 to 1.3 is applied with the com-

bined meteorology and source ensemble. However, with the

meteorology-only ensemble, the inflation factor is greater, in

the range of 1.3–1.4 (Fig. 4g, h). Occasionally, a larger in-

flation factor in the meteorology-only ensemble experiment

results in an ensemble spread that is greater than the spread

in the combined ensemble, for example in the eastern United

States and the Eurasian Boreal region in August. Additional

diagnostics are needed to understand how well the ensem-

ble spread represents actual uncertainty. It should be noted
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Figure 5. Time series of ensemble spread (AOT standard deviation) for four ENAAPS-DART experiments over the 15 July through August

2013 time period. Results are shown for 12 regions, including the eastern United States, the western United States, Central America, South

America, southern Africa, North Africa, Europe, Eurasian Boreal, East Asia, India, Southeast Asia, and the Southern Hemisphere Pacific

Ocean.

that the ensemble spread stabilizes very quickly for the AI

experiments, reflected by a stable baseline ensemble spread

(Fig. 5). This result indicates that only a short spin-up time

is needed for these simulations.

A good means for determining how well the ensemble sys-

tem represents uncertainty is a comparison of the prior total

spread (the square root of the sum of the ensemble variance

and the observational error variance) in AOT to the prior

RMSE. The RMSE is calculated against the MODIS AOT

observations, prior to assimilation. The total spread and the

RMSE should have a ratio close to 1 if the ensemble is pro-

viding a good representation of model uncertainty. If the ra-

tio is greater than 1, the total spread is greater than the error

and the uncertainty is overrepresented. For a ratio less than

1, the uncertainty is being underrepresented. The RMSE of

the 6 h forecast relative to MODIS AOT and the average ra-

tio between the total spread and the RMSE for the four ex-

periments are presented in Table 2. The results are shown

on a global and regional basis, including over-land and over-

ocean regions. Globally, the experimental configuration with

the smallest RMSE and a ratio closest to 1 is the combined

meteorology and source ensemble experiment with adaptive

inflation (Met+Source, AI). Performance varies by region

for the different ENAAPS-DART configurations. The com-

bined meteorology and source configuration (Met+Source,

AI) has the smallest RMSE with the exception of East Asia,

the Southern Hemisphere Atlantic and the Southern Ocean.

In these identified regions, the source-only configuration has

a slightly smaller RMSE (Source, AI). The use of the source-

perturbed ensemble is also beneficial in the North American

Boreal and southern Africa, both impacted by smoke aerosol,

with the meteorology ensemble alone (Met, AI) having the

worst performance. Additional investigation is required to

understand the impact of the source ensemble in these re-

gions. However, Central America is the only region where

the difference in performance between the ENAAPS-DART

configurations is statistically significant with the inclusion of

the meteorology ensemble, either by itself or with the source

ensemble, producing the smallest RMSE. Overall, the com-

bined meteorology and source ensemble configuration has

the smallest RMSE in the 6 h forecast relative to MODIS

AOT.

Further probing is required to understand the impact of

the source ensemble on the RMSE for several identified re-

gions, including southern Africa and the North American Bo-

real region. Case studies were examined and it was found

that including the source ensemble is beneficial for aerosol

events that are large and spatially correlated, especially for

cases where the observational information is limited due to

heavy cloud cover. A smoke aerosol example for the southern

Africa burning region is presented in Fig. 6a. In this case, the

ensemble correlation fields relative to a point near the center

of a smoke plume are shown for the three AI experiments,

along with the MODIS AOT observations for the event.

Burning events in southern Africa are persistent throughout

this time period and large in scale. For the source-only en-

semble experiment, a clear structure in the correlation fields

is observed. This structure is a result of the ensemble source
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Table 2. Global and regional diagnostics for four EAKF optimization experiments conducted during the July through August 2013 time

period. The diagnostics are computed using the ENAAPS-DART 6 h AOT (550 nm) forecasts against MODIS AOT (550 nm), prior to

assimilation. The root-mean-squared error (RMSE) is shown as well as the average ratio between the total spread (ensemble spread in

AOT+observational AOT error) and the RMSE. Well-tuned ensemble systems should have a small RMSE that is approximately equal to the

total spread.

RMSE (standard deviation) Mean (total spread/RMSE) ratio

Region Source, const Source, AI Met, AI Met+Source, AI Source, const Source, AI Met, AI Met+Source, AI

Global 0.127 (0.095) 0.123 (0.086) 0.122 (0.083) 0.115 (0.077) 0.802 0.82 0.875 0.925

North American Boreal 0.084 (0.074) 0.084 (0.074) 0.091 (0.079) 0.085 (0.072) 1.387 1.355 1.254 1.298

ECONUS 0.071 (0.04) 0.071 (0.038) 0.069 (0.031) 0.069 (0.033) 1.298 1.28 1.225 1.234

WCONUS 0.152 (0.119) 0.153 (0.123) 0.15 (0.114) 0.139 (0.111) 0.956 0.965 1.017 1.084

Central America 0.094 (0.052) 0.099 (0.051) 0.064 (0.038) 0.064 (0.038) 1.142 1.041 1.662 1.661

South America 0.069 (0.019) 0.071 (0.021) 0.076 (0.025) 0.067 (0.018) 1.158 1.149 1.091 1.214

Southern Africa 0.133 (0.048) 0.128 (0.043) 0.14 (0.065) 0.124 (0.046) 0.69 0.745 0.721 0.8

North Africa 0.174 (0.111) 0.176 (0.099) 0.166 (0.086) 0.163 (0.082) 0.837 0.806 0.911 0.918

Europe 0.098 (0.045) 0.094 (0.039) 0.09 (0.036) 0.09 (0.037) 0.863 0.889 0.989 0.994

Eurasian Boreal 0.176 (0.211) 0.166 (0.193) 0.155 (0.181) 0.15 (0.167) 0.799 0.819 0.925 0.934

East Asia 0.143 (0.055) 0.141 (0.055) 0.165 (0.094) 0.161 (0.09) 0.951 0.956 0.958 0.975

India 0.149 (0.076) 0.158 (0.076) 0.134 (0.069) 0.134 (0.07) 1.131 1.007 1.322 1.501

Southeast Asia 0.083 (0.036) 0.085 (0.037) 0.08 (0.036) 0.079 (0.035) 1.075 1.037 1.144 1.155

Australia 0.04 (0.006) 0.04 (0.006) 0.044 (0.009) 0.042 (0.007) 1.505 1.482 1.395 1.447

NH Pacific 0.089 (0.056) 0.091 (0.056) 0.088 (0.061) 0.082 (0.053) 1.242 1.237 1.333 1.386

SH Pacific 0.035 (0.013) 0.037 (0.013) 0.034 (0.011) 0.034 (0.011) 2.134 2.003 2.098 2.106

NH Atlantic 0.099 (0.061) 0.099 (0.061) 0.093 (0.058) 0.092 (0.058) 0.979 0.99 1.145 1.163

SH Atlantic 0.088 (0.086) 0.085 (0.093) 0.099 (0.147) 0.088 (0.11) 1.291 1.304 1.318 1.366

Indian Ocean 0.079 (0.036) 0.085 (0.036) 0.074 (0.033) 0.073 (0.031) 1.16 1.076 1.279 1.291

Southern Ocean 0.04 (0.018) 0.04 (0.016) 0.047 (0.021) 0.047 (0.021) 2.08 1.997 1.732 1.759

perturbations for smoke in this case. By perturbing the smoke

emissions using the same factor for a given ensemble mem-

ber, a correlation between freshly emitted smoke aerosol is

created, resulting in the observed structure. The source per-

turbations essentially create infinite correlation length scales

for freshly emitted smoke aerosol (i.e., all smoke emissions

are correlated), only limited by localization. A very differ-

ent relationship is observed for the meteorology-only en-

semble, with a much more spatially limited correlation field

around the point of interest. When assimilating observations

into these two experiments, the observational information

will spread in a much different manner around the indicated

point. The correlation fields for the combined meteorology

and source ensemble experiment are a combination of the

two. Since the presented southern Africa case study is lo-

cated within a large smoke source location, the ensemble

correlations are mainly governed by the source perturbations

with some influence by the meteorology. The structure from

the source ensemble is present with more defined edges due

to the inclusion of the meteorology ensemble, producing the

smallest RMSE relative to MODIS AOT.

While in general the combined meteorology and source

ensemble had the best performance, occasionally the source

ensemble alone outperformed the combined ensemble. This

is despite the fact that one would always expect the meteorol-

ogy ensemble to improve performance. An example of this is

shown in Fig. 6b for a North American Boreal smoke event

on 15 August 2013. Smoke events in this region are not per-

sistent, like the southern African region, and vary between

large, transported plumes that occur when smoke is injected

above the boundary layer, sometimes spreading over thou-

sands of miles (Fig. 6b), and less intense fire events that do

not make it above the boundary layer and behave indepen-

dently (Fig. 6c). For the large transported plume shown in

Fig. 6b, the ensemble correlation fields for the source-only

ensemble are spatially larger than the other two configura-

tions causing the sparse observational information in the re-

gion (due to heavy cloud cover) to be spread out, producing

the smallest RMSE. In this case, it appears that the mete-

orology ensemble might not be accurately representing the

aerosol transport for this event or perhaps is overspread, pro-

ducing a slightly larger (although not statistically different)

RMSE. Additional tests with increased ensemble size may

shed light on why the meteorology ensemble has a slightly

negative impact on the performance for this event.

On the other hand, the source ensemble occasionally had a

negative impact on the system’s performance. An example of

this is the spatially independent North American Boreal fires

on 7 August 2013, shown in Fig. 6c. For this event, there are a

cluster of fires (A) that coincide with the point around which

the correlation fields are calculated. A second cluster of fires

(B) is observed to the northeast of cluster A. These fires are

much smaller and are independent of cluster A, as shown in

the MODIS visible image. The meteorology ensemble has

the most realistic correlation fields, statistically separating

the two fire clusters, while the source ensemble configura-
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Figure 6. Ensemble correlation fields in the prior AOT relative to a point indicated by a black star for three different aerosol events: (a) a

southern African smoke event on 2 August 2013, (b) a large North American Boreal smoke plume on 15 August 2013, and (c) small

independent boreal fires in North America on 7 August 2013. Correlation fields are shown for three ENAAPS-DART configurations: source

ensemble (Source), NOGAPS meteorology ensemble (Meteorology), and a combined meteorology and source ensemble (Met+Source). Also

included are the MODIS AOT (550 nm) observations for the smoke events, as well as a zoomed-in look at the MODIS visible image with

MODIS fire detections in red for the two North American Boreal cases.

tions have correlation fields that statistically link the two fire

regions. For this event, the meteorology ensemble alone has

the smallest RMSE. Other spatially independent events, in-

cluding pollution events in the eastern United States, showed

similar performance issues with the source-perturbed ensem-

ble, which statistically links emissions that may be indepen-

dent of each other. For these types of independent events,

the source perturbations need to be done in a way that bet-

ter captures the spatial correlations. While occasionally the

source ensemble alone or the meteorology ensemble alone

had slightly better performance, the combined meteorology

and source ensemble had the overall best performance in

RMSE against MODIS AOT. The caveats to this are useful

case studies to determine in what ways the ENAAPS-DART

system can be improved.

In addition to producing the smallest RMSE overall, the

combined meteorology and source ensemble configuration

(Met+Source, AI) has a total spread to RMSE ratio clos-

est to 1 globally as well as regionally for southern Africa,

Europe, Eurasian Boreal, and East Asia (Table 2). For the re-

maining regions, differences in the ratio are largely due to

differences in the RMSE, with the total spread being approx-

imately the same across the experiments. However, for some

regions the ratio of total spread to RMSE was found to be

dependent on the AOT value (Fig. 7). For example, in the

North American Boreal region, the ratio tends to be greater

than 1 for AOT values less than 0.1, with the ratio decreas-

ing to approximately 0.5 as the AOT increases. At the lower

end of the AOT distribution (< 0.1), the total spread (com-

bined ensemble spread and observational error) exceeds the

RMSE; however, it is found that the observational error dom-

inates the total spread (Fig. 7). This relationship is consis-

tent across the experimental ENAAPS-DART configurations,

represented by the different colors in Fig. 7. It indicates that

the observational error is too large relative to the ensemble

spread for small AOT values, with similar results found for

other fire-impacted regions (South America, Southern Hemi-

sphere Atlantic). This relationship is likely caused by the en-

semble spread being too small for small AOT values since

aerosol mass is a positive-definite quantity. For data assim-

ilation, this translates to a reduced impact of the observa-

tion on the model state for small AOT. For the case of large

AOT in the North American Boreal, for example, there is not

enough spread and the uncertainty is underrepresented for all

ENAAPS-DART experiments (Fig. 7). This may be the result

of not using large enough source perturbations for smoke or

the result of not accounting for uncertainties in physical pro-

cesses such as deposition. However, other regions impacted
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Figure 7. Regional scatterplots of the ratio of total spread (combined ensemble AOT spread and MODIS AOT error) to RMSE against the

ensemble mean AOT (550 nm) (top row) and the ratio of ensemble spread to total spread against the mean AOT (550 nm) (bottom row).

Results are shown for four ENAAPS-DART configurations including source ensemble with constant covariance inflation, source ensemble

with adaptive inflation, meteorology ensemble with adaptive inflation, and a combined meteorology and source ensemble with adaptive

inflation.

by summertime burning events such as South America, the

Southern Hemisphere Atlantic Ocean (Fig. 7), the Eurasian

Boreal region, and the western United States also have a ten-

dency to underrepresent uncertainty for large AOT events.

Smoke emissions have very large errors, often as large as

an order of magnitude uncertainty (Reid et al., 2009, 2013;

Hyer et al., 2013). As a result, a larger source perturbation

(greater than the 25 % standard deviation currently applied)

for smoke emissions is likely needed to produce a better

tuned system. This reasoning is bolstered by initial AI tests

that were not capped by a maximum inflation and generated

inflation factors exceeding 10 in smoke-dominated regions,

indicating a large discrepancy between the prior and obser-

vational distributions.

Rank histograms for select regions with representative re-

sults are shown in Fig. 8 for each of the four ENAAPS-DART

configurations. The Eurasian Boreal smoke region rank his-

togram, consistent with the evaluation of the total spread to

RMSE ratio, shows that the ensemble is not capturing low

AOT values in the observed distribution, with an excess of

observations occurring for low ranks. The inclusion of the

meteorology ensemble helps to reduce this excess, and even

more so when both the meteorology and source ensemble are

included. Similar results were found for other regions im-

pacted by smoke (North American Boreal, southern Africa,

South America), indicating a positive bias associated with

smoke aerosol and potential bias in the smoke emissions.

The large observational errors relative to the ensemble spread

found for small AOT values in smoke-dominated regions

(Fig. 7), reducing the impact of these observations on the

model state, are likely another contributing factor to the ob-

served positive bias in smoke regions. The increase in ensem-

ble spread with the meteorology ensemble (Figs. 4, 5) helps

to alleviate the bias in smoke-dominated regions. In the east-

ern United States, the inclusion of the meteorology ensem-

ble introduces some positive bias, with a tendency to pre-

dict AOT that is greater than the observational MODIS AOT;

however, the RMSE across configurations is the same. For

dust-dominated regions such as North Africa, the ENAAPS

ensemble well represents the observational distribution with

some negative bias in the source-only configurations and a

slight positive bias in the meteorology configurations. Re-

gions such as Central America and India have a large nega-

tive bias in the source-only ensemble experiments. Including

the meteorology ensemble greatly reduces this bias and helps

to flatten the distribution. In general, an ensemble which is

created using both source perturbations and the NOGAPS

meteorology ensemble does a better job representing the dis-

tribution and producing a better tuned system.

Independent evaluation of the experiments was conducted

through comparison to AERONET AOT observations, which

are not assimilated. In this case, the posterior ensemble mean
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Figure 8. Rank histograms for select regions for the four ENAAPS-DART experiments, including source-only ensemble with constant and

adaptive inflation (Source, const; Source, adaptive), meteorology-only ensemble with adaptive inflation (Met, adaptive), and meteorology

plus source ensemble with adaptive inflation (Met+Source, adaptive).

AOT is being compared to the observations, since they are

independent. Statistics, including RMSE and bias, were cal-

culated at each AERONET site over the July through August

time period. Scatterplots of the RMSE relative to AERONET

AOT at each site between the experiments are shown in Fig-

ure 9 and are identified by region. With respect to the source-

only ensemble experiments (Source, constant vs. Source,

adaptive), the performance is approximately the same at most

sites (Fig. 9a). This is a result of having MODIS observa-

tional coverage in regions where AERONET sites are lo-

cated, preventing issues with the constant inflation in under-

observed locations as shown in the Southern Hemisphere Pa-

cific Ocean. The adaptive inflation experiment outperforms

the constant inflation at two Eurasian Boreal sites, likely due

to the adaptive inflation factor being much greater than the

constant 10 % inflation. Additionally, the AI experiment out-

performs at a single Southwest Asia site, a region lacking

observational coverage. If deciding between a meteorology-

only ensemble and a source-perturbed ensemble, in gen-

eral the meteorology ensemble has a smaller RMSE, espe-

cially over the eastern United States; Central America; India;

Southwest Asia; and Dakar, a dust-impacted site in North

Africa (Fig. 9b). Many sites in these regions are impacted

by dust transport events during the experimental time period.

Evaluation of the AOT time series at the individual sites re-

veals that with the source ensemble only, these transported

dust events are completely missed, while the event is cap-

tured in both the meteorology configuration and the com-

bined meteorology and source configuration. The analysis

AOT time series for one of the dust-impacted sites (Univer-

sity of Houston) in the United States is shown in Fig. 10 for

all three adaptive inflation ensemble configurations (source

only, met only, Met+Source). For these long-range dust

transport sites, the combined ensemble and the meteorol-

ogy ensemble alone perform approximately the same with

a much smaller RMSE and bias than the source-only con-

figuration (Fig. 10). This result demonstrates the importance

of the meteorology ensemble for long-range transport. The

western United States sites and several South American sites,

on the other hand, perform better when the source ensemble
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Figure 9. Scatterplots of ENAAPS-DART RMSE relative to AERONET AOT (550 nm; Zhang and Reid, 2006) by site between different

ENAAPS-DART experiments. Sites are identified by region. Results are shown for (a) source only with constant covariance inflation versus

adaptive inflation, (b) meteorology-only versus source-only ensemble, (c) meteorology-only versus meteorology+source ensemble, and (d)

meteorology+source 20-member ensemble against a meteorology+source 80-member ensemble.

is included with the meteorology (Fig. 9c). These sites are

impacted by nearby smoke events such as the Rim Fire in

the western United States. An AOT time series for the White

Salmon AERONET site (western United States), including

total and smoke AOT, is presented in Fig. 11. The com-

bined meteorology and source ENAAPS-DART simulation

does the best job capturing the peak smoke AOT, reflected

by the difference in RMSE and bias. The effect of the source

ensemble on the correlations for large smoke events, as pre-

viously shown for the southern African and North American

Boreal regions, is applicable in the western United States as

well. The difference in RMSE was statistically significant for

the Central American, eastern United States, and Indian sites

impacted by dust transport (between source and the two me-

teorology configurations) and the smoke impacted western

United States sites (between meteorology only and meteorol-

ogy plus source). For these sites, the combined meteorology

and source ENAAPS-DART configuration had the smallest

RMSE or the same as the meteorology configuration.

Based on the diagnostics from the different ENAAPS-

DART configurations, the NOGAPS meteorology ensem-

ble combined with the perturbed aerosol source function

had the best overall performance. One additional test was

conducted to examine the impact of increasing the ensem-

ble size from 20 members to 80 members. An additional

ENAAPS-DART 80-member ensemble simulation was run

with 80 meteorology members (NAVGEM) combined with

the 25 % source perturbations and adaptive inflation. The

same localization was used, although the optimal localiza-

tion length scale should increase with increasing ensem-

ble members. Initial results show that further reductions in

RMSE can be achieved by increasing the ensemble num-

ber at most AERONET sites, including Beijing in East

Asia and many eastern United States, North African, Eu-

ropean/Mediterranean, and boreal sites (Fig. 9d). A smaller

RMSE was found with the 80-member ensemble for sites im-

pacted by spatially large aerosol events, in which the source-

perturbed ensemble had previously generated the smallest

RMSE relative to observations. An example is shown for

Sede Boker, a Mediterranean site impacted by dust and pol-

lution aerosol (Fig. 12). Relative to the 20-member combined

ensemble, the posterior AOT bias is reduced by nearly 50 %

and the RMSE is reduced by approximately 35 %. With the

80-member ensemble, both the RMSE and bias are now less

than that of the source-only ensemble configuration. It is ex-

pected that further reductions in RMSE can be achieved by

tuning the localization length scale for the 80-member en-

semble. The 80-member ensemble is not currently available
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Figure 10. Time series of model-predicted total AOT (grey) and

dust AOT (red) with AERONET AOT (Zhang and Reid, 2006)

(black) at 550 nm at the University of Houston AERONET site. Re-

sults are shown for adaptive inflation experiments with source-only

ensemble, NOGAPS meteorology ensemble, and a combined mete-

orology and source ensemble.

Figure 11. Time series of analysis total AOT (grey) and dust

AOT (red) with AERONET AOT (Zhang and Reid, 2006) (black)

at 550 nm at the White Salmon AERONET site in the western

United States. Results are shown for adaptive inflation experiments

with source-only ensemble, NOGAPS meteorology ensemble, and

a combined meteorology and source ensemble.

Figure 12. Time series of analysis total AOT (grey) and dust

AOT (red) with AERONET AOT (Zhang and Reid, 2006) (black)

at 550 nm at the Sede Boker (Sede_Boker) AERONET site, a

Mediterranean site in the Negev Desert. Results are shown for the

NAVDAS-AOD 2DVar data assimilation as well as the ENAAPS-

DART for the source-only ensemble and the combined source and

meteorology ensemble with 20 and 80 ensemble members. RMSE

and bias relative to AERONET AOT are included.

for simulations over longer time periods. As a result, the 20-

member combined meteorology and source ENAAPS-DART

is used for evaluation against the current operational system,

based on its performance against both MODIS AOT in the

6 h forecast and AERONET in the posterior AOT relative to

the other configurations. However, the 80-member ensemble

is very promising and will be explored in future work.

3.4 Baseline comparison of ENAAPS-DART to NAAPS

deterministic system

3.4.1 Comparison of data assimilation analysis

To objectively determine the efficacy of the ENAAPS-

DART system, the data assimilation analysis fields from the

EAKF were compared to analysis fields from the variational

NAVDAS-AOD system over the 6-month April–September

2013 time frame. Understanding the difference in the anal-

ysis is important as the aerosol fields from the data assim-

ilation serve as the initial condition for aerosol forecasts.
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Figure 13. Monthly averaged AOT fields (550 nm) from the ENAAPS-DART system and the NAAPS/NAVDAS-AOD system. Also shown

is the monthly averaged AOT difference between ENAAPS-DART and NAAPS/NAVDAS-AOD.

Average analysis fields by month for the DART-EAKF and

the 2DVar NAVDAS-AOD data assimilation as well as the

difference between the two are shown in Fig. 13. They

both capture the same large features, such as dust from

the Sahara and the Arabian Peninsula, springtime burning

in Central America, and boreal fires including the August

Siberian fires. However, there are clear differences between

the two, with the ENAAPS-DART system having a tendency

to produce AOT fields on the order of 0.02 greater than the

NAAPS/NAVDAS-AOD system. The difference between the

two systems is reflected in the analysis increments with the

tendency of NAVDAS-AOD to increase AOT on the order

of 0.01 and the ENAAPS-DART having a tendency to de-

crease AOT on the order of 0.001. The smaller increments

in ENAAPS-DART could indicate that the base system is

more consistent with the assimilated observations or could

be due to differences in forecast error characterization be-

tween the systems. Regions where the AOT fields from the

ENAAPS-DART system are less than the deterministic sys-

tem include the southern African and the August Siberian

biomass burning regions, parts of the United States, and

the tropical oceans, especially in the spring. Since there are

very few AOT observations for assimilation in the Southern

Ocean, any differences in this region are attributed to differ-

ences in the deterministic and ensemble meteorology fields

(winds, humidity) that drive the models. For example, dif-

ferences in wind would impact sea salt emissions and there-

fore optical thickness in the region. Likewise, differences in

humidity fields would impact the optical thickness. There

is also a large positive difference in AOT off the western

coast of Africa, centered on the Equator in September. Spe-

ciated AOT for this location shows the presence of ABF,

dust, and sea salt, in addition to smoke, with a similar spa-

tial pattern (Fig. 2). This is believed to be an artifact that

developed from strong covariance inflation in this region,

resulting in large ensemble spread that built up over time

for all aerosol species. As previously discussed, large infla-

tion develops with AI when there is a discrepancy between

the observational and ensemble distributions. If consistency

between model and observations can be achieved for this
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smoke-dominated region by further tuning smoke emissions,

the adaptive inflation will be reduced and should alleviate

this problem. The need for tuning of the smoke emissions is

also supported by findings in the EAKF optimization section

(Sect. 3.2).

The analysis fields from the two systems are compared

against AERONET AOT both regionally and by site. A sum-

mary of regional statistics including RMSE, mean bias, and

R2 is shown in Table 3. It was found that the regional RMSE

values relative to AERONET AOT are not statistically dif-

ferent between the two data assimilation systems. The slight

reduction in RMSE is found for the ENAAPS-DART sys-

tem relative to NAVDAS-AOD in the North American Boreal

region, Central America, India, Peninsular Southeast Asia,

and over the oceans. The largest difference in performance

occurred in Peninsular Southeast Asia with the EAKF pro-

ducing an RMSE that is 0.023 less than NAVDAS-AOD.

For the remaining regions, NAVDAS-AOD had a slightly

smaller or the same RMSE as the EAKF, with the largest

difference in RMSE (0.016) found in East Asia. While re-

gional statistics are similar between the two data assimila-

tion systems, there is much more diversity in performance

at individual AERONET sites. The AERONET site RMSE

comparison between the EAKF and the 2DVar system is

shown in Fig. 14. The diversity in site performance is re-

flected by the scatter in site RMSE by region. For exam-

ple, the analysis AOT from ENAAPS-DART had a smaller

regional RMSE relative to AERONET over India. A nearly

50 % reduction in RMSE is seen at two AERONET sites in

India with the EAKF; however, there are several sites where

NAVDAS-AOD has a smaller RMSE. The opposite is seen in

South America, where on a regional basis analysis AOT from

NAVDAS-AOD had a smaller RMSE, but there are several

sites in which a smaller RMSE is associated with ENAAPS-

DART, including one site with a reduction in RMSE of ap-

proximately 70 %.

Site-by-site differences in RMSE are useful in identify-

ing ways to further improve the ENAAPS-DART perfor-

mance. A good example of this is the eastern United States

in which the NAVDAS-AOD system had a smaller regional

RMSE relative to AERONET (Table 3); however, perfor-

mance varies by site (Fig. 14). Upon further investigation,

the eastern United States sites where EAKF does better are

affected by long-range dust transport, including sites in the

Houston area. For example, the 2DVar system had an RMSE

of 0.065 at the University of Houston AERONET site, com-

pared to the 0.060 RMSE from the EAKF system over the

6-month time frame. Likewise, several of the European sites

in which the EAKF had a smaller RMSE are also impacted

by long-range transport events. EAKF appears to have an

edge over the 2DVar system when it comes to capturing long-

range transport. This is not unexpected given that ensem-

ble data assimilation has flow-dependent covariances. On the

other hand, having a 2.5◦ univariate adjustment around an ob-

servation as is done in the variational assimilation appears to

perform better for complex local sources which behave inde-

pendently, as is likely the case for many eastern United States

and European cities (i.e., local point sources, transportation)

and the North American Boreal region (independent fires).

Improvement in the EAKF performance for these types of

sources may be achieved by decreasing the length scale as-

sociated with the source perturbations. A more in-depth in-

vestigation is needed to understand how to get the ensemble

statistics correct for these types of independent source. Addi-

tionally, increasing the ENAAPS-DART ensemble size may

change the performance relative to NAVDAS-AOD since ini-

tial tests with the 80-member ensemble indicate that an in-

crease in ensemble size can result in better performance at

most AERONET sites (Figs. 9d, 12).

While comparing the statistics at individual sites provides

some insight into differences between the EAKF and the

2DVar, it does not provide any insight into what is happening

spatially. From an examination of the posterior fields from

the two data assimilation methodologies, it is clear that while

both methods are able to capture important aerosol features,

the EAKF has an ability to capture sharp gradients. On the

other hand, the 2DVar, with its 2.5◦ univariate adjustment

around an observation, tends to have a smoothing effect. This

point is demonstrated in an example of a dust plume trans-

ported over the Atlantic Ocean, off of the Sahara. The ex-

ample, shown in Fig. 15, shows the analysis increments for

the NAVDAS-AOD 2DVar system as well as analysis incre-

ments for ENAAPS-DART, both for the source-only and the

combined meteorology and source ensemble. Even though

the focus is now on the combined meteorology and source

ensemble, the analysis increments for the source-only en-

semble further demonstrate why the meteorology ensemble

is so important for these transported events. The univariate

adjustments from the 2DVar can be seen as circular bullets.

On the other hand, the EAKF adjustments are more realistic

and occur along the dust plume. The result is a dust plume

which captures the sharp gradient of the dust front that is

also seen in the MODIS image for this event (Fig. 15). On the

other hand, the 2DVar system produces a dust plume feature

that is smoothed out. This dust case demonstrates a major

advantage of the EAKF system over the 2DVar in its ability

to spread information in a realistic manner and, as a result,

capture sharp gradients. It is anticipated that the ability of

the EAKF to generate more realistic corrections to the state

field will become more important as additional observational

information is introduced into the system, such as lidar and

other spatially limited pieces of information.

3.4.2 Impact of initial condition on short-term forecast

To investigate how the impact of data assimilation per-

sists in the forecast, four sets of 24 h forecasts were run

with the initial conditions generated from the DART-EAKF

or the NAVDAS-2DVar system. Each set of initial con-

ditions was run in a deterministic and an ensemble con-
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Table 3. Regional statistics of the analysis AOT against AERONET AOT (550 nm) (Zhang and Reid, 2006) for a 6-month simulation (April–

September 2013). The statistics are shown for the analysis AOT from the 2DVar NAVDAS-AOD assimilation system and the EAKF data

assimilation from ENAAPS-DART.

2DVar (NAVDAS-AOD) EAKF (ENAAPS-DART) AERONET

Region R2 Bias RMSE Mean AOT R2 Bias RMSE Mean AOT Mean AOT

North American Boreal 0.38 0.021 0.068 0.094 0.43 0.026 0.067 0.098 0.072

ECONUS 0.55 −0.001 0.066 0.147 0.53 0.013 0.068 0.162 0.147

WCONUS 0.32 0.024 0.07 0.116 0.27 0.02 0.07 0.112 0.093

Central America 0.58 −0.023 0.107 0.18 0.61 0.016 0.102 0.189 0.205

South America 0.33 0.001 0.074 0.09 0.23 −0.01 0.081 0.079 0.088

North Africa 0.58 0.002 0.161 0.259 0.59 0.044 0.167 0.301 0.257

Europe 0.55 0.01 0.092 0.166 0.49 0.011 0.097 0.167 0.156

Eurasian Boreal 0.65 −0.005 0.068 0.132 0.58 −0.004 0.076 0.134 0.137

East Asia 0.65 −0.04 0.168 0.289 0.60 −0.044 0.184 0.286 0.33

India 0.38 −0.016 0.252 0.402 0.39 −0.058 0.25 0.359 0.418

Insular SE Asia 0.52 −0.017 0.13 0.166 0.52 0.005 0.15 0.186 0.182

Peninsular SE Asia 0.64 −0.016 0.194 0.351 0.72 −0.024 0.171 0.343 0.367

Southwest Asia 0.61 0.019 0.15 0.355 0.48 −0.001 0.166 0.338 0.339

Australia 0.43 −0.008 0.043 0.055 0.21 0.01 0.048 0.072 0.062

Ocean 0.64 0.017 0.064 0.127 0.67 0.022 0.062 0.131 0.109

Figure 14. Comparison of AERONET site RMSE (AOT,

550 nm) between ENAAPS-DART AOT analysis fields and

NAAPS/NAVDAS-AOD analysis fields for simulations run over

a 6-month time period (April through September 2013). Sites are

identified by region.

figuration. This is done so that the initial conditions can

be tested with the same NOGAPS meteorological fields

driving the model simulations. For the deterministic ver-

sion of the EAKF, the forecast is initialized with the en-

semble mean (DART deterministic). For the ensemble ver-

sion of NAVDAS-AOD, each of the 20 ensembles is ini-

tialized with the same aerosol initial condition and run us-

ing the meteorology ensemble (ENAAPS-NAV). The fore-

casts were compared to AERONET AOT. The 24 h forecast

global RMSE values against AERONET AOT with boot-

strapped 95 % confidence intervals are 0.108(0.103–0.113),

0.107(0.102–0.112), 0.100(0.097–0.104), and 0.099(0.095–

0.103) for the NAVDAS-AOD deterministic, DART deter-

ministic, ENAAPS-NAV, and ENAAPS-DART, respectively.

The RMSE from the forecasts initialized with the EAKF

analysis fields is less than its variational counterpart in de-

terministic or ensemble forecast mode, although the RMSE

values are not statistically different. It should be noted that

running the forecasts as ensembles produces a smaller RMSE

than a deterministic configuration. This result is in line with

the general knowledge about ensembles from NWP that en-

sembles tend to average out the most uncertain aspects of a

forecast and therefore reduce error.

Similar to the finding with respect to the analysis fields,

the comparison to site AOT from AERONET provides valu-

able information, but does not provide a spatial picture of

the forecast behavior. The same Saharan dust transport case

shown in Fig. 15 is examined in Fig. 16; however, now the

plume is forecasted out to 24 h. These results are initialized

with either the NAVDAS-AOD or the DART-EAKF analy-

sis fields. Results are shown for the four forecast configu-

rations, including deterministic and ensemble forecasts. The

MODIS visible image and MODIS AOT for the dust case is

also included and shows a narrow band of high optical thick-

ness at the leading edge of the dust front. All four configu-

rations predict the dust plume, although the northern portion

of the plume is missing for all cases. The missing portion

of the plume is likely attributed to the model physics since

this is consistent in NAAPS and ENAAPS. Both of the fore-

casts initialized with the 2DVar fields capture the event, but,

like the analysis fields, they do not capture the sharp gradient

as seen in the MODIS image. On the other hand, the fore-
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Figure 15. An example dust transport case off the coast of western Africa (1 August 2013). Analysis increments (posterior AOT− prior AOT)

and posterior AOT (550 nm) are shown for the variational NAVDAS-AOD (first row), EAKF for ENAAPS-DART with source ensemble only

and adaptive inflation (second row), and EAKF for ENAAPS-DART with the combined meteorology and source ensemble and adaptive

inflation (third row). Also shown are MODIS observations in the third column, including a MODIS visible image of the dust event (top), a

plot of assimilated MODIS AOT observations (middle), and a plot of all Terra and Aqua MODIS AOT (550 nm) observations for the event

(bottom).

Figure 16. Example dust transport case off the coast of western Africa, initialized with analysis fields from Fig. 15, and forecasted out to

24 h. AOT (550 nm) results are shown for four different forecast configurations: a deterministic forecast initialized with NAVDAS-AOD fields

(2DVar), a deterministic forecast initialized with DART-EAKF fields (ensemble mean), an ensemble forecast initialized with NAVDAS-AOD

fields, and an ensemble forecast initialized with DART-EAKF fields. A zoomed-in MODIS true-color image of the leading edge of the dust

plume is also shown as well as MODIS AOT (550 nm) observations.

casts initialized with the EAKF fields do a better job captur-

ing the AOT gradient at the leading edge of the dust front.

This demonstrates that the sharp gradient achieved in the en-

semble data assimilation propagates in the forecast. This is

an advantage of using the EAKF initial conditions over the

2DVar initial conditions for the short-term forecast.

4 Conclusions

This study evaluates the performance of an ensemble aerosol

prediction system, ENAAPS-DART, for Navy applications

under several configurations, as well as against the cur-

rent operational system (NAAPS/NAVDAS-AOD). The ma-

jor findings from this work are as follows.
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Having both meteorology ensembles and perturbations to

the aerosol source functions generated the best results. The

use of the meteorology ensemble is essential for capturing

long-range aerosol transport events. This was demonstrated

for dust transport cases off the coast of Africa, as well as at

dust-impacted AERONET sites in Central America and the

United States. The source ensemble is beneficial for captur-

ing spatially large aerosol events, including smoke and dust

cases. This was demonstrated for large burning events over

southern Africa and the North American Boreal region.

The source ensemble can also have a negative impact for

regions with sources that behave independently. This is the

case for many North American boreal fires that are small

and independent. This is also believed to be the case for

pollution-dominated sites in the United States and Europe.

Source ensembles which better represent the statistics for

these independent cases are needed.

An adaptive inflation method from Anderson (2009) was

tested for the first time, to our knowledge, for an aerosol ap-

plication. Based on the results in this work, the adaptive co-

variance inflation is recommended over a spatially and tem-

porally uniform covariance inflation. The adaptive approach

overcomes instability issues that arise due to spatially hetero-

geneous observations with the constant inflation approach,

and it is expected the same finding will apply to other sys-

tems. It is also expected that this finding will apply to data

assimilation for other atmospheric tracers where the obser-

vation density is not spatially uniform.

A reduction in RMSE can be achieved by increasing the

ensemble size from 20 to 80 members. Further reductions

may be achieved with optimization of the 80-member ensem-

ble (i.e., localization).

The evaluation of the ensemble diagnostics for the

ENAAPS-DART optimization highlighted some potential is-

sues with the smoke emissions used in the simulations. It

was found that the ensemble system underrepresents uncer-

tainty for large smoke events as indicated by the total spread

(ensemble spread combined with observational error) being

much less than the RMSE. Likewise, the rank histograms

show an excess at the lower ranks, indicating a positive bias

in smoke aerosol relative to MODIS AOT. These findings

are supported by the behavior of the AI algorithm in smoke-

dominated regions, which indicated a large discrepancy be-

tween the model-predicted and observational distributions.

Additionally, the ensemble spread for smoke aerosol is likely

too small at low AOT values. Tuning of smoke aerosol emis-

sions is needed to address the identified issues.

Positive bias in the eastern United States was also found

with the ensemble system. Further work needs to be con-

ducted to determine how to better capture complicated pol-

lution aerosol sources.

The aerosol analysis fields from the DART-EAKF data as-

similation system and the NAVDAS-AOD 2DVar data as-

similation system have similar RMSE and bias relative to

AERONET sites on a regional basis. This indicates that both

data assimilation systems are able to capture similar aerosol

features. However, spatially, the EAKF does a better job

of capturing sharp gradients, while the 2DVar system has a

smoothing effect. This is a result of the EAKF being able to

spread observational information in a flow-dependent man-

ner.

The ENAAPS-DART system and the NAAPS/NAVDAS-

AOD system also had similar RMSE statistics relative to

AERONET AOT in the 24 h forecast. However, the sharp-

ness of features is maintained in the 24 h forecast with the

ENAAPS-DART system, as demonstrated for the Saharan

dust transport case. This is an advantage over the current op-

erational system.

An additional advantage of the ensemble configuration

is that uncertainty information in the forecast can be ex-

tracted at a given time using the ensemble members. This

is an important reason why many NWP forecasting cen-

ters have implemented ensemble prediction systems and

aerosol forecasting should consider doing the same. With

some further tuning for the ENAAPS-DART system based

on the findings from this study, additional advantages over

the NAAPS/NAVDAS-AOD system can likely be attained.

The ENAAPS-DART system outlined in this work will

serve as the base ensemble aerosol prediction system for

Navy applications and will serve as a test bed for assimilation

of additional, spatially limited observations, such as ground-

based and lidar observations. ENAAPS-DART will also be

used to evaluate aerosol forecast uncertainty, an additional

advantage over the current deterministic system. Means for

evaluating ensemble system performance were outlined in

this work and may provide a useful guideline for future en-

semble system developers, particularly with aerosol or other

atmospheric tracers. Based on the results from this study,

work is underway to understand how additional performance

gains can be made in the ENAAPS-DART system through

source tuning, increases in the number of ensemble mem-

bers, and increases in model resolution.
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