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Abstract: 15 

An ensemble-based forecast and data assimilation system has been developed for use in Navy 16 
aerosol forecasting.  The system makes use of an ensemble of the Navy Aerosol Analysis 17 
Prediction System (ENAAPS) at 1x1 degree, combined with an Ensemble Adjustment Kalman 18 
Filter from NCAR’s Data Assimilation Research Testbed (DART).  The base ENAAPS-DART 19 
system discussed in this work utilizes the Navy Operational Global Analysis Prediction System  20 
(NOGAPS) meteorological ensemble to drive offline NAAPS simulations coupled with the 21 
DART Ensemble Kalman Filter architecture to assimilate bias-corrected MODIS Aerosol Optical 22 
Thickness (AOT) retrievals.  This work outlines the optimization of the 20-member ensemble 23 
system, including consideration of meteorology and source-perturbed ensemble members as well 24 
as covariance inflation.  Additional tests with 80 meteorological and source members were also 25 
performed. An important finding of this work is that an adaptive covariance inflation method, 26 
which has not been previously tested for aerosol applications, was found to perform better than a 27 
temporally and spatially constant covariance inflation.  Problems were identified with the 28 
constant inflation in regions with limited observational coverage.  The second major finding of 29 
this work is that combined meteorology and aerosol source ensembles are superior to either in 30 
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isolation and that both are necessary to produce a robust system with sufficient spread in the 1 
ensemble members as well as realistic correlation fields for spreading observational information.   2 
The inclusion of aerosol source ensembles improves correlation fields for large aerosol source 3 
regions such as smoke and dust in Africa, by statistically separating freshly emitted from 4 
transported aerosol species. However, the source ensembles have limited efficacy during long 5 
range transport.  Conversely, the meteorological ensemble produces generates sufficient spread 6 
at the synoptic scale to enable observational impact through the ensemble data assimilation.    7 
The optimized ensemble system was compared to the Navy’s current operational aerosol 8 
forecasting system which makes use of NAVDAS-AOD (NRL Atmospheric Variational Data 9 
Assimilation System for aerosol optical depth), a 2D variational data assimilation system.  10 
Overall, the two systems had statistically insignificant differences in RMSE, bias and correlation, 11 
relative to AERONET observed AOT.  However, the ensemble system is clearly able to better 12 
capture sharp gradients in aerosol features compared to the variational 2DVar system, which has 13 
a tendency to smooth out aerosol events. Such skill is not easily observable in bulk metrics.  14 
Further, the ENAAPS-DART system will allow for new avenues of model development, such as 15 
more efficient lidar and surface station assimilation as well as adaptive source functions.   At this 16 
early stage of development, the parity with the current variational system is encouraging. 17 

 18 

1  Introduction 19 

In support of monitoring aerosol impacts on air quality and climate, many of the world’s major 20 
weather and climate centers have engaged in the rapid development of operational aerosol data 21 
assimilation and forecasting capabilities (Tanaka et al. 2003; Zhang et al. 2008; Benedetti et al. 22 
2009; Colarco et al. 2010; Sekiyama et al. 2010; Pérez et al., 2011).  Operational forecasting 23 
centers are also making use of aerosol predictions to correct radiances for assimilation in 24 
numerical weather prediction (NWP) systems (e.g., Merchant et al., 2006; Wang and Niu, 2013; 25 
Bogdanoff et al., 2015), further motivating the development of aerosol forecasting and 26 
assimilation systems.  As aerosol forecasting capabilities are further developed, many lessons 27 
can be learned from the NWP community.  For example, forecast skill can be enhanced by 28 
moving from deterministic to ensemble-based simulations (Kalnay 2003).  By using the 29 
ensemble average forecast, the most uncertain aspects of the forecast tend to be minimized, 30 
generally leading to an increase in skill (Kalnay 2003). Additionally, ensemble systems provide a 31 
means for quantifying forecast uncertainty.  Finally, ensemble systems provide an opportunity to 32 
apply Ensemble Kalman Filter (EnKF) data assimilation technologies which are relatively easy 33 
to implement and which allow for flow-dependent corrections to the predicted state fields 34 
(Evensen, 1994; Houtekamer and Mitchell, 1998).  As a result, ensemble-based forecasts are 35 
used by nearly all the major operational weather centers (Buizza et al. 2005).  The successful use 36 
of ensembles in the NWP community (Houtekamer et al., 2005, Whitaker et al.  2008, Szunyogh 37 
et al. 2008, Bowler et al. 2008, Miyoshi et al. 2010) has led to increased interest in the use of 38 
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both single and multi-model ensembles for aerosol forecasting systems (Sekiyama et al.,2010; 1 
Sessions et al. 2015). 2 
 3 
Current operational aerosol forecasts for the United States Navy are made by the Fleet Numerical 4 
Meteorological and Oceanography Center (FNMOC) and use the deterministic Navy Aerosol 5 
Analysis Prediction System (NAAPS, Christensen et al. 1997; Witek et al. 2007; Reid et al.  6 
2009) combined with the Navy Variational Data Assimilation System for Aerosol Optical Depth 7 
(NAVDAS-AOD) (Zhang et al. 2008; 2011).  NAAPS is an offline aerosol model driven by 8 
Navy global meteorological models; formerly the Navy Operational Global Analysis Prediction 9 
System- NOGAPS (Hogan and Rosmand, 1991) and currently the Navy Global Environmental 10 
Model NAVGEM (Hogan et al., 2014).  In order to increase understanding As an initial 11 
exploration of aerosol forecast uncertainty and aerosol forecastingits dependencies on underlying 12 
meteorology, a 1 degree resolution, 20- member ensemble version of NAAPS (ENAAPS) driven 13 
by the NOGAPS or NAVGEM meteorology ensemble was created.  Forecasts using ENAAPS were 14 
initially run off of the analysis fields from the NAVDAS-AOD data assimilation system.   Encouraged by 15 
successes and what can be learned inusing aerosol EnKF data assimilation within an NWP 16 
framework (e.g., Sekiyama et al., 2010; Schutgens et al., 2010a,b ; Pagowski and Grell, 2012; 17 
Khade et al., 2013), here we also investigate the use of ENAAPS for operational aerosol 18 
forecasting ensemble forecasting system for operational aerosol data assimilation purposes by 19 
replacing the NAVDAS-AOD data assimilation system with the NCAR Data Assimilation 20 
Research Testbed (DART) implementation of an EnKF. This system is referred to as the 21 
ENAAPS-DART system.  In this paper, we describe the implementation of DART within the 22 
ENAAPS framework and document the initial tuning and evaluation using the operational 2D 23 
VAR system as a control for 2 month and 6 month simulation periods in 2013.  In Section 2, we 24 
describe the model, the numerical experiments conducted, and the evaluation method.  In Section 25 
3, we describe results for the 2 month tuning period (six week valid simulation) followed by a 6 26 
month run for more robust comparison of the optimized system to the current NAVDAS-AOD 27 
control.  In Section 4, we discuss the nature of the outcomes, and the positive and negative 28 
aspects of adopting an ensemble data assimilation system.  We conclude with key points and 29 
lessons learned from theis exercise experiments conducted. 30 

 31 

2 Model and numerical experiment  32 

2.1 NAAPS and ENAAPS 33 

NAAPS is a global offline aerosol mass transport model based on the Danish Eulerian 34 
Hemispheric Model (Christensen et al. 1997) that produces deterministic 6 day forecasts of a 35 
combined anthropogenic and biogenic fine, smoke, sea salt, and dust aerosol on 25 vertical levels 36 
at 1/3 degree every six hours. While operational runs are generated at FNMOC, quasi-37 
operational offline NAAPS runs are made in parallel at NRL with the latest model updates.  A 38 
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one degree reanalysis version of NAAPS for retrospective studies is also frequently employed 1 
and used as a baseline (Lynch et al. 2015).    NAAPS and its reanalyses have historically been 2 
driven by operational meteorological fields produced byfrom the U.S. Navy Operational Global 3 
Analysis and Prediction System (NOGAPS; Hogan et al., 1991) with a late 2013 transition to the 4 
Navy Global Environment Model (NAVGEM; Hogan et al., 2014).  Because this study occurs 5 
during the transition period where many changes to NAVGEM were taking place, here we solely 6 
utilize NOGAPS data fields.   A thorough description of basic NAAPS characteristics can be 7 
found in Witek et al., (2007) and Reid et al., (2009), but a brief synopsis is provided here, noting 8 
including a few key differences between the NAAPS implementation used in this work and the 9 
literaturea few key differences in the NAAPS implementation. Smoke emissions from biomass 10 
burning are derived from satellite-based thermal anomaly data used to construct smoke source 11 
functions via the Fire Locating and Modeling of burning Emissions-FLAMBE database (Reid et 12 
al. 2009; Hyer et al. 2013). However, for this global reanalysissimulations conducted in this 13 
work, a MODIS only version of FLAMBE that derives smoke emissions from MODIS thermal 14 
anomaly data only is used, consistent with the NAAPS decadal reanalysis (Lynch et al. 2015).  15 
Dust is emitted dynamically as a function of friction velocity, surface wetness, and surface 16 
erodibility using NAAPS standard friction velocity to the fourth power method, but with the 17 
erodibility map of Ginoux et al. 2001.  Likewise, theThe sea salt aerosol source is dynamic in 18 
nature with emissions as a function of surface wind speed as described in (Witek et al. 2007).  A 19 
combined anthropogenic and biogenic fine aerosol species (ABF) is represented in the 20 
modelNAAPS which accounts for a combined sulfate, primary organic aerosol and a first order 21 
approximation of secondary organic aerosol.  Anthropogenic emissions come from the ECMWF 22 
MACC inventory (Lamarque et al. 2010).  The Navy’s current operational aerosol forecasting 23 
system uses NAAPS coupled to involves a 2-dimensional variational (2dVAR) data assimilation 24 
system (NAVDAS-AOD, Zhang et al. 2008; 2014) which for incorporates assimilating AOT 25 
retrievals (Zhang et al. 2005; Zhang and Reid, 2006, 2009; Hyer et al. 2011; Shi et al. 2011) to 26 
produce generate forecast initial conditions every 6 hours.  NAAPS with the NAVDAS-AOD 27 
data assimilation has been fully operational at FNMOC since 2010.  The operational system 28 
serves as a member of the International Cooperative for Aerosol Prediction (ICAP) multi-model 29 
ensemble (Sessions et al. 2015) and is the baseline for comparison in this work. 30 

With the exception of data assimilation (Section 2.2), the architecture of ENAAPS-DART is 31 
very similar to the deterministic version of NAAPS/NAVDAS-AOD. The model physical 32 
parameterizations are the same. However, instead of deterministic NOGAPS meteorology fields, 33 
NOGAPS ensemble meteorology fields are used.  The NOGAPS ensemble meteorology fields 34 
(20 member) are generated operationally at FNMOC at 0.5 degree resolution out to six days.  35 
These fields are created by perturbing initial conditions (wind, temperature, specific humidity, 36 
and surface pressure) using an ensemble transform method as discussed in McLay et al. (2010).   37 
Twenty NOGAPS members were produced operationally at FNMOC at half degree resolution 38 
out to six days.   For ENAAPS, all twenty NOGAPS meteorology ensemble members are used 39 
for driving the model simulations, truncated to 1 degree to match the deterministic NAAPS 40 
reanalysis.  The NOGAPS ensemble members are produced using perturbed initial conditions 41 
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based on the local ensemble transform methodology of McLay et al. (2010).  As discussed in 1 
Section 2.3, both meteorology and source ensembles are tested in this work.   2 

 3 

2.2 Ensemble data assimilation and DART 4 

A core rationale for developing ENAAPS was to experiment with ensemble data assimilation 5 
techniques which have been successfullyl in the operational arenaimplemented at operational 6 
centers on an experimental basis (e.g., Sekiyama et al. 2010).  For aerosol applications, a number 7 
of data assimilation methodologies have been tested both regionally and globally and shown to 8 
improve model performance (Collins et al.  2001; Yu et al 2003; Generoso et al. 2007; Adhikary 9 
et al. 2008; Zhang et al. 2008; Benedetti et al. 2009; Schutgens et al. 2010a,b, Zhang et al. 2011, 10 
Schwartz et al. 2012, Rubin et al. 2014, Sekiyama et al. 2010).  While the premise of these 11 
different approaches is the same (ie. combine the model prediction and observations in a way 12 
that minimizes the analysis error), the representation of the model forecast error differs.  The 13 
variational approach, which is used in the current NAVDAS-AOD system, uses a static model 14 
forecast error.  requires a priori assumptions about the model forecast error.  On the other hand, 15 
the EnKF is based on the use of an ensemble of model forecasts to define the error where each 16 
forecast is considered to be a random draw from the probability distribution of the model’s state 17 
given all previously used observations.  The use of ensembles to sample the error allows the 18 
error to evolve non-linearly in time, with the flow-dependent covariances between different state 19 
components determining how observations impact the ensemble estimate. This is opposed to 20 
univariate NAVDAS-AOD assimilation which uses a static horizontal correlation model with an 21 
assumed lengthscale of 200km around an observation (Zhang et al. 2008).  EnKF representation 22 
of flow dependencies and the model error should, in theory, provide a more accurate adjustment 23 
of forecasts to new observations, resulting in a reduced error in the analysis state (Hamill and 24 
Whitaker, 2005).  The focus in this work is to put an EnKF assimilation system into place to take 25 
advantage of ENAAPS and the ability of the EnKF to correct aerosol fields with flow-dependent 26 
covariances.  The Ensemble Adjustment Kalman Filter (EAKF) algorithm (Anderson 2001), a 27 
variant of the more traditional EnKF implementation, has been set up with a six hour cycle, with 28 
analyses produced generated at 0000, 0600, 1200, and 1800 UTC each day. 29 

DART has been developed since 2002 at the National Center for Atmospheric Research (NCAR) 30 
and is an open-source community facility for ensemble-based data assimilation research and 31 
development (Anderson et al. 2009a). DART has been successfully applied to a host of 32 
meteorological and atmospheric composition data assimilation problems (e.g., Arellano et al. 33 
2007, Khade et al., 2012, Raeder et al. 2012 , Hacker et al. 2013 and many more) and provides 34 
the option to interface to a number of different filter types, including EAKF, EnKF, kernel and 35 
particle filters. ENAAPS was interfaced with DART to take advantage of its EAKF algorithm 36 
and is further referred to as the ENAAPS-DART system.  ENAAPS passes aerosol mass 37 
concentrations for each species as well as model-predicted AOT to DART every 6 hours for 38 
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assimilation of MODIS AOT retrievals.  The posterior (analysis) aerosol mass concentrations are 1 
then passed back to ENAAPS to initialize the next model prediction cycle.   2 

 3 

2.3 Experimental design 4 

This study was conducted in two phases: a) a two month spin up and simulation period for the 5 
July and August 2013 period to develop and optimize the DART EAKF implementation in 6 
ENAAPS; and b) a six month April through September 2013 run to compare ENAAPS to a 7 
NAAPS baseline.  These experiments are described in detail below.   8 

2.3.1 DART EAKF implementation and optimization 9 

As ensemble data assimilation systems can be sensitive to system design, a number of short 10 
experiments for July through August, 2013 were run with ENAAPS-DART for system 11 
optimization.  This time period is coincident with the peak of the African dust season, significant 12 
pollution events, and continental scale boreal fire outbreaks. The application of ensemble data 13 
assimilation to atmospheric prediction is complicated as the model datasets are large, 14 
multivariate, and multidimensional (Anderson 2007). In atmospheric applications, it is always 15 
the case that the ensemble size is too small, resulting in sampling error and an under-prediction 16 
of the model uncertainty (Anderson and Lei, 2013).  The under-prediction of model uncertainty, 17 
represented as insufficient variance in the ensemble members, can lead to poor performance and, 18 
in some cases, filter divergence in which the observations no longer impact the model state 19 
(Anderson 2007).  Important considerations in the system setup include ensemble size and the 20 
means for generating the ensembles.  Additionally, several tuning techniques have been 21 
developed for alleviating the sampling issue for large models, including covariance inflation for 22 
increasing ensemble spread (Anderson and Anderson 1999, Anderson 2007, Anderson 2009) and 23 
localization for spatially limiting the impact of an observation (Hamill et al. 2001, Houtekamer 24 
and Mitchell, 2001). 25 

The effectiveness of the ensemble data assimilation system is highly dependent on having 26 
sufficient spread in the ensemble members in order for the observations to impact the model 27 
forecast.  The method for generating the ensemble is an important consideration for an optimal 28 
aerosol forecasting system since the ensembles represent the uncertainty in the model forecast.  29 
For aerosol, sources of uncertainty include meteorology, sources, sinks, and any physics that 30 
impact aerosol concentration or intensive properties.  Aerosol source ensembles are first tested 31 
since previous studies have relied on source perturbations alone (Schutgens et al. 2010a,b).  32 
Random perturbations with a 25% uncertainty are applied to the aerosol source functions for 33 
each species (ABF, smoke, sea salt, and dust).  The random perturbation factor for ensemble 34 
member n and aerosol species i (𝑓𝑖,𝑛) is drawn from a normal distribution with a mean of 1 and a 35 
standard deviation of 0.25.  The aerosol source for ensemble member n and species i (𝑆𝑖,𝑛(𝑥,𝑦)) 36 
is described as: 37 



7 
 

𝑆𝑖,𝑛(𝑥, 𝑦) = 𝑓𝑖,𝑛𝑆𝑖(𝑥,𝑦)                                                        (1) 1 

where 𝑆𝑖(𝑥,𝑦) is the initial aerosol source flux for aerosol type i at a given location (𝑥,𝑦).   It 2 
should be noted that 𝑓𝑖,𝑛 is independent of location. Grid by grid perturbations were initially 3 
tested and found to have no impact on ensemble spread, therefore, this method was excluded. 4 
Meteorology ensembles are evaluated in addition to the source draws, using the 20-member 5 
NOGAPS meteorology ensemble.   6 

The application of ensemble data assimilation to atmospheric prediction is complicated as the 7 
model datasets are large, multivariate, and multidimensional (Anderson 2007). In atmospheric 8 
applications, it is always the case that the ensemble size is too small, resulting in sampling error 9 
and an under-prediction of the model uncertainty (Anderson and Lei, 2013).  The under-10 
prediction of model uncertainty, represented as insufficient variance in the ensemble members, 11 
can lead to poor performance and, in some cases, filter divergence in which the observations no 12 
longer impact the model state (Anderson 2007).    Several tuning techniques have been 13 
developed for alleviating the sampling issue for large models, including covariance inflation for 14 
increasing ensemble spread (Anderson and Anderson 1999, Anderson 2007, Anderson 2009b) 15 
and localization for spatially limiting the impact of an observation (Hamill et al. 2001, 16 
Houtekamer and Mitchell, 2001). 17 

A common method in ensemble data assimilation for increasing ensemble spread about the mean 18 
is multiplicative covariance inflation (Anderson 2007, Anderson and Anderson 1999).  In 19 
multiplicative inflation, the difference between the ensemble mean and each ensemble member is 20 
increased, usually in the prior, by a predetermined factor that is greater than 1 (ie. 1.1 produces a 21 
10 percent increase in the difference).  Sekiyama et al. (2010) used a multiplicative inflation 22 
factor of 1.1 for aerosol predictions, while Schutgens et al. (2010b) conducted sensitivity tests on 23 
the inflation factor and used values ranging from 1.03 to 1.30.   These inflation factors are 24 
applied uniformly in both space and time.  An alternative method to a uniform multiplicative 25 
inflation is adaptive covariance inflation (Anderson 2009b) which produces creates temporally 26 
and spatially varying inflation factors.  This approach is based on a Bayesian algorithm that 27 
estimates the inflation with time as part of the state update, using a normally distributed inflation 28 
factor associated with each element of the model state vector.  An initial inflation factor of 1 (ie. 29 
no inflation) was set for all locations and a fixed standard deviation of 0.4 was used.  requires an 30 
additional assimilation step with an inflation factor associated with each element of the model 31 
state vector.  In this work, a uniform multiplicative covariance inflation of 1.1 (ie. 10%) in a 32 
fashion similar to Sekiyama et al. (2010) will be tested against the Anderson (2009b) adaptive 33 
inflation (AI) algorithm. It should be noted that several initial tuning experiments were 34 
conducted with the 20 member ensemble in which a range of constant inflation factors were 35 
tested, in a similar fashion to Schutgens et al. (2010b).  Due to the similarities across the 36 
experiments and the prior use of the 10% inflation in ensemble aerosol assimilation, only the 37 
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10% inflation results are presented to limit the number of experiments.   AI has not been 1 
previously tested for aerosol applications.   2 

In addition to an under-prediction of model uncertainty, sampling errors due to small ensemble 3 
size can lead to spurious correlations in the background error covariance at far distances.  It has 4 
been shown that limiting the distance over which an observation impacts the state variables, or 5 
localizing, is effective in reducing the effects of these noisy correlations.  For aerosol 6 
applications, state-space localization using the Gaspari and Cohn function (Gaspari and Cohn 7 
1999) and observation-space localization in the Local Ensemble Transform Kalman Filter 8 
(LETKF) using patch size have been demonstrated (Sekiyama et al. 2010, Schutgens et al. 9 
2010a,b).  A Gaspari and Cohn (1999) localization function is used in this work where the 10 
covariance magnitude decreases to zero at two times the selected cutoff length scale from the 11 
observation location.  Several length scales were tested in initial tuning runs of the 20 member 12 
ensemble and a length scale of 1000km is selected for use in this work.  Since the findings from 13 
the localization tuning runs are consistent with previously mentioned studies, the impact of the 14 
localization lengthscale on data assimilation performance is not a focus of this work.   15 

The effectiveness of the ensemble data assimilation system is highly dependent on having 16 
sufficient spread in the ensemble members in order for the observations to impact the model 17 
forecast.  While tuning methods such as covariance inflation and localization have been shown to 18 
be important for overcoming sampling error, the method for generating the ensembles 19 
themselves is an important consideration for an optimal aerosol forecasting system.  The 20 
ensembles represent the uncertainty in the model forecast.  For aerosol, sources of uncertainty 21 
include meteorology, sources, sinks, and any physics that impact aerosol concentration or 22 
intensive properties.  Aerosol source ensembles are first tested since previous studies have relied 23 
on source perturbations alone (Schutgens et al. 2010a,b).  Random perturbations with a 25% 24 
uncertainty are applied to the aerosol source functions for each species (ABF, smoke, sea salt, 25 
and dust).  The random perturbation factor for ensemble member n and aerosol species i (𝑓𝑖,𝑛) is 26 
drawn from a normal distribution with a mean of 1 and a standard deviation of 0.25.  The aerosol 27 
source for ensemble member n and species i (𝑆𝑖,𝑛(𝑥,𝑦)) is described as: 28 

𝑆𝑖,𝑛(𝑥, 𝑦) = 𝑓𝑖,𝑛𝑆𝑖(𝑥,𝑦)                                                        (1) 29 

where 𝑆𝑖(𝑥,𝑦) is the initial aerosol source flux for aerosol type i at a given location (𝑥,𝑦).   It 30 
should be noted that 𝑓𝑖,𝑛 is independent of location. Grid by grid perturbations were initially 31 
tested and found to have no impact on ensemble spread. Meteorology ensembles are evaluated in 32 
addition to the source draws, using the 20-member NOGAPS ensemble.  The number of 33 
ensemble members is held fixed for all experiments (20 members) with the exception of a single 34 
80-member simulation tested.  It should be noted that the single 80-member simulation uses the 35 
same localization lengthscale as the 20-member ensemble. Optimization of the 80-member 36 
ensemble was not conducted due to resource limitations and will be evaluated in future work.   37 
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The initial conditions for the ENAAPS-DART experiments are generated using a 24 hour 1 
ENAAPS forecast initialized with NAAPS/NAVDAS-AOD analysis fields, using the ensemble 2 
meteorology to allow some initial ensemble spread to develop.   Subsequent forecast/assimilation 3 
cycles use the DART/EAKF data assimilation with the 6 hour cycling run out for the July and 4 
August, 2013 timeframe.  The performance of the 2-month experimental simulations is evaluated 5 
in several ways.  The first method is through examination of the prior 6-hour forecast against 6 
MODIS AOT observations, before assimilation occurs, using diagnostics such as RMSE, bias, 7 
ensemble and total spread, number of assimilated observations, and rank histograms.  Rank 8 
histograms are generated by repeatedly tallying the rank of the observation relative to values 9 
from the ensemble sorted from lowest to highest and can be used for diagnosing errors in the 10 
mean and spread of the ensemble forecast (Hamill 2001). .In order to account for the effect of 11 
observation error in the rank histograms, the forecast values are randomly perturbed for each 12 
ensemble members by the observation error (Anderson 1996, Hamill, 2001, Saetra et al. 2004).  13 
The focus of this observation-space evaluation relative to MODIS AOT is on the prior since this 14 
is a stronger indicator of how the assimilation is impacting the model predictionsforecast. 15 
Benchmarks of a good ensemble system include stability in ensemble spread, an RMSE that is 16 
small and comparable to the total spread, and rank histograms that indicate an ensemble 17 
distribution that is consistent with the observations (Anderson 1996).  Since aerosol composition 18 
and characteristics are variable depending on the type of aerosol sources and the location-19 
dependent processes that impact transport, transformation, and lifetime, it is important to 20 
evaluate diagnosticsthe diagnostics are evaluated regionally.  The experimental 6-hour AOT 21 
forecasts are evaluated over 13 15 land regions as indicated in Figure 1 as well as six ocean 22 
regions, including the northern and southern hemisphere Pacific and Atlantic Oceans, the Indian 23 
and the Southern Ocean.  Additionally, it is important to evaluate the posterior fields since these 24 
serve as forecast initial conditions.  TIn addition, the assimilation posterior fields are examined 25 
relative to ground-based 550 nm AOT fields based on NASA AErosol RObotic NETwork 26 
(AERONET) observations (Holben et al. 1998; O’Neill et al., 2003) since these observations are 27 
not assimilated and therefore, can be used as an independent evaluation of the data assimilation 28 
performanceanalysis fields. The 550nm AERONET AOT fields used for validation are 29 
interpolated based on AOT values from the 500 and 675nm spectral channels, and are derived 30 
using a method described in Zhang and Reid, 2006.  A total of five short ensemble experiments 31 
for optimization are performed.  These experiments are summarized in Table 1 and account for 32 
the method used for generating the ensemble members, number of ensemble members, and 33 
different covariance inflation methods.  Using diagnostics, an ENAAPS-DART system 34 
configuration is selected and compared to the operational NAAPS/NAVDAS-AOD system.   35 

2.3.2 Baseline evaluation of EAKF versus variational data assimilation 36 

Once a good configuration was identified, the ENAAPS-DART system was run out for a six 37 
month (April 1, 2013 to September 31, 2013) period with 6 hour cycling.  The analysis fields 38 
(i.e. data assimilation posterior) from the six month ENAAPS-DART simulation are compared to 39 
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ground-based AERONET AOT observations as an independent evaluation.  Analysis fields 1 
produced  from the NAAPS/NAVDAS-AOD system are similarly compared to AERONET AOT 2 
for the same six month time period.  The NAAPS/NAVDAS-AOD simulations are run with a 1 3 
degree resolution and incorporate assimilate the same MODIS AOT observational dataset with 4 
the same observational errors (Zhang et al. 2005; Zhang and Reid, 2006, 2009; Hyer et al. 2011; 5 
Shi et al. 2011)  for consistency.   6 

The impact of the analysis fields produced generated from the EAKF and 2DVvar system on 24 7 
hour forecasts are also examined.  Due to inconsistencies in the NOGAPS deterministic and 8 
ensemble meteorology, including differences in precipitation and wind speed, the 24 hour 9 
forecast comparisons are conducted using the same meteorology.  The deterministic 24-hour 10 
forecast is initialized with the NAVDAS-AOD aerosol fields or with the ensemble mean aerosol 11 
fields from the ENAAPS-DART system (DART deterministic).  The ensemble 24-hour forecast 12 
is initialized with the same NAVDAS-AOD aerosol fields for all 20 ensemble members 13 
(ENAAPS-NAV) or with the ENAAPS-DART initial conditions.   14 

3  Results 15 

The results from this study are presented in three sections.  First, the aerosol environment for the 16 
experimental time period is examined.  This is followed by a section on the EAKF optimization 17 
for ENAAPS-DART over the six week mid-July through August, time period.  Finally, an 18 
evaluation of the ENAAPS-DART system relative to the current operational system, 19 
NAAPS/NAVDAS-AOD, over the April through September time period is conducted.    20 

3.1 Synopsis of Global Aerosol Features  21 

Average ENAAPS-DART AOT fields (Met+Source, adaptive) for the Boreal Spring (April, 22 
May) and Boreal Summer (June-September), 2013 are shown in Figure 2.  Seasonally-averaged 23 
AOT for ABF, smoke, dust, and seasalt aerosol are also presented.  Variability in AOT is related 24 
to major monsoonal patterns and other climate shifts associated with the spring and summer time 25 
periods.  Aerosol in Asia is heavily regulated by the monsoon with the pre-monsoon dry season 26 
exhibiting a peak in aerosol and an observed boreal summertime decrease due to removal by 27 
heavy precipitation.  Smoke aerosol varies by region with the observed peaks coinciding with the 28 
regional dry seasons.   Some key aerosol features are discussed for the boreal spring and the 29 
boreal summer seasons.  30 

3.1.1 Boreal spring aerosol features 31 

AOT attributed to smoke peaks in the Yucatan Peninsula in April and May, consistent with 32 
previous studies (Reid et al. 2004, Wang et al. 2006) and extends into the northern region of 33 
South America. During peak burning, smoke transport from these Central American fires 34 
impacted Texas and the Southeast United States. Biomass burning is also present in Asia during 35 
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the pre-monsoon months of April and early May and is concentrated in Peninsular Southeast 1 
Asia, including Thailand and Cambodia. 2 

Dust aerosol in Asia, originating from the Gobi and Taklimakan Deserts, peaks in spring due to 3 
intense frontal activity that favors lofting and contributes to the observed long-range dust 4 
transport that impacts North America in April.  India is found to have a greater dust loading in 5 
the northern/northwest part of the country, originating from the Thar Desert in northwestern 6 
India. Saharan dust, although not in its peak during the April and May, dominates the AOT 7 
signal over North Africa with some outflow over the Atlantic Ocean.  Under conditions of 8 
southwesterly flow, North African dust is transported into Europe and the Mediterranean region. 9 
Dust AOT in the Arabian Peninsula is slightly higher in the northern/northeast part of the 10 
peninsula.  This pattern is consistent with climatology which is attributed to a dominant high 11 
pressure system that produces transport from the south/west to the north/east (Shalaby et al. 12 
2015).   13 

The ABF combined aerosol, including both anthropogenic and biogenic species, is prevalent 14 
throughout the Northern Hemisphere.  Peaks in ABF aerosol are observed over Asia in the boreal 15 
spring with plumes extending out over the Pacific and Indian Oceans.  ABF is also observed over 16 
South America and is attributed to biogenic aerosol.   17 

3.1.1 Boreal summer aerosol features 18 

Although fires are present throughout the summer months, the largest Boreal fires occur in 19 
August in Siberia, with smoke aerosol transport from these events reaching western North 20 
America.  The fires are attributed to a persistent high-pressure weather pattern in the Russian 21 
Arctic that resulted in unusually high temperatures and long periods of stable air.  Wildfires are 22 
prevalent in the Western United States in July and August, with transport from these events 23 
impacting the Eastern US.  This includes the California Rim Fire, one of the largest wildfires in 24 
California’s history, which occurred during August 2013 (Peterson et al. 2015).  Burning events 25 
also occur in the Amazonian basin in South America.  South Africa is characterized by large, 26 
persistent biomass burning events that peak in June through September with smoke transport 27 
over the South Atlantic Ocean.   In the boreal summer, biomass burning events in Southeast Asia 28 
move further south and are concentrated in Borneo, Sumatra, and the Malaysian Peninsula.   29 

Dust AOT values peak in the summer months over the North Africa, Sahara desert region, 30 
consistent with the literature (Prospero et al. 2013).  The dust from Africa is transported over the 31 
Atlantic Ocean and was found to impact Central America and parts of the Southeast United 32 
States, in June, July and August.  This is consistent with satellite measurements (Hsu et al. 2012) 33 
as well as aerosol records accumulated at Barbados (Prospero and Lamb, 2003), Puerto Rico 34 
(Reid et al. 2003), and Miami (Prospero, 1999), showing dust transport from the coast of Africa 35 
into the Caribbean Basin.  Some transport of Saharan dust into Europe and the Mediterranean 36 
region is also observed in the summer months.  Over the Arabian Peninsula, dust AOT peaks in 37 



12 
 

the summer months, particularly in the Southern region, extending over the Arabian Sea.  The 1 
dust loading in India is concentrated in the south/southwest, as a result of transport from the 2 
Arabian Peninsula.  In East Asia, dust AOT is limited to northern China and Mongolia.   3 

Peak build-up of anthropogenic and biogenic fine aerosol in the Eastern US occurs during the 4 
summer months, consistent with the literature (Hsu et al. 2012).  ABF buildup occurs over 5 
Europe during the summer months as well and is prevalent throughout Asia.     6 

3.2 Ensemble data assimilation optimization  7 

The EAKF optimization experiments focus on an evaluation of covariance inflation methods as 8 
well as an evaluation of the method for generating the ensemble (Table 1).  Monthly-averaged 9 
posterior AOT fields for the EAKF optimization experiments, as well as the average difference 10 
in the posterior AOT relative to the combined meteorology and source ensemble experiment 11 
(Met+Source, adaptive), are presented in Figure 3.  Some key differences are that the 12 
experiments without ensemble meteorology forcing (Source, AI; Source, Const) tend to produce 13 
a smaller AOT, especially over the Siberian fire region and dust impacted regions, including 14 
North Africa, parts of the Arabian Peninsula, India, and East Asia.  At the same time, higher 15 
AOT values are produced generated near select source regions such as smoke in South Africa 16 
and dust in parts of Africa, Arabian Peninsula, and Asia.  With the meteorology ensemble (Met, 17 
AI), higher AOT values are predicted relative to the combined ensemble, especially in regions 18 
impacted by fires.   19 

The following sections look in detail at the performance across the ENAAPS-DART 20 
experiments. In addition to bulk statistics, representative case studies pulled from Section 3.1 are 21 
used to further understand the impact of the configurations. 22 

3.2.1 Evaluation of covariance inflation methods  23 

Two covariance inflation methodologies, the constant 10% multiplicative inflation and the 24 
adaptive inflation, were tested with the source only ensemble simulation. Additional 10% 25 
constant covariance inflation experiments were not conducted since the results from the source 26 
only experiments clearly demonstrated the advantage of the AI methodology.  The advantage of 27 
the adaptive inflation over the constant covariance inflation will be discussed below.  The AI 28 
method itself requires some tuning to producecreate a stable system. As previously discussed, 29 
large persistent Siberian fires produced generated high smoke levels in the Eurasian Boreal 30 
region in August, 2013.   This region provided particular trouble for adaptive inflation, which 31 
under several configurations resulted in a blow -up of the inflation factor.  The inflation factor 32 
blow up indicates that the discrepancy between the prior and observational distributions 33 
increased over time, producing unrealistic AOT values and aerosol mass concentrations, 34 
eventually leading the model to crash.  This type of behavior is indicative of model shortcomings 35 
related to smoke aerosol.  An important tuning parameter for the adaptive inflation algorithm is 36 
the inflation factor standard deviation (Anderson 2009b).  The selected standard deviation affects 37 
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how quickly the inflation factor changes, especially in places like Siberia where the observations 1 
and prior ensemble are inconsistent.  Adaptive inflation was tested with inflation factor standard 2 
deviations of 0.2, 0.4, and 0.6, with a selected value of 0.4.  Other means were used to prevent 3 
the inflation factor from growing too large, including an applied maximum inflation factor of 4 
1.5, preventing the inflation from growing beyond 50%.   Additionally, a spatially uniform 5 
damping factor of 0.9 is applied to the prior inflation factors before each assimilation cycle.  In 6 
the this implementation of the adaptive inflation algorithm, the prior estimates of the inflation 7 
factor are assumed to be equal to the posteriors from the previous cycle, multiplied by a 0.9 8 
damping factor.  The damping factor, therefore, serves as the time variation model for the 9 
inflation.  With the 0.9 damping factor, the prior inflation is assumed to be 90% of the posterior.   10 
The system was found to be stable even under the extreme burning conditions in Siberia with the 11 
standard deviation of 0.4, maximum inflation of 1.5, and a damping factor of 0.9.  Results are 12 
shown for this stable AI configuration.   13 

While the 10% constant covariance inflation and AI produce have similar results in well-14 
observed regions, issues occur with the constant covariance inflation where there is limited 15 
observational coverage.  For the experimental time period, the observation density for 16 
assimilated MODIS AOT is presented in Figure 4(e).  Since the assimilated observations are 17 
heavily bias-corrected and cloud-screened, there are spatial gaps in the observational coverage, 18 
leaving many ocean and coastal regions with little observational constraint.  If the observation 19 
density is compared to the prior ensemble spread, represented as the normalized standard 20 
deviation of the ensemble AOT normalized by the mean, at the end of the constant inflation 21 
experiment (Figure 4a), it is apparent that large spread develops where there is limited 22 
observational information, including high latitudes and spots over the Pacific Ocean.  The 23 
ensemble spread at the end of the constant inflation experiment is much greater than that 24 
produced from AI in the other source only ensemble experiment (Figure 4b).  Figure 4 provides a 25 
sense of what the ensemble spread looks like spatially throughout the globe.  The change in 26 
ensemble spread is also examined over time for a number of regions (Figure 5).    For most of the 27 
regions shown, the ensemble spread as a function of time is approximately the same for the 28 
source ensemble experiments with constant and adaptive inflation (Source, const and Source, 29 
adaptive).  On the other hand, a difference is observed between the two experiments for the 30 
Southern Hemisphere Pacific Ocean with a steady growth in spread found for the constant 31 
inflation (Source, const) and a stable spread for the adaptive inflation configuration (Source, 32 
adaptive).  The Southern Hemisphere Pacific Ocean has very little observational coverage 33 
compared to the other regions shown in Figure 5.    The growth in spread in the Southern Pacific 34 
Ocean for the constant inflation experiment is a result of having continuous inflation with no 35 
observations to bring the ensemble back to reality.    This demonstrated growth in ensemble 36 
spread was also found across initial tuning experiments in which a range of constant inflation 37 
factors were tested (1.03-1.5).  The only difference was the timescale over which the spread 38 
developed in under-observed regions.  The average inflation factor for the source only adaptive 39 
inflation experiments is shown in Figure 4f.  The spatial pattern of the inflation factor follows the 40 
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observation density spatial pattern with almost no inflation in the Pacific and Southern Ocean 1 
where limited observations are available.  Although spatially and temporally constant covariance 2 
inflation has been the chosen method for aerosol applications in the past, it is not recommended 3 
since aerosol observations are spatially heterogeneous. On the other hand, adaptive inflation 4 
increases ensemble spread where there is observational information available, producing 5 
stability, a desirable characteristic for an ensemble system. These findings are consistent with 6 
idealized experiments and NWP applications of ensemble systems where a temporally and 7 
spatially varying inflation is recommended over a constant inflation approach (Anderson 2009b, 8 
Li et al. 2009, Miyoshi et al. 2011).   9 

3.2 Evaluation of ensemble generation 10 

In addition to evaluating the impact of the covariance inflation method, the impact of the 11 
ensemble generation approach is examined with a source-only, meteorology-only, and a 12 
combined meteorology and source ensemble experiment.  One impact of using a the source-only 13 
ensemble is that the ensemble itself has less spread (i.e. smaller standard deviation in ensemble 14 
AOT).  The spatial differences between the experiment ensemble spreads are demonstrated in 15 
Figure 4a through d, although these differences will vary with time.  When comparing the 16 
adaptive inflation experiments, it is clear that including the meteorology ensemble increases the 17 
spread globally (Figure 4b through d).  This is especially true over the dusty Sahara and the 18 
entire Arabian Peninsula, where the standard deviation in AOT is on the order of 1 to 15 percent 19 
(Figure 4b) compared to the 5 to 50 percent range seen with the inclusion of the meteorology 20 
ensemble (Figure 4c,d).  In particular, a large increase in spread is found at dust source regions.  21 
For example, the spread increases from approximately 20 to 50 percent in the Northern Arabian 22 
Peninsula.  As discussed in Section 3.1, summertime dust aerosol in the Arabian Peninsula 23 
comes from the northern region and is transported south.  Similar increases are observed in 24 
Northern Africa which coincide with large dust source regions, such as the Bodele depression. 25 
Since dust emissions are dynamically driven, the inclusion of the meteorology ensemble, either 26 
by itself or with the source ensemble, greatly increases the spread in dust aerosol.  Likewise, the 27 
meteorology ensemble increases spread for sea salt aerosol, which is also dynamically driven, 28 
over the Southern Ocean for example.   29 

Whether the ensemble includes only the NOGAPS meteorology members or includes both the 30 
meteorology and source members, the ensemble spread is quite comparable, both spatially and 31 
temporally (Figure 4, Figure 5).  The meteorology ensemble appears to be the main driver of 32 
ensemble spread when included with a 25% source-perturbed ensemble.  The adaptive inflation 33 
compensates for differences in spread that result from including the source ensemble with the 34 
meteorology.  For example, in the Northwest United States, an inflation factor in the range of 35 
1.25 to 1.3 is applied with the combined meteorology and source ensemble.  However, with the 36 
meteorology only ensemble, the inflation factor is greater, in the range of 1.3-1.4 (Figure 4g,h). 37 
Occasionally, a larger inflation factor in the meteorology only ensemble experiment produces 38 
results in an ensemble spread that is greater than the spread in the combined ensemble, for 39 
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example in the Eastern US and the Eurasian Boreal region in August.  Additional diagnostics are 1 
needed to understand how well the ensemble spread represents actual uncertainty.  It should be 2 
noted that the ensemble spread stabilizes very quickly for the AI experiments, reflected by a 3 
stable baseline ensemble spread (Figure 5).  This result indicates that only a short spin-up time is 4 
needed for these simulations. 5 

A good means for determining how well the ensemble system represents uncertainty is a 6 
comparison of the prior total spread,  (the square root of the sum of the ensemble variance and 7 
the observational error variance), in AOT to the prior RMSE.  The RMSE is calculated against 8 
the MODIS AOT observations, prior to assimilation.   The total spread and the RMSE should 9 
have a ratio close to one if the ensemble is providing a good representation of model uncertainty.  10 
If the ratio is greater than one, the total spread is greater than the error and the uncertainty is 11 
overrepresented.  For a ratio less than one, the uncertainty is being underrepresented.  The RMSE 12 
of the 6 hour forecast relative to MODIS AOT and the average ratio between the total spread and 13 
the RMSE for the four experiments are presented in Table 2.  The results are shown on a global 14 
and regional basis, including over-land and over-ocean regions.    Globally, the experimental 15 
configuration with the smallest RMSE and a ratio closest to one is the combined meteorology 16 
and source ensemble experiment with adaptive inflation (Met+Source, AI).  Performance varies 17 
by region for the different ENAAPS-DART configurations.  The combined meteorology and 18 
source configuration (Met+Source,AI) has the smallest RMSE with the exception of East Asia, 19 
the Southern Hemisphere Atlantic and the Southern Ocean.  In these identified regions, the 20 
source only configuration has a slightly smaller RMSE (Source, AI).  The use of the source-21 
perturbed ensemble is also beneficial in the North American Boreal and South Africa, both 22 
impacted by smoke aerosol, with the meteorology ensemble alone (Met, AI) having the worst 23 
performance.  Additional investigation is required to understand the impact of the source 24 
ensemble in these regions.  However, Central America is the only region where the difference in 25 
performance between the ENAAPS-DART configurations is statistically significant with the 26 
inclusion of the meteorology ensemble, either by itself or with the source ensemble, producing 27 
the smallest RMSE.  Overall, the combined meteorology and source ensemble configuration 28 
produces has the smallest RMSE in the 6 hour forecast relative to MODIS AOT.  29 

Further probing is required to understand the impact of the source ensemble on the RMSE for 30 
several identified regions, including South Africa and the North American Boreal region.  Case 31 
studies were examined and it was found that including the source ensemble is beneficial for 32 
aerosol events that are large and spatially correlated, especially for cases where the observational 33 
information is limited due to heavy cloud cover.  A smoke aerosol example for the Southern 34 
Africa burning region is presented in Figure 6a.  In this case, the ensemble correlation fields 35 
relative to a point near the center of a smoke plume are shown for the three AI experiments, 36 
along with the MODIS AOT observations for the event.  Burning events in South Africa are 37 
persistent throughout this time period and large in scale. For the source only ensemble 38 
experiment, a clear structure in the correlation fields is observed.  This structure is a result of the 39 
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ensemble source perturbations for smoke in this case.  By perturbing the smoke emissions using 1 
the same factor for a given ensemble member, a correlation between freshly emitted smoke 2 
aerosol is producedcreated, creating resulting in the observed structure.  The source perturbations 3 
essentially create infinite correlation lengthscales for freshly emitted smoke aerosol (ie. all 4 
smoke emissions are correlated), only limited by localization.  A very different relationship is 5 
observed for the meteorology-only ensemble with a much more spatially limited correlation field 6 
around the point of interest.  When assimilating observations into these two experiments, the 7 
observational information will spread in a much different manner around the indicated point.  8 
The correlation fields for the combined meteorology and source ensemble experiment are a 9 
combination of the two.  Since the presented South Africa case study is located within a large 10 
smoke source location, the ensemble correlations are mainly governed by the source 11 
perturbations with some influence by the meteorology.  The structure from the source ensemble 12 
is present with more defined edges due to the inclusion of the meteorology ensemble, producing 13 
the smallest RMSE relative to MODIS AOT.   14 

While in general the combined meteorology and source ensemble had the best performance, 15 
occasionally the source ensemble alone outperformed the combined ensemble.  This is despite 16 
the fact that one would always expect the meteorology ensemble to improve performance.  An 17 
example of this is shown in Figure 6b for a North American Boreal smoke event on August 15, 18 
2013. Smoke events in this region are not persistent, like the South African region, and vary 19 
between large, transported plumes that occur when smoke is injected above the boundary layer, 20 
sometimes spreading over thousands of miles (Figure 6b), and less intense fire events that don’t 21 
make it above the boundary layer and behave independently (Figure 6c).  For the large 22 
transported plume shown in Figure 6b, the ensemble correlation fields for the source only 23 
ensemble are spatially larger than the other two configurations causing the sparse observational 24 
information in the region (due to heavy cloud cover) to be spread out, producing the smallest 25 
RMSE. In this case, it appears that the meteorology ensemble might not be accurately 26 
representing the aerosol transport for this event or perhaps is overspread, producing a slightly 27 
larger (although not statistically different) RMSE.  Additional tests with increased ensemble size 28 
may shed light on why the meteorology ensemble has a slightly negative impact on the 29 
performance for this event.   30 

On the other hand, the source ensemble occasionally had a negative impact on the systems 31 
performance.  An example of this is the spatially independent North American Boreal fires on 32 
August 7, 2013, shown in Figure 6c.  For this event, there are a cluster of fires (A) that coincide 33 
with the point around which the correlation fields are calculated.  A second cluster of fires (B) is 34 
observed to the northeast of cluster A.  These fires are much smaller and are independent of 35 
cluster A, as shown in the MODIS visible image.   The meteorology ensemble has the most 36 
realistic correlation fields, statistically separating the two fire clusters, while the source ensemble 37 
configurations have correlation fields that statistically link the two fire regions.  For this event, 38 
the meteorology ensemble alone produced has the smallest RMSE.  Other spatially independent 39 
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events, including pollution events in the Eastern United States, showed similar performance 1 
issues with the source- perturbed ensemble, which statistically links emissions that may be 2 
independent of each other.  For these types of independent events, the source perturbations need 3 
to be done in a way that better captures the spatial correlations. While occasionally the source 4 
ensemble alone or the meteorology ensemble alone had slightly better performance, the 5 
combined meteorology and source ensemble had the overall best performance in RMSE against 6 
MODIS AOT.  The caveats to this are useful case studies to determine in what ways the 7 
ENAAPS-DART system can be improved.   8 

In addition to producing the smallest RMSE overall, the combined meteorology and source 9 
ensemble configuration (Met+Source,AI)  has a total spread to RMSE ratio closest to one 10 
globally as well as regionally for South Africa, Europe, Eurasian Boreal, and East Asia (Table 11 
2).  For the remaining regions, differences in the ratio are largely due to differences in the RMSE 12 
with the total spread being approximately the same across the experiments.   However, for some 13 
regions the ratio of total spread to RMSE was found to be dependent on the AOT value (Figure 14 
7).  For example, in the North American Boreal region, the ratio tends to be greater than one for 15 
AOT values less than 0.1 with the ratio decreasing to approximately 0.5 as the AOT increases.  16 
At the lower end of the AOT distribution (< 0.1), the total spread (combined ensemble spread 17 
and observational error) exceeds the RMSE; however, it is found that the observational error 18 
dominates the total spread (Figure 7).  This relationship is consistent across the experimental 19 
ENAAPS-DART configurations, represented by the different colors in Figure 7.  The resultIt 20 
indicates that the observational error is likely too large relative to the ensemble spread  for small 21 
AOT values, with similar results found for other fire-impacted regions (South America, Southern 22 
Hemisphere Atlantic).  This relationship is likely caused by the ensemble spread being too small 23 
for small AOT values since aerosol mass is a positive-definite quantity.  For data assimilation, an 24 
observational error that is too largethis translates to a reduced impact of the observation on the 25 
model state for small AOT.  For the case of large AOT in the North American Boreal for 26 
example, there is not enough spread and the uncertainty is underrepresented for all ENAAPS-27 
DART experiments (Figure 7).  This may be the result of not using large enough source 28 
perturbations for smoke or the result of not accounting for uncertainties in physical processes 29 
such as deposition.  LikewiseHowever, other regions impacted by summertime burning events 30 
such as South America, the Southern Hemisphere Atlantic Ocean (Figure 7), the Eurasian Boreal 31 
region, and the Western United States also have a tendency to underrepresent uncertainty for 32 
large AOT events.  Smoke emissions have very large errors; often as large as an order of 33 
magnitude uncertainty (Reid et al. 2009, 2013; Hyer et al., 2013).  As a result, a larger source 34 
perturbation (greater than the 25% standard deviation currently applied) for smoke emissions 35 
may beis likely needed to produce a better tuned system.  This reasoning is bolstered by initial 36 
AI tests that were not capped by a maximum inflation and produced generated inflation factors 37 
exceeding 10 in smoke-dominated regions, indicating a large discrepancy between the prior and 38 
observational distributions.   39 
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Rank histograms for select regions with representative results are shown in Figure 8 for each of 1 
the four ENAAPS-DART configurations.  The Eurasian Boreal smoke region rank histogram, 2 
consistent with the evaluation of the total spread to RMSE ratio, shows that the ensemble is 3 
notn’t fully representing the distributioncapturing low AOT values in the observed distribution, 4 
with an excess of observations occurring for low ranks.   The inclusion of the meteorology 5 
ensemble helps to reduce this excess, and even more so when both the meteorology and source 6 
ensemble are included.  Similar results were found for other regions impacted by smoke (North 7 
American Boreal, South Africa, South America), indicating a positive bias associated with 8 
smoke aerosol and potential bias in the smoke emissions.  The large observational errors relative 9 
to the ensemble spread found for small AOT values in smoke-dominated regions (Figure 7), 10 
reducing the impact of these observations on the model state, is likely another contributing factor 11 
to the observed positive bias in smoke regions. The increase in ensemble spread with the 12 
meteorology ensemble (Figure 4,5) helps to alleviate the bias in smoke-dominated regions.  In 13 
the Eastern United States, the inclusion of the meteorology ensemble introduces some positive 14 
bias with a tendency to predict AOT that is greater than the observational MODIS AOT, 15 
however, the RMSE across configurations is the same.  For dust dominated regions such as 16 
North Africa, the ENAAPS ensemble well represents the observational distribution produces a 17 
good representation of the distribution with some negative bias in the source only configurations 18 
and a slight positive bias in the meteorology configurations.    Regions such as Central America 19 
and India have a large negative bias in the source-only ensemble experiments.  Including the 20 
meteorology ensemble greatly reduces this bias and helps to flatten the distribution.  In general, 21 
an ensemble which is generated created using both source perturbations and the NOGAPS 22 
meteorology ensemble does a better job representing the distribution and producing a better 23 
tuned system.   24 

Independent evaluation of the experiments was conducted through comparison to AERONET 25 
AOT observations, which are not assimilated.  In this case, the posterior ensemble mean AOT is 26 
being compared to the observations, since they are independent.  Statistics, including RMSE and 27 
bias, were calculated at each AERONET site over the July through August time.  Scatterplots of 28 
the RMSE relative to AERONET AOT at each site between the experiments are shown in Figure 29 
9 and are identified by region.  With respect to the source only ensemble experiments (Source, 30 
constant vs Source, adaptive), the performance is approximately the same at most sites (Figure 31 
9a).  This is a result of having MODIS observational coverage in regions where AERONET sites 32 
are located, preventing issues with the constant inflation in under-observed locations as shown in 33 
the Southern Hemisphere Pacific Ocean.  The adaptive inflation experiment outperforms the 34 
constant inflation at two Eurasian Boreal sites, likely due to the adaptive inflation factor being 35 
much greater than the constant 10 percent inflation.  Additionally, the AI experiment 36 
outperforms at a single Southwest Asia site, a region lacking observational coverage.  If deciding 37 
between a meteorology only ensemble and a source- perturbed ensemble, in general the 38 
meteorology ensemble has a smaller RMSE, especially over the Eastern United States, Central 39 
America, India, Southwest Asia, and Dakar, a dust-impacted site in North Africa (Figure 9b).  40 
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Many sites in these regions are impacted by dust transport events during the experimental time 1 
period.  Evaluation of the AOT time series at the individual sites reveals that with the source 2 
ensemble only, these transported dust events are completely missed, while the event is captured 3 
in both the meteorology configuration and the combined meteorology and source configuration.  4 
The analysis AOT time series for one of the dust impacted sites (University of Houston) in the 5 
United States is shown in Figure 10 for all three adaptive inflation ensemble configurations 6 
(source only, met only, met+source).  For these long-range dust transport sites, the combined 7 
ensemble and the meteorology ensemble alone perform approximately the same with a much 8 
smaller RMSE and bias than the source only configuration (Figure 10).  This result demonstrates 9 
the importance of the meteorology ensemble for long-range transport. The western US sites and 10 
several South American sites, on the other hand, perform better when the source ensemble is 11 
included with the meteorology (Figure 9c).  These sites are impacted by nearby smoke events 12 
such as the Rim Fire in the Western US.  An AOT timeseries for the White Salmon AERONET 13 
site (Western US), including total and smoke AOT, is presented in Figure 11.  The combined 14 
meteorology and source ENAAPS-DART simulation does the best job capturing the peak smoke 15 
AOT, reflected by the difference in RMSE and bias.  The effect of the source ensemble on the 16 
correlations for large smoke events, as previously shown for the South African and North 17 
American Boreal regions, is applicable in the Western United States as well.  The difference in 18 
RMSE was statistically significant for the Central American, Eastern US, and India sites 19 
impacted by dust transport (between source and the two meteorology configurations) and the 20 
smoke impacted Western US sites (between meteorology only and meteorology plus source).  21 
For these sites, the combined meteorology and source ENAAPS-DART configuration had the 22 
smallest RMSE or the same as the meteorology configuration.  23 

Based on the diagnostics from the different ENAAPS-DART configurations, the NOGAPS 24 
meteorology ensemble combined with the perturbed aerosol source function had the best overall 25 
performance.  One additional test was conducted to examine the impact of increasing the 26 
ensemble size from 20 members to 80 members. An additional ENAAPS-DART 80 member 27 
ensemble simulation was run with 80 meteorology members (NAVGEM) combined with the 28 
25% source perturbations and adaptive inflation.  The same localization was used, although the 29 
optimal localization length scale should increase with increasing ensemble members.   Initial 30 
results show that further reductions in RMSEperformance gains can be made achieved by 31 
increasing the ensemble number at most AERONET sites, including Beijing in East Asia and 32 
many Eastern US, North African, European/Mediterranean, and Boreal sites (Figure 9d).  A 33 
smaller RMSE was found with the 80 member ensemble for sites impacted by spatially large 34 
aerosol events, in which the source-perturbed ensemble had previously produced generated the 35 
smallest RMSE relative to observations.    An example is shown for Sede Boker, a 36 
Mediterranean site impacted by dust and pollution aerosol (Figure 12).   Relative to the 20 37 
member combined ensemble, the posterior AOT bias is reduced by nearly 50% and the RMSE is 38 
reduced by approximately 35%.  With the 80 member ensemble, both the RMSE and bias are 39 
now less than that of the source-only ensemble configuration. It is expected that further 40 
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reductions in RMSE can be achieved by tuning the localization lengthscale for the 80 member 1 
ensemble. The 80 member ensemble is not currently available for simulations over longer time 2 
periods.  As a result, the 20 member combined meteorology and source ENAAPS-DART is used 3 
for evaluation against the current operational system, based on its performance against both 4 
MODIS AOT in the 6 hour forecast and AERONET in the posterior AOT relative to the other 5 
configurations.  However, the 80 member ensemble is very promising and will be explored in 6 
future work. 7 

3.3 Baseline comparison of ENAAPS-DART to NAAPS deterministic system 8 

3.3.1 Comparison of data assimilation analysis 9 

To objectively determine the efficacy of the ENAAPS-DART system, the data assimilation 10 
analysis fields from the EAKF were compared to analysis fields produced by from the variational 11 
NAVDAS-AOD system over the six month April-September 2013 timeframe.  Understanding 12 
the difference in the analysis is important as the aerosol fields from the data assimilation serve as 13 
the initial condition for aerosol forecasts.   Average analysis fields by month for the DART-14 
EAKF and the 2DVar NAVDAS-AOD data assimilation as well as the difference between the 15 
two are shown in Figure 13. They both capture the same large features, such as dust from the 16 
Saharan Desert and the Arabian Peninsula, springtime burning in Central America, and Boreal 17 
fires including the August Siberian fires. However, there are clear differences between the two 18 
with the ENAAPS-DART system having a tendency to produce AOT fields on the order of 0.02 19 
greater than the NAAPS/NAVDAS-AOD system. The difference between the two systems is 20 
reflected in the analysis increments with the tendency of NAVDAS-AOD to increase AOT on 21 
the order of 0.01 and the ENAAPS-DART having a tendency to decrease AOT on the order of 22 
0.001.  The smaller increments in ENAAPS-DART could indicate that the base system is more 23 
consistent with the assimilated observations or could be due to differences in forecast error 24 
characterization between the systems.  Regions where the AOT fields from the ENAAPS-DART 25 
system produces AOT fieldsare less than the deterministic system include the South African and 26 
the August Siberian biomass burning regions, parts of the US and the tropical oceans, especially 27 
in the spring.  Since there are very few AOT observations for assimilation in the Southern Ocean, 28 
any differences in this region are attributed to differences in the deterministic and ensemble 29 
meteorology fields (winds, humidity) that drive the models.  For example, differences in wind 30 
would impact sea salt emissions and therefore, optical thickness in the region.  Likewise, 31 
differences in humidity fields would impact the optical thickness.Large differences in the 32 
Southern Ocean are attributed to differences in the ensemble and deterministic meteorology since 33 
there are few observations to assimilate in that region.  There is also a large positive difference in 34 
AOT off the Western coast of Africa, centered on the equator in September.  Speciated AOT for 35 
this location shows the presence of ABF, dust and sea salt, in addition to smoke, with a similar 36 
spatial pattern (Figure 2).  This is believed to be an artifact that developed from strong 37 
covariance inflation in this region, resulting in large ensemble spread that built up over time for 38 
all aerosol species.  As previously discussed, large inflation develops with AI when there is a 39 

Formatted: Font: (Default) Times New Roman,
12 pt



21 
 

discrepancy between the observational and ensemble distributions.  If consistency between 1 
model and observations can be achieved for this smoke- dominated region by further tuning 2 
smoke emissions, the adaptive inflation will be reduced and should alleviate this problem.  The 3 
need for tuning of the smoke emissions is also supported by findings in the EAKF optimization 4 
section.   5 

The analysis fields from the two systems are compared against AERONET AOT both regionally 6 
and by site.  A summary of regional statistics including RMSE, mean bias and R2 are shown in 7 
Table 3.    It was found that the regional RMSE values relative to AERONET AOT are not 8 
statistically different between the two data assimilation systems.  The slight reduction in RMSE  9 
is found for the ENAAPS-DART system produced a slight reduction in RMSE relative to 10 
NAVDAS-AOD in the North American Boreal region, Central America, India, Peninsular 11 
Southeast Asia, and over the oceans.  The largest difference in performance occurred in 12 
Peninsular Southeast Asia with the EAKF producing an RMSE that is 0.023 less than NAVDAS-13 
AOD.  For the remaining regions, NAVDAS-AOD produced had a slightly smaller or the same 14 
RMSE as the EAKF with the largest difference in RMSE (0.016) produced found in East Asia.  15 
While regional statistics are similar between the two data assimilation systems, there is much 16 
more diversity in performance at individual AERONET sites.  The AERONET site RMSE 17 
comparison between the EAKF and the 2DVarvariational system are shown in Figure 14.  The 18 
diversity in site performance is reflected by the scatter in site RMSE by region.  For example, the 19 
analysis AOT produced fromby ENAAPS-DART had a smaller regional RMSE relative to 20 
AERONET over India.  A nearly 50% reduction in RMSE is seen at two AERONET sites in 21 
India with the EAKF, however, there are several sites where NAVDAS-AOD has a smaller 22 
RMSE.  The opposite is seen in South America where on a regional basis analysis AOT from 23 
NAVDAS-AOD had a smaller RMSE, but there are several sites in which a smaller RMSE is 24 
associated with ENAAPS-DART, including one site with a reduction in RMSE of approximately 25 
70%.  26 

Site by site differences in RMSE are useful in identifying ways to further improve the ENAAPS-27 
DART performance.   A good example of this is the Eastern United States in which the 28 
NAVDAS-AOD system produced had a smaller regional RMSE relative to AERONET (Table 29 
3); however, performance varies by site (Figure 14).  Upon further investigation, the Eastern US 30 
sites where EAKF does better are affected by long-range dust transport, including sites in the 31 
Houston area.  For example, the variational 2DVar system had an RMSE of 0.065 at the 32 
University of Houston AERONET site, compared to the 0.060 RMSE from the EAKF system 33 
over the six-month time frame.    Likewise, several of the European sites in which the EAKF 34 
produced had a smaller RMSE are also impacted by long-range transport events.    EAKF 35 
appears to have an edge over the variational 2DVar system when it comes to capturing long-36 
range transport.  This is not unexpected given that ensemble data assimilation has flow-37 
dependent covariances.  On the other hand, having a 2.5 degree univariate adjustment around an 38 
observation as is done in the variational assimilation appears to perform better for complex local 39 
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sources which behave independently, as is likely the case for many Eastern US and European 1 
cities (ie. local point sources, transportation) and the North American Boreal region (independent 2 
fires).  Improvement in the EAKF performance for these types of sources may be achieved by 3 
decreasing the lengthscale associated with the source perturbations.  A more in depth 4 
investigation is needed to understand how to get the ensemble statistics correct for these types of 5 
independent source.  Additionally, increasing the ENAAPS-DART ensemble size may change 6 
the performance relative to NAVDAS-AOD since initial tests with the 80 member ensemble 7 
indicate that an increase in ensemble size can result in better performance at most AERONET 8 
sites (Figure 9d, Figure 12).  9 

While comparing the statistics at individual sites provides some insight into differences between 10 
the EAKF and the 2dVar, it doesn’t provide any insight into what is happening spatially.  From 11 
examining an examination of the posterior fields produced from the two data assimilation 12 
methodologies, it is clear that while both methods are able to capture important aerosol features, 13 
the EAKF has an ability to capture sharp gradients.  On the other hand, the 2dVar, with its 2.5 14 
degree univariate adjustment around an observation, tends to have a smoothing effect.  This point 15 
is clearly demonstrated in an example of a dust plume transported over the Atlantic Ocean, off of 16 
the Sahara Desert.  The example, shown in Figure 15, shows the analysis increments for the 17 
NAVDAS-AOD 2dVar system as well as analysis increments for ENAAPS-DART, both for the 18 
source only and the optimal combined meteorology and source ensemble.  Even though the focus 19 
is now on the combined meteorology and source ensemble, the analysis increments for the 20 
source-only ensemble further demonstrate why the meteorology ensemble is so important for 21 
these transported events.  The univariate adjustments from the 2dVar can be seen as circular 22 
bullets.  On the other hand, the EAKF adjustments are more realistic and occur along the dust 23 
plume.  The result is a dust plume which captures the sharp gradientness of the dust front that is 24 
clearly also seen in the MODIS image for this event (Figure 15).  On the other hand, the 25 
variational 2DVar system produces a dust plume feature that is smoothed out.  This dust case 26 
demonstrates a major advantage of the EAKF system over the 2dVar in its ability to spread 27 
information in a realistic manner and as a result, capture sharp gradients.  It is anticipated that the 28 
ability of the EAKF to generate more realistic corrections to the state field will become more 29 
important as additional observational information is introduced into the system, such as Lidar 30 
and other spatially limited pieces of information.   31 

3.3.2 Impact of initial condition on short-term forecast 32 

To investigate how the impact of data assimilation persists in the forecast, four sets of 24 hour 33 
forecasts were run with the initial conditions produced generated from the DART-EAKF or the 34 
NAVDAS-2dVar system.  Each set of initial conditions were run in a deterministic and an 35 
ensemble configuration.  This is done so that the initial conditions can be tested with the same 36 
NOGAPS meteorological fields driving the model simulations.  For the deterministic version of 37 
the EAKF, the forecast is initialized with the ensemble mean (DART deterministic).  For the 38 
ensemble version of NAVDAS-AOD, each of the 20 ensembles is initialized with the same 39 
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aerosol initial condition and run using the meteorology ensemble (ENAAPS-NAV).  The 1 
forecasts were compared to AERONET AOT.  The 24-hour forecast global RMSE against 2 
AERONET AOT with bootstrapped 95% confidence intervals are 0.108(0.103-0.113), 3 
0.107(0.102-0.112), 0.100(0.097-0.104), and 0.099(0.095-0.103) for the NAVDAS-AOD 4 
deterministic, DART deterministic, ENAAPS-NAV, and ENAAPS-DART, respectively.  The 5 
RMSE from the forecasts initialized with the EAKF analysis fields is less than its variational 6 
counterpart in deterministic or ensemble forecast mode, although the RMSE values are not 7 
statistically different.  It should be noted that running the forecasts as ensembles produces a 8 
smaller RMSE than a deterministic configuration.  This result is in line with the general 9 
knowledge about ensembles from NWP that ensembles tend to average out the most uncertain 10 
aspects of a forecast and therefore, reduce error.   11 

Similar to the finding with respect to the analysis fields, the comparison to site AOT from 12 
AERONET provides valuable information, but does not provide a spatial picture of the forecast 13 
behavior.  The same Saharan dust transport case shown in Figure 15 is examined in Figure 16, 14 
however, now the plume is forecasted out to 24 hours.  These results are initialized with either 15 
the NAVDAS-AOD or the DART-EAKF analysis fields.  Results are shown for the four forecast 16 
configurations, including deterministic and ensemble forecasts. The MODIS visible image and 17 
MODIS AOT for the dust case is also included and shows a narrow band of high optical 18 
thickness at the leading edge of the dust front.  All four configurations predict the dust plume, 19 
although the Northern portion of the plume is missing for all cases.  The missing portion of the 20 
plume is likely attributed to the model physics since this is consistent in NAAPS and ENAAPS.  21 
Both of the forecasts initialized with the 2dVAR fields capture the event, but like the analysis 22 
fields, don’t capture the sharp gradientness as seen in the MODIS image.  However, the 23 
ensemble version of the 2dVAR forecast is smoother than the deterministic counterpart.  On the 24 
other hand, the forecasts initialized with the EAKF fields do a better job capturing the AOT 25 
gradient at the leading edge of the dust front with the ENAAPS-DART version being smoother 26 
than the deterministic counterpart along the dust front.  This demonstrates that the sharp 27 
gradientness achieved in the ensemble data assimilation propagates in the forecast.  This and is 28 
an advantage of using the EAKF initial conditions over the variational 2DVar initial conditions 29 
for the short-term forecast.  30 

4.0 Discussion 31 

The optimization of the EAKF data assimilation from DART for use with the ensemble version 32 
of NAAPS revealed several interesting insights about ensemble data assimilation for aerosol 33 
prediction.  With respect to the ensemble, having both meteorology ensembles as well as 34 
perturbations to the aerosol source functions produce the best results.  This is due to a 35 
combination of the meteorology ensembles being important for long-range transport events, as 36 
demonstrated by the dust transport examples shown in the results section, and the source 37 
ensemble being important for large local aerosol sources with spatial correlations, as 38 
demonstrated by several smoke aerosol cases.  There are caveats to this when dealing with 39 
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aerosol sources for the same species with behavior that is spatially independent.  This is believed 1 
to be the case for fires in the North American boreal region during the experimental summer 2 
2013 time period.  The application of the source perturbation to fires in this region creates spatial 3 
correlations, due to the manner in which the perturbations were applied, that are not real if the 4 
fires are behaving independently.  This can be tested by applying source perturbations that are 5 
not spatially correlated in this region and allow the remaining fires to be perturbed as usual.  6 
Likewise, performance issues were identified for the EAKF in the Eastern United States and 7 
Europe.  This may be a result of pollution sources of aerosol, such as point sources, which would 8 
have independent behavior.  Further investigation is needed to understand how to properly 9 
capture the ensemble statistics in regions dominated by independent aerosol sources in order to 10 
improve performance. 11 

The evaluation of the ensemble diagnostics for the ENAAPS-DART optimization also 12 
highlighted some potential issues with the smoke emissions used in the simulations.  In 13 
particular, regions dominated by smoke aerosol did not have sufficient spread at high AOT 14 
values, as indicated by the total spread (ensemble spread combined with observational error) 15 
being much less than the RMSE.  Likewise, the rank histograms show an excess at the lower 16 
ranks, indicating a positive bias with respect to smoke aerosol.  The smoke emissions used in the 17 
simulations are based on MODIS.  Smoke emissions are highly uncertain, often having several 18 
factors of uncertainty, which could be contributing to the observed bias.  It is also known that 19 
remote sensing algorithms have difficulty in detecting small fires without a large enough thermal 20 
signal (Schroeder et al. 2008), and therefore, smoke aerosol from small fires may be 21 
underrepresented.  The analysis of total spread to RMSE for smoke dominated regions indicated 22 
that the observational error may be too large for small AOT values, which could also contribute 23 
to the positive bias observed in smoke regions.  Additional tuning of the smoke sources or 24 
including the aerosol sources as part of the state to be estimated by the data assimilation may be 25 
a means for overcoming this type of bias in the smoke emissions. 26 

For overcoming sampling errors inherent in ensemble data assimilation, both spatially and 27 
temporally constant multiplicative covariance inflation and an adaptive covariance inflation 28 
algorithm were tested.  Although the constant covariance inflation has been used in past 29 
applications of ensemble data assimilation for aerosol prediction, the results in this study show 30 
that this is not the best approach.  The constant inflation produced an unstable system in regions 31 
without good observational coverage.  This result is likely applicable to any data assimilation 32 
problem where the observation density is not spatially uniform (i.e. other atmospheric tracers).  33 
An adaptive inflation method from Anderson (2009b) was tested for the first time, to our 34 
knowledge, for an aerosol application.  The results showed that the adaptive inflation increases 35 
ensemble spread only where observational information is available, preventing the issue seen 36 
with the constant inflation.  The ENAAPS-DART experiments using adaptive inflation had 37 
stable ensemble spread with time, an indicator of a healthy ensemble system.  This is the 38 
recommended inflation method for aerosol and potentially other atmospheric tracers. 39 
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Relative to the current operational 2dVAR data assimilation system, the EAKF produced 1 
analysis fields that had similar results in regional RMSE, bias, and R2 against AERONET AOT.  2 
However, differences were more apparent at individual AERONET sites.  The EAKF 3 
outperformed the variational assimilation at sites that were impacted by long-range transport, 4 
including several Eastern US, Europe, and Central America sites.  This is not unexpected given 5 
that the EAKF uses flow-dependent covariances.  Additionally, the source ensemble provides an 6 
advantage of producing more structured ensemble covariances for regions impacted by large 7 
aerosol sources that are spatially correlated.  This provides an advantage over the 2DVar, 8 
particularly at several dust-impacted sites located in North Africa and the Mediterranean region.  9 
On the other hand, the univariate adjustment by the variational data assimilation performed better 10 
in regions where the sources behave independently, as was seen at several European, Eastern US, 11 
and North American Boreal sites.  Further investigation is needed to understand how to better 12 
characterize statistics for regions impacted by independent sources in order to push the EAKF 13 
ahead of the 2dVAR for these types of regions.  While the EAKF and 2DVAR were both capable 14 
of capturing aerosol features, reflected by the similarity in regional statistics, the EAKF provided 15 
an advantage in being able to better capture events spatially.  This was demonstrated for a dust 16 
transport case off of the coast of Western Africa.  By using the ensemble statistics to spread 17 
observational information, the EAKF is able to capture sharp gradients that are smoothed out in 18 
univariate assimilation methods, effectively reducing true model resolution.  This provides a 19 
particularly important advantage to the EAKF, especially when moving to higher resolution 20 
simulations.  Based on these results, the EAKF should be able to take advantage of resolution 21 
increases while the 2dVAR may smooth out any resolution advantage.   22 

Forecasts out to 24 hours were conducted using the initial conditions from the DART and the 23 
NAVDAS-AOD data assimilation, in a deterministic and an ensemble configuration.  The 24 
forecasts initialized with EAKF initial conditions had smaller RMSE, although not statistically 25 
different, in the 24 hour forecast than their variational counterparts.  Also, the ensemble 26 
configurations had smaller RMSE relative to the deterministic configurations.   An additional 27 
advantage of the ensemble configuration is that uncertainty information in the forecast can be 28 
extracted at a given time using the ensemble members.  This is an important reason why many 29 
NWP forecasting centers have moved towards ensemble prediction systems and aerosol 30 
forecasting should move in the same direction.  In order to evaluate the spatial impact of the 31 
different forecast configurations, the 24 hour forecast of the same Saharan dust transport case 32 
used to evaluate the analysis fields was examined.  With the DART-EAKF initial conditions, the 33 
sharpness of the dust feature is predicted and even more so in the ENAAPS-DART 34 
configuration. The findings from this study show that an ensemble prediction system, including 35 
an EAKF data assimilation for producing initial conditions combined with a probabilistic 36 
forecast, demonstrate an advantage over the current operational deterministic system with a 37 
univariate variational data assimilation architecture.  With some further tuning for the ENAAPS-38 
DART system based on the findings from this study, additional advantages over the 39 
NAAPS/NAVDAS-AOD system can likely be attained.  40 
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45.0 Conclusion 1 

This study evaluates the performance of an ensemble aerosol prediction system, ENAAPS-2 
DART, for Navy applications under several configurations, as well as against the current 3 
operational system (NAAPS/NAVDAS-AOD).  The major findings from this work are: 4 

• Having both meteorology ensembles and perturbations to the aerosol source functions 5 
generated the best results.  The use of the meteorology ensemble is essential for capturing 6 
long-range aerosol transport events.  This was demonstrated for dust transport cases off 7 
the coast of Africa, as well as at dust impacted AERONET sites in Central America and 8 
the United States. The source ensemble is beneficial for capturing spatially large aerosol 9 
events, including smoke and dust cases.  This was demonstrated for large burning events 10 
over Southern Africa and the North American Boreal region.   11 

• The source ensemble is beneficial for capturing spatially large aerosol events, including 12 
smoke and dust cases.  This was demonstrated for large burning events over Southern 13 
Africa and the North American Boreal region.   14 

• The source ensemble can also have a negative impact for regions with sources that 15 
behave independently.  This is the case for many North American boreal fires that are 16 
small and independent.  This is also believed to be the case for pollution dominated sites 17 
in the United States and Europe.  Source ensembles which better represent the statistics 18 
for these independent cases are needed.   19 

• An adaptive inflation method from Anderson (2009) was tested for the first time, to our 20 
knowledge, for an aerosol application.  Based on the results in this work, An the adaptive 21 
covariance inflation is recommended over a spatially and temporally uniform covariance 22 
inflation.   The adaptive approach overcomes instability issues that arise due to spatially 23 
heterogeneous observations with the constant inflation approach and it is expected the 24 
same finding will apply to other systems.. It is also expected that this finding will apply 25 
to data assimilation for other atmospheric tracers where the observation density is not 26 
spatially uniform .  27 

• Performance gainsA reduction in RMSE can be achieved by increasing the ensemble size 28 
from 20 to 80 members.  Further gains reductions may be achieved with optimization of 29 
the 80 member ensemble (ie. localization and inflation).   30 

• The evaluation of the ensemble diagnostics for the ENAAPS-DART optimization 31 
highlighted some potential issues with the smoke emissions used in the simulations. It 32 
was found that tThe ensemble system underrepresents uncertainty for large smoke events 33 
and has some positive bias relative to MODIS AOT observationsas indicated by the total 34 
spread (ensemble spread combined with observational error) being much less than the 35 
RMSE.  Likewise, the rank histograms show an excess at the lower ranks, indicating a 36 
positive bias in smoke aerosol relative to MODIS AOT.  These findings are supported by 37 
the behavior of the AI algorithm in smoke dominated regions, which indicated a large 38 
discrepancy between the model predicted and observational distributions .  Additionally, 39 

Formatted: Font: (Default) Times New Roman,
12 pt



27 
 

the ensemble spread for smoke aerosol is likely too small at low AOT values.  Additional 1 
tuning Tuning of smoke aerosol emissions is needed to address the identified issues.   2 

• Positive bias in the Eastern United States was also found with the ensemble system.  3 
Further work needs to be conducted to determine how to better capture complicated 4 
pollution aerosol sources. 5 

• The aerosol analysis fields produced from the DART-EAKF data assimilation system and 6 
the NAVDAS-AOD 2dVAR 2DVAR data assimilation system have similar RMSE and 7 
bias relative to AERONET sites on a regional basis.  This indicates that both data 8 
assimilation systems are able to capture similar aerosol features.  However, spatially, the 9 
EAKF does a better job of capturing sharp gradients while the 2dVAR system has a 10 
smoothing effect.  This is a result of the EAKF being able to spread observational 11 
information in a flow-dependent manner. 12 

• The ENAAPS-DART system and the NAAPS/NAVDAS-AOD system also had similar 13 
RMSE statistics relative to AERONET AOT in the 24 hour forecast.  However, the 14 
sharpness of features is maintained in the 24-hour forecast with the ENAAPS-DART 15 
system, as demonstrated for the Saharan dust transport case. This is a majorn advantage 16 
over the current operational system. An additional advantage of the ensemble 17 
configuration is that uncertainty information in the forecast can be extracted at a given 18 
time using the ensemble members.  This is an important reason why many NWP 19 
forecasting centers have implemented ensemble prediction systems and aerosol 20 
forecasting should consider doing the same. With some further tuning for the ENAAPS-21 
DART system based on the findings from this study, additional advantages over the 22 
NAAPS/NAVDAS-AOD system can likely be attained. 23 

The ENAAPS-DART system outlined in this work will serve as the base ensemble aerosol 24 
prediction system for Navy applications and will serve as a testbed for assimilation of additional, 25 
spatially-limited observations, such as ground-based and LIDAR observations.  ENAAPS-DART 26 
will also be used to evaluate aerosol forecast uncertainty, an additional advantage over the 27 
current deterministic system.  Means for evaluating ensemble system performance were outlined 28 
in this work and may provide a useful guideline for future ensemble system developers, 29 
particularly with aerosol or other atmospheric tracers.  Based on the results from this study, work 30 
is underway to understand how additional performance gains can be made in the ENAAPS-31 
DART system through source tuning, increases in the number of ensemble members, and 32 
increases in model resolution.   33 
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 1 
Table 1. Summary of five ENAAPS-DART experiments conducted for EAKF optimization.  The 2 
experiments include variations in ensemble generation (meteorology or source only, meteorology 3 
with source ensemble), number of ensemble members, and the covariance inflation method.  The 4 
meteorology ensemble uses NOGAPS ensemble meteorology fields and the source ensembles 5 
use a 25% random Gaussian perturbation to the aerosol source functions. 6 

Experiment Name Ensembles Inflation 
Source, const Source, 20 member 10% Constant Covariance Inflation 
Source, adaptive Source, 20 member Adaptive Inflation 
Meteorology, adaptive Meteorology Only, 20 member Adaptive Inflation 
Met+Source, adaptive Meteorology + Source, 20 member Adaptive Inflation 
Met+Source, 80 Meteorology + Source, 80 member  Adaptive Inflation 

 7 

Table 2. Global and regional diagnostics for four EAKF optimization experiments conducted 8 
during the July through August, 2013 timeperiod.  The diagnostics are computed using the 9 
ENAAPS-DART 6-hour AOT (550nm) forecasts against MODIS AOT (550nm), prior to 10 
assimilation.  The root mean squared error (RMSE) is shown as well as the average ratio 11 
between the total spread (ensemble spread in AOT + observational AOT error) and the RMSE.  12 
Well-tuned ensemble systems should have a small RMSE that is approximately equal to the total 13 
spread.  14 

  RMSE  (Standard Deviation) Mean (Total Spread/RMSE) Ratio 
Region Source, const Source, AI Met, AI Met+Source, AI Source, const Source, AI Met, AI Met+Source, AI 

Global 0.127 (0.095) 0.123 (0.086) 0.122 (0.083) 0.115 (0.077) 0.802 0.82 0.875 0.925 
North American 
Boreal 0.084 (0.074) 0.084 (0.074) 0.091 (0.079) 0.085 (0.072) 1.387 1.355 1.254 1.298 
 ECONUS 0.071 (0.04) 0.071 (0.038) 0.069 (0.031) 0.069 (0.033) 1.298 1.28 1.225 1.234 
WCONUS 0.152 (0.119) 0.153 (0.123) 0.15 (0.114) 0.139 (0.111) 0.956 0.965 1.017 1.084 
Central America 0.094 (0.052) 0.099 (0.051) 0.064 (0.038) 0.064 (0.038) 1.142 1.041 1.662 1.661 
South America 0.069 (0.019) 0.071 (0.021) 0.076 (0.025) 0.067 (0.018) 1.158 1.149 1.091 1.214 
South Africa 0.133 (0.048) 0.128 (0.043) 0.14 (0.065) 0.124 (0.046) 0.69 0.745 0.721 0.8 
North Africa 0.174 (0.111) 0.176 (0.099) 0.166 (0.086) 0.163 (0.082) 0.837 0.806 0.911 0.918 
Europe 0.098 (0.045) 0.094 (0.039) 0.09 (0.036) 0.09 (0.037) 0.863 0.889 0.989 0.994 
Eurasian Boreal 0.176 (0.211) 0.166 (0.193) 0.155 (0.181) 0.15 (0.167) 0.799 0.819 0.925 0.934 
East Asia 0.143 (0.055) 0.141 (0.055) 0.165 (0.094) 0.161 (0.09) 0.951 0.956 0.958 0.975 
India 0.149 (0.076) 0.158 (0.076) 0.134 (0.069) 0.134 (0.07) 1.131 1.007 1.322 1.501 
Southeast Asia 0.083 (0.036) 0.085 (0.037) 0.08 (0.036) 0.079 (0.035) 1.075 1.037 1.144 1.155 
Australia 0.04 (0.006) 0.04 (0.006) 0.044 (0.009) 0.042 (0.007) 1.505 1.482 1.395 1.447 
NH Pacific 0.089 (0.056) 0.091 (0.056) 0.088 (0.061) 0.082 (0.053) 1.242 1.237 1.333 1.386 
SH Pacific 0.035 (0.013) 0.037 (0.013) 0.034 (0.011) 0.034 (0.011) 2.134 2.003 2.098 2.106 
NH Atlantic 0.099 (0.061) 0.099 (0.061) 0.093 (0.058) 0.092 (0.058) 0.979 0.99 1.145 1.163 
SH Atlantic 0.088 (0.086) 0.085 (0.093) 0.099 (0.147) 0.088 (0.11) 1.291 1.304 1.318 1.366 
Indian Ocean 0.079 (0.036) 0.085 (0.036) 0.074 (0.033) 0.073 (0.031) 1.16 1.076 1.279 1.291 
Southern Ocean 0.04 (0.018) 0.04 (0.016) 0.047 (0.021) 0.047 (0.021) 2.08 1.997 1.732 1.759 
 15 

 16 

 17 
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Table 3. Regional statistics of the analysis AOT against AERONET AOT (550nm) (Zhang and 1 
Reid, 2006) for a six month simulation (April-September, 2013).   The statistics are shown for 2 
the analysis AOT produced byfrom the variational 2DVar NAVDAS-AOD assimilation system 3 
and the EAKF data assimilation from ENAAPS-DART.   4 

  Variational 2DVar (NAVDAS-AOD) EAKF (ENAAPS-DART) AERONET 

Region R2 Bias RMSE Mean AOT  R2 Bias RMSE Mean AOT  Mean AOT 
North American Boreal 0.38 0.021 0.068 0.094 0.43 0.026 0.067 0.098 0.072 
ECONUS 0.55 -0.001 0.066 0.147 0.53 0.013 0.068 0.162 0.147 
WCONUS 0.32 0.024 0.07 0.116 0.27 0.02 0.07 0.112 0.093 
Central America 0.58 -0.023 0.107 0.18 0.61 0.016 0.102 0.189 0.205 
South America 0.33 0.001 0.074 0.09 0.23 -0.01 0.081 0.079 0.088 
North Africa 0.58 0.002 0.161 0.259 0.59 0.044 0.167 0.301 0.257 
Europe 0.55 0.01 0.092 0.166 0.49 0.011 0.097 0.167 0.156 
Eurasian Boreal 0.65 -0.005 0.068 0.132 0.58 -0.004 0.076 0.134 0.137 
East Asia 0.65 -0.04 0.168 0.289 0.60 -0.044 0.184 0.286 0.33 
India 0.38 -0.016 0.252 0.402 0.39 -0.058 0.25 0.359 0.418 
Insular SE Asia 0.52 -0.017 0.13 0.166 0.52 0.005 0.15 0.186 0.182 
Peninsular SE Asia 0.64 -0.016 0.194 0.351 0.72 -0.024 0.171 0.343 0.367 
Southwest Asia 0.61 0.019 0.15 0.355 0.48 -0.001 0.166 0.338 0.339 
Australia 0.43 -0.008 0.043 0.055 0.21 0.01 0.048 0.072 0.062 
Ocean 0.64 0.017 0.064 0.127 0.67 0.022 0.062 0.131 0.109 
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 2 
 3 

 4 
Figure 1. Diagnostic regions for evaluated ENAAPS-DART experiments.  Black dots indicate 5 
AERONET sites with data available for 2013.   6 

 7 
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 1 
Figure 2. Seasonally averaged AOT (550nm) fields (posterior), predicted by the ENAAPS-2 
DART system (Met+Source, adaptive), for the Boreal Spring (April, May) and Summer (June-3 
September), 2013. Results are shown for total AOT and AOT attributed to combined 4 
anthropogenic and biogenic fine (ABF), smoke, dust, and seasalt aerosol, respectively. 5 
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 1 
 2 

 3 
Figure 3. Monthly averaged AOT (550nm) for four ENAAPS-DART EAKF optimization 4 
experiments, including a source ensemble with constant inflation (Source, Const), a source 5 
ensemble with adaptive inflation (Source, AI), a meteorology ensemble with adaptive inflation 6 
(Met, AI), and a combined meteorology and source ensemble with adaptive inflation 7 
(Met+Source, AI).  Also shown is the average difference in AOT between the identified 8 
ENAAPS-DART experiment and the combined meteorology and source ensemble experiment 9 
(Met+Source, AI).   10 
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 1 
Figure 4. The standard deviation of the prior ensemble aerosol optical thickness normalized by 2 
the ensemble mean at the end of the experimental time period (August 31st, 1800) for four 3 
ENAAPS-DART experiments: a) source only ensemble with spatially and temporally constant 4 
10 percent covariance inflation b) source only ensemble with adaptive inflation c) meteorology 5 
ensemble only with adaptive inflation and d) combined meteorology and source ensemble with 6 
adaptive inflation.  Also shown are e) The count of days with MODIS 1-degree gridded data 7 
assimilation quality AOT observations (Zhang et al. 2005, 2006; Hyer et al., 2011) available for 8 
assimilation during the July 15 to August 31, 2013 time period and f) the average inflation factor 9 
for the source only adaptive inflation  g) the average inflation factor for the meteorology only 10 
adaptive inflation experiment and h)  the average inflation factor for the combined meteorology 11 
and source ensemble adaptive inflation experiment.  For adaptive covariance inflation, regions 12 
with high observation density are coincident with inflation regions.   13 
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 1 
Figure 5.  Timeseries of ensemble spread (AOT standard deviation) for 4 ENAAPS-DART 2 
experiments over the July 15 through August, 2013 time period.  Results are shown for 12 3 
regions, including the Eastern United States, the Western US, Central America, South America , 4 
South Africa, North Africa, Europe, Eurasian Boreal, East Asia, India, Southeast Asia, and the 5 
Southern Hemisphere Pacific Ocean. 6 
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 1 

Figure 6. Ensemble correlation fields in the prior AOT relative to a point indicated by a black 2 
star for three different aerosol events: a) a South African smoke event on August 2, 2013 b) a 3 
large North American Boreal smoke plume on August 15, 2013 and c) small independent Boreal 4 
fires in North America on August 7, 2013.  Correlation fields are shown for three ENAAPS-5 
DART configurations, source ensemble (Source), NOGAPS meteorology ensemble 6 
(Meteorology), and a combined meteorology and source ensemble (Met + Source).  Also 7 
included are the MODIS AOT (550nm) observations for the smoke events, as well as a zoomed 8 
in look at the MODIS visible image with MODIS fire detections in red for the two North 9 
American Boreal cases.     10 
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 1 

Figure 7. Regional scatterplots of the ratio of total spread (combined ensemble AOT spread and 2 
MODIS AOT error) to RMSE against the ensemble mean AOT (550nm) (top row) and the ratio 3 
of ensemble spread to total spread against the mean AOT (550nm) (bottom row).  Results are 4 
shown for four ENAAPS-DART configurations including source ensemble with constant 5 
covariance inflation, source ensemble with adaptive inflation, meteorology ensemble with 6 
adaptive inflation, and a combined meteorology and source ensemble with adaptive inflation.  7 
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 1 

Figure 8. Rank histograms for select regions for the four ENAAPS-DART experiments, 2 
including source only ensemble with constant and adaptive inflation (Source, const; Source, 3 
adaptive), meteorology only ensemble with adaptive inflation (Met, adaptive), and meteorology 4 
plus source ensemble with adaptive inflation (Met+Source, adaptive).  5 

 6 
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 1 
Figure 9. Scatterplots of ENAAPS-DART RMSE relative to AERONET AOT (550nm, Zhang 2 
and Reid, 2006) by site between different ENAAPS-DART experiments.  Sites are identified by 3 
region.  Results are shown for a) source only with constant covariance inflation versus adaptive 4 
inflation b) meteorology only versus source only ensemble c) meteorology only versus 5 
meteorology+source ensemble and d) meteorology+source 20 member ensemble against a 6 
meteorology+source 80 member ensemble.   7 
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 1 
Figure 10. Timeseries of model predicted total AOT (grey) and dust AOT (red) with AERONET 2 
AOT (Zhang and Reid, 2006) (black) at 550nm at the University of Houston AERONET site.   3 
Results are shown for adaptive inflation experiments with  source only ensemble, NOGAPS 4 
meteorology ensemble, and a combined meteorology and source ensemble.   5 
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 1 
Figure 11. Timeseries of analysis model predicted total AOT (grey) and dust AOT (red) with 2 
AERONET AOT (Zhang and Reid, 2006) (black) at 550nm at the White Salmon AERONET site 3 
in the Western United States.   Results are shown for adaptive inflation experiments with  source 4 
only ensemble, NOGAPS meteorology ensemble, and a combined meteorology and source 5 
ensemble.   6 
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 1 

Figure 12. Timeseries of model predictedanalysis total AOT (grey) and dust AOT (red) with 2 
AERONET AOT (Zhang and Reid, 2006) (black) at 550nm at the Sede Boker AERONET site, a 3 
Mediterranean site in the Negev Desert.   Results are shown for the NAVDAS-AOD 2dVar data 4 
assimilation as well as the ENAAPS-DART for the source only ensemble and the combined 5 
source and meteorology ensemble with 20 and 80 ensemble members.  RMSE and bias relative 6 
to AERONET AOT are included. 7 
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 1 

Figure 13 Monthly averaged AOT fields (550nm) from the ENAAPS-DART system and the 2 
NAAPS/NAVDAS-AOD system.  Also shown is the monthly averaged AOT difference between 3 
ENAAPS-DART and NAAPS/NAVDAS-AOD.  4 

 5 
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 1 

Figure 14. Comparison of AERONET site RMSE (AOT, 550nm) between ENAAPS-DART 2 
AOT analysis fields and NAAPS/NAVDAS-AOD analysis fields for simulations run over a six 3 
month time period (April through September, 2013).  Sites are identified by region. 4 

 5 

 6 
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 2 

Figure 15. An example dust transport case off the coast of West Africa (August 1, 2013).  3 
Analysis increments (posterior AOT-Prior AOT) and posterior AOT (550nm) are shown for the 4 
variational NAVDAS-AOD (first row), EAKF for ENAAPS-DART with source ensemble only 5 
and adaptive inflation (second row), and EAKF for ENAAPS-DART with the combined 6 
meteorology and source ensemble and adaptive inflation (third row).   Also shown are MODIS 7 
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observations in the third column, including a MODIS visible image of the dust event (top), a plot 1 
of assimilated MODIS AOT observations (middle), and a plot of all available Terra and Aqua 2 
MODIS AOT (550nm) observations for the event from Terra and Aqua(bottom), below.  It 3 
should be noted that not all available MODIS AOT observations are assimilated. 4 

 5 

 6 
Figure 16. Example dust transport case off the coast of West Africa, initialized with analysis 7 
fields from Figure 15, and forecasted out to 24 hours.  AOT (550nm) results are shown for four 8 
different forecast configurations: a deterministic forecast initialized with NAVDAS-AOD fields 9 
(2dVAR); a deterministic forecast initialized with DART-EAKF fields (ensemble mean); an 10 
ensemble forecast initialized with NAVDAS-AOD fields; an ensemble forecast initialized with 11 
DART-EAKF fields.  A zoomed in MODIS true color image of the leading edge of the dust 12 
plume is also shown as well as MODIS AOT (550nm) observations.   13 

 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 



56 
 

Response to Anonymous Referee #1 1 

Thank you for your thorough comments.  Please see our responses: 2 

1. First, no results are shown for a standard run of the model without assimilation. Hence the 3 
improvement due to assimilation is unknown and the differences between various assimilation 4 
setups cannot be properly judged.  5 

 6 
Response: The goal of our study was to see how the new ensemble system performs relative to 7 
the current operational prediction system (NAAPS with NAVDAS-AOD); as a result, this was 8 
considered our control.  (page 28075, lines 5-8)“NAAPS with the NAVDAS-AOD data assimilation 9 
has been fully operational at FNMOC since 2010.  The operational system serves as a member of 10 
the International Cooperative for Aerosol Prediction (ICAP) multi-model ensemble (Sessions et 11 
al. 2015) and is the baseline for comparison in this work.” Subsequent papers will show more 12 
detailed comparison of the different methods relative to a no DA control. 13 
 14 

2. Second, no proper attempt at filter tuning is done. In particular, ensemble size and localisation 15 
length-scale are not systematically varied and their effects studied. In this respect Fig 9 is slightly 16 
worrying: panel d (which shows differences between a 20 and 80 member run) shows similar or 17 
larger differences than the sensitivity experiments for a 20-member ensemble (a,b and c). 18 

 19 
Response:  There was a lot of tuning that went into setting up ENAAPS-DART, we will work to 20 
make this point more clear in the manuscript.  With regards to localization, several tests were 21 
run, but the results were not presented in the paper.  This is discussed on page 28078 (lines 26-22 
28)-28079 (lines 1-2).  What we found with regards to localization tests was that the 1000km 23 
lengthscale performed the best.  Since these results were consistent with previously published 24 
studies (Schutgens et al. 2010), we didn’t feel showing these additional tests introduced 25 
anything new and would just add to an already long paper.  Instead, we wanted to focus on the 26 
experiments that introduced something new to aerosol data assimilation.  That is why we chose 27 
to focus on looking at constant versus adaptive inflation as well as looking at methods for 28 
generating the ensemble members.  We felt these experiments were both informative and 29 
introduced something new.  With regards to ensemble size, we chose 20 members because this 30 
is the size that is run operationally out to 6 days, and hence is our basis set.  There are some 31 
resource limitations in place for running a system operationally that we cannot control.  32 
However, we wanted to show one test of what an increase in ensemble size could buy, and a 33 
limited time period enhanced run was acquired  (single 80 member ensemble run, page 28095 34 
(lines 1-23)).  As we expected, you can get a big payoff with increasing ensemble size because 35 
we are likely doing a lot better in capturing a realistic background error covariance.  I’m unsure 36 
of why the scatterplot for 20 versus 80 members is troubling, except that it shows there is a lot 37 
of room for improvement in future development of this system.  With our resources, the 20 38 
member system will serve as the base system with potential for moving to larger ensemble sizes 39 
in the future.   As we mentioned in the paper, we have plans for future studies in ensemble size 40 
as well as model resolution (page 28095, lines 18-24; page 28105, lines 23-26).  It should be 41 
noted that the optimization tests were conducted on the 20 member ensemble, and therefore, 42 
things like localization are not necessarily optimal for the 80 member (less localization would be 43 
needed for the larger ensemble size).  We don’t have the resources for these optimization runs 44 
at the moment, but expect to do more work on this in the future. 45 
 46 
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Manuscript changes:  To make it clear that the optimization tests were conducted on the 20-1 
member ensemble, we made changes to the following sentences:  2 
It should be noted that several initial tuning experiments were conducted with the 20 3 
member ensemble in which a range of constant inflation factors were tested, in a similar 4 
fashion to Schutgens et al. (2010b).   5 
 6 
Several length scales were tested in initial tuning runs of the 20 member ensemble and a 7 
length scale of 1000km is selected for use in this work.   8 
 9 
It should be noted that the single 80-member simulation uses the same localization 10 
lengthscale as the 20-member ensemble. Optimization of the 80-member ensemble 11 
was not conducted due to resource limitations and will be evaluated in future work.   12 
 13 

3. The authors at times generalize too much from their own (limited set of) experiments: while the 14 
possible problem due to constant inflation is worth mention and analysis, no other authors have 15 
come across this and it is possible this is entirely due to very a specific system (ENAAPS-DART). 16 
 17 
Response:  We would argue that this finding is most likely not system specific.  For idealized 18 
experiments and NWP applications, similar findings with regards to constant and a varying 19 
inflation were identified.  This was mentioned in the manuscript on page 28087 (lines 6-9). 20 

While this has never been directly discussed for aerosol applications, there have been hints to 21 
this issue.  For example, Schutgens et al. (2010) ran sensitivity studies for a one month 22 
simulation (July 2005) for aerosol assimilation of AOT.  One of the sensitivity experiments 23 
conducted was varying the inflation factor for a constant multiplicative inflation.  They found 24 
instabilities developing for an inflation factor of 1.20 and 1.30 where unrealistic aerosol mass 25 
mixing ratios developed.  This result was for a short one-month simulation, so the instability can 26 
be seen for large inflation factors.  We suspect that if the simulation was run out for a longer 27 
time period, issues would have developed for smaller constant inflation factors as well.  28 
However, we will change the strength of the wording to indicate that we suspect this result is 29 
applicable to other systems.  30 

Manuscript changes: Based on the results in this work, an adaptive covariance inflation 31 
is recommended over a spatially and temporally uniform covariance inflation.   The 32 
adaptive approach overcomes instability issues that arise due to spatially heterogeneous 33 
observations with the constant inflation approach and it is expected the same finding 34 
will apply to other systems.  35 

 36 

4. The relative importance of source vs meteorology perturbation is hard to assess given that 37 
source perturbations are always generated with a 25% spread. This uncertainty seems optimistic 38 
at hourly and gridbox scales. 39 

 40 
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Response:  We agree that the 25% uncertainty applied to the source perturbations might be 1 
optimistic as we know emissions can be highly uncertain, especially for boreal fires.  However, 2 
the system behavior indicates that regardless of the perturbation applied, the spatial impact (or 3 
lack therefore) of the data assimilation using only a source-perturbed ensemble would be the 4 
same.  By perturbing the sources for smoke as an example, the impact on the system is to create 5 
large correlations at all distances between smoke emissions, only limited by the localization 6 
lengthscale.  While increasing the source-perturbations would increase the size of the analysis 7 
increment, it wouldn’t impact the area of influence (ie. near source regions).  The same problem 8 
of not being able to impact aerosol transport events (away from source-regions) as discussed in 9 
the manuscript would hold for a source-only ensemble.  While we know that some changes 10 
need to be made to how the source perturbations are generated as discussed in the manuscript 11 
(page 28091, lines 13-14; page 28092, lines 13-14;page 28104, lines 16-17), our conclusion of 12 
needing both source perturbations for data assimilation near-source regions and meteorology 13 
ensemble for transport events would hold. 14 
 15 

5. Sometimes there are quite lengthy descriptions of results, region by region, while the same 16 
results are efficiently summarised in Figures and Tables. Maybe the authors can try to make 17 
their text more concise 18 
 19 
Response:  Thank you, we will work to make the text more concise. 20 
 21 

6. Apparently inconsistent acronyms: AOT and NAVDAS-AOD 22 
 23 
Response:  Aerosol optical thickness (AOT) is the more appropriate term to use for aerosol 24 
extinction in the vertical, therefore, we choose to use AOT instead of AOD throughout the 25 
manuscript.  Since its development, the variational data assimilation system used with NAAPS 26 
(ie. NAVDAS-AOD) has always been referred to in this manner (Zhang et al. 2008); therefore, we 27 
choose not to change the legacy name of this system.   28 
 29 

7. The paper by Schwartz et al JGR 2014 deserves mention as it also compares 3D-VAR and 30 
ensemble Kalman filter methods for aerosol assimilation. 31 
 32 
Response:  We agree and will add this reference to our manuscript. 33 
 34 
Manuscript changes: For aerosol applications, a number of data assimilation methodologies 35 
have been tested both regionally and globally and shown to improve model performance 36 
(Collins et al.  2001; Yu et al 2003; Generoso et al. 2007; Adhikary et al. 2008; Zhang et al. 2008; 37 
Benedetti et al. 2009; Schutgens et al. 2010a,b, Zhang et al. 2011, Schwartz et al. 2012, Rubin et 38 
al. 2014, Sekiyama et al. 2010). 39 
 40 

8. Introduction: a major advantage of ensemble DA systems over others is the relative ease of 41 
implementation and maintenance, especially in view of the fact that many aerosol and aerosol-42 
cloud processes can be modelled in different ways 43 
 44 
Response:  Thank you, we will add this point to the introduction. 45 
 46 
Manuscript changes: Finally, ensemble systems provide an opportunity to apply Ensemble 47 
Kalman Filter (EnKF) data assimilation technologies which are relatively easy to implement and 48 
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allow for flow-dependent corrections to the predicted state fields (Evensen, 1994; Houtekamer 1 
and Mitchell, 1998). 2 
 3 

9. p 28073, l 13: "In order to increase understanding of forecast uncertainty and aerosol 4 
forecasting dependencies on underlying meteorology, a 1 resolution, 20 member ensemble 5 
version of NAAPS (ENAAPS) was created". The exact meaning eludes me.  Does this refer to a 6 
one-off experiment or is it an on-going activity? What was learned from this? 7 
 8 
Response:  As an initial exploration of forecast uncertainty, an ensemble version of NAAPS 9 
driven purely by the NOGAPS or NAVGEM meteorology ensemble was created.  Forecasts using 10 
ENAAPS were initially run off of the analysis fields from the NAVDAS-AOD data assimilation 11 
system and were available on the NRL aerosol webpage.  However, we wanted to take full 12 
advantage of the ensemble and set up ENAAPS forecasts to be initialized with analysis field from 13 
an ensemble data assimilation system, the focus of this work.  We will clarify this point in the 14 
introduction.  Thanks. 15 
 16 
Manuscript change:) As an initial exploration of aerosol forecast uncertainty and its 17 
dependencies on underlying meteorology, a 1 degree resolution, 20-member ensemble version 18 
of NAAPS (ENAAPS) driven by the NOGAPS or NAVGEM meteorology ensemble was created.  19 
Forecasts using ENAAPS were initially run off of the analysis fields from the NAVDAS-AOD data 20 
assimilation system.   Encouraged by successes using aerosol EnKF data assimilation within an 21 
NWP framework (e.g., Sekiyama et al., 2010; Schutgens et al., 2010a,b ; Pagowski and Grell, 22 
2012; Khade et al., 2013), here we investigate the use of ENAAPS for operational aerosol 23 
forecasting purposes by replacing the NAVDAS-AOD data assimilation system with the NCAR 24 
Data Assimilation Research Testbed (DART) implementation of an EnKF. This system is referred 25 
to as the ENAAPS-DART system. 26 
 27 

10. p 28074, l 17: "a brief synopsis is provided here, noting a few key differences". While I agree 28 
with this level of detail, I think the text might be clearer in specifying what are the differences. 29 
E.g. "Likewise, the sea salt source is dynamic in nature with emissions as a function of surface 30 
wind speed (Witek et al., 2007)." suggests there are no differences wrt seasalt so why mention 31 
it? It doesn’t help that a brief (and necessary) explanation of basic aerosol description is 32 
interjected ("A combined anthropogenic and biogenic fine aerosol species (ABF) is represented 33 
in the model which accounts for a combined sulfate, primary organic aerosol and a first order 34 
approximation of secondary organic aerosol."). I suggest to reorganise this in two paragraphs: 35 
the first a very brief overview of essential NAAPS characteristics (e.g. basic aerosol description + 36 
emission datasets and parametrisations), the second the key differences of the version used in 37 
this paper 38 
 39 
Response:  Thank you for your feedback on this.  We will edit the description of NAAPS and 40 
ENAAPS to make it clearer. 41 
 42 
Manuscript changes: A thorough description of basic NAAPS characteristics can be found in 43 
Witek et al., (2007) and Reid et al., (2009), but a brief synopsis is provided here, including a few 44 
key differences between the NAAPS implementation used in this work and the literature. 45 
Smoke emissions from biomass burning are derived from satellite-based thermal anomaly data 46 
used to construct smoke source functions via the Fire Locating and Modeling of burning 47 
Emissions-FLAMBE database (Reid et al. 2009; Hyer et al. 2013). However, for simulations 48 
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conducted in this work, a version of FLAMBE that derives smoke emissions from MODIS 1 
thermal anomaly data only is used, consistent with the NAAPS decadal reanalysis (Lynch et al. 2 
2015).  Dust is emitted dynamically as a function of friction velocity, surface wetness, and 3 
surface erodibility using NAAPS standard friction velocity to the fourth power method, but with 4 
the erodibility map of Ginoux et al. 2001.  The sea salt aerosol source is dynamic in nature with 5 
emissions as a function of surface wind speed as described in Witek et al. 2007.  A combined 6 
anthropogenic and biogenic fine aerosol species (ABF) is represented in NAAPS which accounts 7 
for a combined sulfate, primary organic aerosol and a first order approximation of secondary 8 
organic aerosol.  Anthropogenic emissions come from the ECMWF MACC inventory (Lamarque 9 
et al. 2010).  The Navy’s current operational aerosol forecasting system uses NAAPS coupled to 10 
a 2-dimensional variational (2dVAR) data assimilation system (NAVDAS-AOD, Zhang et al. 2008; 11 
2014) for assimilating AOT retrievals (Zhang et al. 2005; Zhang and Reid, 2006, 2009; Hyer et al. 12 
2011; Shi et al. 2011) to produce forecast initial conditions every 6 hours. 13 
 14 

11. What is meant by a MODIS-only version? FLAMBE is completely ignored? Or only MODIS data 15 
are used for a specific FLAMBE version? 16 
 17 
Response:  Here we are using a version of FLAMBE that only uses MODIS data.  We use this 18 
version of FLAMBE as it is used in the NAAPS decadal reanalysis which serves as an internal 19 
benchmark. We will clarify this point in the description. 20 
 21 
Manuscript change: However, for simulations conducted in this work, a version of FLAMBE 22 
that derives smoke emissions from MODIS thermal anomaly data only is used, consistent with 23 
the NAAPS decadal reanalysis (Lynch et al. 2015). 24 
 25 

12. ENAAPS is in principle independent of (aerosol) assimilation, no? So the "exception of data 26 
assimilation" is a bit confusing. The distinction between ’deterministic’ and ’ensemble’ 27 
meteorology fields is also confusing. I’m guessing this is in-house jargon? The ensemble 28 
meteorology fields are also the result of deterministic models. How is this ensemble produced 29 
(e.g. what is perturbed, a very brief description of McLay et al would be good)? What does 30 
"truncated to 1 degree" mean (is NOGAPS a spectral grid model)? Why match the deterministic 31 
(!) NAAPS reanalysis? It will beused with ENAAPS, not? 32 
 33 
Response:  Yes, ENAAPS can be independent from data assimilation.  Here we are referring to 34 
the ENAAPS-DART system versus the NAAPS/NAVDAS-AOD system.  We will change ENAAPS to 35 
ENAAPS-DART and NAAPS to NAAPS/NAVDAS-AOD to make this point clear.  With respect to the 36 
meteorology fields, we are referring to a single set of meteorology fields produced from the 37 
deterministic model for the ‘deterministic’ fields.  For the ensemble meteorology fields, these 38 
are produced using an ensemble transform to perturb the analysis fields (wind, temperature, 39 
specific humidity, and surface pressure) as discussed in McLay et al. (2010).  Yes, NOGAPS is a 40 
spectral model with a higher resolution than ENAAPS, therefore, the NOGAPS output is 41 
truncated to produce a one-degree resolution output for the ENAAPS simulations. We chose to 42 
match the 1 degree resolution used here in the ENAAPS-DART base system with the NAAPS 43 
reanalysis to have aerosol product lines that can be easily compared. However, as mentioned in 44 
the manuscript, we plan to do additional studies on model resolution. 45 
 46 
Manuscript changes: With the exception of data assimilation (Section 2.2), the architecture of 47 
ENAAPS-DART is very similar to the deterministic version of NAAPS/NAVDAS-AOD. The model 48 
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physical parameterizations are the same. However, instead of deterministic NOGAPS 1 
meteorology fields, NOGAPS ensemble meteorology fields are used.  The NOGAPS 2 
ensemble meteorology fields (20 member) are produced operationally at FNMOC at 0.5 3 
degree resolution out to six days.  These fields are produced by perturbing initial 4 
conditions (wind, temperature, specific humidity, and surface pressure) using an 5 
ensemble transform method as discussed in McLay et al. (2010).  For ENAAPS, all 6 
twenty NOGAPS ensemble members are used for driving the model simulations, 7 
truncated to 1 degree to match the deterministic NAAPS reanalysis (Lynch et al. 2015).     8 
 9 

13. "requires a priori assumptions". It can be argued that ensemble DA methods also require a-10 
priori assumptions on the model forecast error, in that they assume a-priori uncertainties in 11 
meteorlogy and emissions and from that calculate the ensemble forecast. 12 

 13 
Response: Yes, this is true that there are assumptions in ensemble data assimilation about 14 
Gaussian distributions etc.  This is certainly a limitation of ensemble data assimilation.  Here we 15 
are trying to make the point that the error covariance is produced a priori and is static.  While 16 
the ensemble covariance will of course not be perfect, it provides a means for allowing the 17 
uncertainty to vary with time and with processes that occur in the model simulations. We will be 18 
more specific in making this point.  Thank you.  19 
 20 
Manuscript changes: The variational approach, which is used in the current NAVDAS-21 
AOD system, uses a static model forecast error.   22 
 23 

14. p 28076, l 4: "is considered to be a random draw from the probability distribution of the model’s 24 
state given all previously used observations." This sentence completely ignores a-priori error 25 
sources in the ensemble, even though they are the essence of the system 26 

 27 
Response: This is the premise of ensemble prediction systems and the formulation of EnKF is 28 
based on this principle. While the analytical theory is based on this, ensemble DA systems have 29 
been found to work well even when these assumptions are violated.  In particular, ensembles 30 
have been found to work well with heavily biased model forecasts when using the adaptive 31 
inflation (Anderson 2009). 32 
 33 

15. p 28076, l 5: "The use of ensembles to sample the error allows the error to evolve non-linearly in 34 
time with the flow-dependent covariances between different state components determining 35 
how observations impact the ensemble estimate" Shouldn’t there be a comma after ’in time’? 36 
 37 
Response: Thank you, we will add a comma. 38 
 39 

16. p 28076, l 17: It is not entirely clear how EAKF and DART relate? EAKF is part of DART, and I think 40 
it is the only ensemble DA in DART. What does DART offer beyond EAKF? 41 

 42 
Response: EAKF is one of the filter options available in DART.  There are several different filter 43 
types including an EnKF, Kernel filter, Particle filter and several other options as described in 44 
DART documentation.  We will make this point more clearly in the text. 45 
 46 



62 
 

Manuscript change: DART has been successfully applied to a host of meteorological and 1 
atmospheric composition data assimilation problems (e.g., Arellano et al. 2007, Khade et al., 2 
2012, Raeder et al. 2012 , Hacker et al. 2013 and many more) and provides the option to 3 
interface to a number of different filter types, including EAKF, EnKF, kernel and particle filters. 4 

 5 
17. p 28076, l 20-25: Apparently DART does not include an observation operator H, but uses 6 

ENAAPS calculations of AOT. As AOT will depend on humidity (which will be different in different 7 
ENAAPS members), doesn’t this imply that the effective observation operator used in DART is 8 
non-linear instead of the linear operator assumed in a Kalman filter? (That is: across the 9 
ensemble, AOT cannot be generated from a form like H x, with x the aerosol state vector and H a 10 
matrix). 11 
 12 
Response:  This is up to the person implementing DART on whether they want to use an 13 
observation operator that acts on the state variables as they are read into DART or as done 14 
here, apply an observation operator outside of DART.  Yes, there are nonlinearities due to 15 
humidity, which does vary between ensemble members.  This is always an issue with data 16 
assimilation.  However, DART applies forward operators sequentially, so arbitrary nonlinear h 17 
are trivial to implement. 18 
 19 

18. p 28077, l 27: Why usually in the prior? Won’t this distort any covariances that have been built 20 
up during the short-term forecast? Can’t it be applied to the posterior? I thought that was the 21 
more common way to use inflation. 22 

 23 
Response:  Priors that are unrealistically confident result in the observations having insufficient 24 
weight in the data assimilation update and over time, lead to filter divergence.  Because of this, 25 
the covariance inflation is typically applied to the prior (Anderson and Anderson, 1999) and this 26 
is especially the case for EnKF systems for weather prediction. However, the inflation can be 27 
applied to the posterior as well (ie. Whitaker and Hamill, 2012).  The inflation increases the 28 
spread about the mean, so it doesn’t impact the sample correlations between components. 29 
 30 
 31 

19. p 28079, l 3-5: "The effectiveness of the ensemble data assimilation system is highly dependent 32 
on having sufficient spread in the ensemble members in order for the observations to impact 33 
the model forecast." This suggests that the biggest issue is to have as large a spread as possible. 34 
I would argue instead that the spread should be an indication of forecast uncertainty (both 35 
know uncertainties, ie meteorology and emissions and unknown uncertainties, e.g. due to 36 
model errors). 37 

 38 
Response:  Note that we aren’t saying that we want the most spread possible here, we are 39 
saying there must be sufficient spread.  This means we need adequate or enough spread (ie. to 40 
represent the uncertainty).   Often times with ensembles, they are spread deficient which can 41 
lead to filter divergence and the observations won’t have an impact.  Here we are saying we 42 
want sufficient spread that represents the system.  The adaptive inflation algorithm used in this 43 
work is designed to try and make the spread consistent with the RMSE as you suggest. 44 
   45 

20. p 28079, l 5-15: Maybe the generation of the emission ensemble should be discussed before the 46 
inflation/localization? The latter are after all solutions to limitations in the first. 47 

 48 
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Response:  We reordered this section to make it clearer.  Thanks. 1 
 2 

21. p 28079, l 13: Why 25% and not 10 or 100%? For sea-salt and dust, arguably perturbing emitted 3 
particle size/windspeeds can be just as important? 4 

 5 
Response:  The impact of wind speed on sea salt and dust emissions is accounted for when the 6 
meteorology ensemble is used (ie. through differences in the wind fields across the ensemble 7 
members).  While 25% uncertainty may be optimistic as discussed in a response to a previous 8 
comment, we thought this was a good first estimate of the source-perturbation.  A means for 9 
evaluating if this is sufficient is to look at whether or not the system as a whole has enough 10 
spread.   This is done in this work by evaluating how the pooled spread (combined ensemble 11 
spread and observational error) compare to the RMSE of the prior relative to the observations.  12 
These should be approximately the same if the system is well tuned.  What we found is that the 13 
system was pretty well tuned with the exception of fire-impacted regions with not enough 14 
spread for high AOT events.  This indicates we don’t have enough spread and we need to 15 
potentially change how the fire emissions are represented in the ensemble (page 28101, lines 16 
27-29).  This could be done by increasing the source perturbations to the fire emissions (page 17 
28092, lines 13-15).  So in conclusion, we selected a conservative perturbation for the sources 18 
and based on the results from this study, have recommendations on how to move forward and 19 
improve the system.   20 

 21 
22. p 28080, l 6: It would be good to have a brief explanation how rank histograms are created and 22 

what their purpose is? They are not a standard test in aerosol ensemble DA (but possibly should 23 
be). 24 

 25 
Response:  Yes, we can add a few sentences to better explain the purpose of the rank histogram 26 
and how it is generated. 27 
 28 
Manuscript change: (page 28076, lines 34-36) The first method is through examination of the 29 
prior 6-hour forecast against MODIS AOT observations, before assimilation occurs, using 30 
diagnostics such as RMSE, bias, ensemble and total spread, number of assimilated observations, 31 
and rank histograms.  Rank histograms are generated by repeatedly tallying the rank of the 32 
observation relative to values from the ensemble sorted from lowest to highest and can be 33 
used for diagnosing errors in the mean and spread of the ensemble forecast (Hamill 2001). 34 
 35 

23. p 28080, l 8: Why is the prior a stronger indication of assimilation? I guess because they show 36 
how well a previous analysis pulled the system to the truth. An analysis will agree (fairly) well 37 
with observations by construction. Still, a bit more explanation or references are welcome. Do 38 
your data actually bear this out: i.e. does the prior show stronger signal to variation in 39 
experimental setup than the posterior? This would be very interesting to show. 40 

 41 
Response:  It is much harder to compare MODIS AOT observations to the posterior AOT because 42 
they are no longer independent.  It has been assimilated and therefore, you would expect better 43 
agreement.  Here we are saying to use the 6-hour forecast AOT (ie. Prior) and compare that 44 
against MODIS AOT before assimilation.  This gives us an indication if the model is doing a better 45 
job in predicting the state relative to the observations (before they are combined) and provides 46 
a means for evaluating how well the system is doing in representing forecast uncertainty.  This is 47 
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common practice in evaluating a data assimilation system.  This section was updated to clarify 1 
the points being made. 2 
 3 
Manuscript change: The performance of the 2-month experimental simulations is evaluated in 4 
several ways.  The first method is through examination of the prior 6-hour forecast against 5 
MODIS AOT observations, before assimilation occurs, using diagnostics such as RMSE, bias, 6 
ensemble and total spread, number of assimilated observations, and rank histograms.  Rank 7 
histograms are generated by repeatedly tallying the rank of the observation relative to values 8 
from the ensemble sorted from lowest to highest and can be used for diagnosing errors in the 9 
mean and spread of the ensemble forecast (Hamill 2001). In order to account for the effect of 10 
observation error in the rank histograms, the forecast values are randomly perturbed for each 11 
ensemble members by the observation error (Anderson 1996, Hamill, 2001, Saetra et al. 2004).  12 
The focus of this observation-space evaluation relative to MODIS AOT is on the prior since this 13 
is a stronger indicator of how the assimilation is impacting the model predictions. Benchmarks 14 
of a good ensemble system include stability in ensemble spread, an RMSE that is small and 15 
comparable to the total spread, and rank histograms that indicate an ensemble distribution that 16 
is consistent with the observations (Anderson 1996).  Since aerosol composition and 17 
characteristics are variable depending on the type of aerosol sources and the location-18 
dependent processes that impact transport, transformation, and lifetime, the diagnostics are 19 
evaluated regionally.  The experimental 6-hour AOT forecasts are evaluated over 13 land regions 20 
as indicated in Figure 1 as well as six ocean regions, including the northern and southern 21 
hemisphere Pacific and Atlantic Oceans, the Indian and the Southern Ocean.  Additionally, it is 22 
important to evaluate the posterior fields since these serve as forecast initial conditions.  The 23 
assimilation posterior fields are examined relative to ground-based 550 nm AOT fields based on 24 
NASA AErosol RObotic NETwork (AERONET) observations (Holben et al. 1998; O’Neill et al., 25 
2003) since these observations are not assimilated and therefore, can be used as an 26 
independent evaluation of the data assimilation analysis fields. 27 
 28 

24. p 28081, l 8: Maybe change "incorporate" to "assimilate"? 29 
 30 
Response:  Ok, thanks. 31 
 32 
Manuscript change: The NAAPS/NAVDAS-AOD simulations are run with a 1 degree resolution 33 
and assimilate the same MODIS AOT observational dataset for consistency.   34 

 35 
25. p 28082, l 1: So which ENAAPS-DART assimilation experiment is shown here? What has been 36 

perturbed here? Has the system been optimised or not (inflation/localization)? What is the 37 
purpose of this Section? If it is to show global aerosol features, isn’t this better shown during the 38 
comparison with NAAPS/NAVDAS? It might be clearer to first discuss the optimization 39 
experiments and only then discuss the global features seen in the best setup. 40 

 41 
Response:  This result is for the meteorology and source perturbed ensemble with adaptive 42 
inflation.  The purpose of this section was to present what aerosol features are being predicted 43 
during this time period so that they can be discussed in evaluating the system optimization as 44 
well as during the comparison between the deterministic and ensemble systems.  We will work 45 
to make this clearer. 46 
 47 
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Manuscript change: Average ENAAPS-DART AOT fields (Met+Source, adaptive) for the Boreal 1 
Spring (April, May) and Boreal Summer (June-September), 2013 are shown in Figure 2. 2 
 3 

26. p 28084, l 13: Why now the posterior AOT? Earlier you argued that the prior AOT should be used 4 
for comparison against observations. 5 
 6 
Response:  Evaluating the prior is a good way to evaluate and diagnose the performance of the 7 
system relative to the observations that will be assimilated (MODIS AOT).  This provides a means 8 
for evaluating how well we are doing in representing forecast uncertainty in our system and the 9 
overall health of the system.  It is fair game to evaluate the posterior AOT against independent 10 
observations (AERONET) that are not assimilated. This is also an important evaluation since the 11 
posterior serves as initial conditions for our aerosol forecasts.  We use both methods of 12 
evaluating the system performance in this work.  This is discussed in the methods section on 13 
page 28080 (lines 1 through 21). The section describing diagnostics was updated as shown in 14 
response to comment 23 to clarify. 15 

 16 
 17 

27. p 28084, l 17: Higher dust AOT is probably due to some higher windspeeds in the meteorology 18 
ensemble and the threshold windspeed for dust emission? What drives the increased AOT over 19 
wildfires? 20 
 21 
Response:  Yes, the higher dust AOT is due to the introduction of different wind speeds across 22 
the ensemble members with the inclusion of the meteorology ensemble.  For fire-impacted 23 
regions, the model generally produces a positive bias.  With more spread in the simulations that 24 
include the meteorology ensemble, the observations have more weight in the analysis and the 25 
AOT is reduced. 26 
 27 

28. p 28085, l 11: This is an interesting discussion of the role of inflation. It seems to me that the 28 
discrepancy between prior and observations is due to either: 1) observational biases; 2) model 29 
biases. A Kalman filter assumes that both are unbiased. Your results suggests that adaptive 30 
inflation serves to camouflage such biases (unless they become too big and the syetm crashes). 31 
This warrants some discussion by the authors. 32 
 33 
Response:  Inflation is one of several means used to help overcome errors in ensemble systems.  34 
While it is one method for improving system performance, careful evaluation of how the 35 
algorithm behaves is also a means for better understanding the system and in ways that it can 36 
be improved.  Case in point is the example you pointed out on page 28085, line 11.  This is an 37 
issue that indicates a potential problem with the model as you suggested and in particular, fire-38 
dominated regions.  There were several issues related to smoke-dominated regions highlighted 39 
and the case is made throughout the manuscript (page 28092, lines 12-18; page 28096, lines 23-40 
28) that issues in smoke-dominated regions indicate a need for re-tuning of the smoke 41 
emissions which we expect would alleviate the problems seen in the adaptive inflation 42 
algorithm for the Eurasian Boreal fire impacted region.  One of our major concluding points is 43 
that work needs to be done in smoke-dominated regions to improve the system (page 28104, 44 
line 25-26 to page 28105, line 1). 45 
 46 

29. p 28085, l 18: prior of inflation equals its posterior from previous cycle: this is also known as 47 
persistence modelling. 48 
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 1 
Response:  Yes, we agree with you.  In our implementation of adaptive inflation, a damping 2 
factor of 0.9 is applied to the posterior from the previous cycle to produce the prior for the next 3 
cycle (page 28085, line 21).  So the damping is the time variation model for the inflation.   4 

 5 
30. p 28086, l 2: "issues occur with the constant covariance inflation where there is limited 6 

observational coverage". See my previous comment, I believe this could be equally due to biases 7 
in observations or models than coverage. 8 
 9 
Response:  Covariance inflation does help overcome underrepresented variance in the 10 
ensemble due to model bias and sampling error caused by the small ensemble size.  We 11 
certainly agree that model bias will vary with location and time and therefore, an inflation factor 12 
at one location might not be appropriate at another.  This can certainly be an issue with 13 
constant covariance inflation.  However, when you have a non-uniform observing network, the 14 
result of applying a uniform inflation is that you end up with unreasonable solutions in regions 15 
that have limited observations (ie. Southern Ocean) because the ensemble is continuously 16 
inflated and there are no observations to constrain the state fields.  This is a bigger issue in 17 
these under-observed regions because it can lead to the simulation crashing.  This is the point 18 
we are making here.  19 

 20 
31. p 28086, l 8: "the normalized standard deviation", that is: 1 ? Ah, Figure 4 suggests it is 21 

normalised by the mean. Please indicate this in the text as well. 22 
 23 
Response:  Thank you, we will do that. 24 
 25 
Manuscript change: If the observation density is compared to the prior ensemble spread, 26 
represented as the standard deviation of the ensemble AOT normalized by the mean, at the 27 
end of the constant inflation experiment (Figure 4a), it is apparent that large spread develops 28 
where there is limited observational information, including high latitudes and spots over the 29 
Pacific Ocean.   30 

 31 
32. p 280866, l 22: "The growth in spread in the Southern Pacific Ocean for the constant inflation 32 

experiment is a result of having continuous inflation with no observations to bring the ensemble 33 
back to reality". I think it is important here to note that this may be a feature solely found in 34 
DART-EAKF. To my knowledge, no other studies (e.g. Sekiyama et al, Schutgens et al, Dai et al) 35 
have found this growing ensemble spread. It may be related to the fact that in DART, inflation is 36 
applied 1) to the prior; 2) even when there is no reason for inflation (i.e. when there are no 37 
observations). p 28087, l 2: "Although spatially and temporally constant covariance inflation has 38 
been the chosen method for aerosol applications in the past, it is not recommended since 39 
aerosol observations are spatially heterogeneous. On the other hand, adaptive inflation 40 
increases ensemble spread where there is observational information available,producing 41 
stability, a desirable characteristic for an ensemble system". This statement is far too bold with 42 
little evidence to back it up. Your analysis suggests this to be true for DART-EAKF but as I said 43 
before, it hasn’t be noticed by other authors. I suggest rephrasing this to something like: "It is 44 
suggested that particular attention is paid to the temporal evolution of ensemble spread in case 45 
a constant inflation factor is used, because our results suggest." 46 
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 1 
Response:  There is a lot of evidence of this occurring in atmospheric data assimilation and hints 2 
of this in aerosol data assimilation as discussed in the response to comment 3.  This is related to 3 
inflation without observations as previously discussed and is not specific to DART EAKF.   4 
 5 

33. p 28087, l7: "These findings are consistent with idealized experiments and NWP applications of 6 
ensemble systems where a temporally and spatially varying inflation is recommended over a 7 
constant inflation approach (Anderson, 2009; Li et al., 2009; Miyoshi et al., 2011)." Obviously 8 
there are other reasons why AI may be preferential to a constant inflation factor. I believe the 9 
listed authors discuss the issue of model biases that are effectively dealt with by AI. Note that 10 
model biases are really the bane of DA and AI is essentially a way to sweep them under the 11 
carpet (or conversely: a way of studying them by tracking the evolution of the inflation factor). 12 
 13 
Response:  For example, in Li et al. 2009: “we have used a globally uniform inflation factor, 14 
which is clearly not a good assumption in reality where the observations are non-uniformly 15 
distributed. With a spatially dependent inflation, we may be able to better deal with an 16 
irregularly observing network”.  Likewise, in Anderson 2009: “A more serious problem occurs 17 
when a single value of inflation is not appropriate for all state variables. Assimilation of in situ 18 
observations, like radiosonde and aircraft observations, in a global numerical weather prediction 19 
model provides an example. In densely observed regions like the upper troposphere over North 20 
America, ensemble variance can be inappropriately small due to model bias and sampling error. 21 
Inflation can reduce this problem. However, over the Southern Ocean, there are very few 22 
observations to constrain the model. Repeated application of inflation values large enough to 23 
correct problems over North America can systematically increase the variance of the ensemble 24 
over the Southern Ocean. Eventually, this can lead to values that are inconsistent with 25 
climatological values, and in the worst case, incompatible with the model’s numerical methods. 26 
The result is ridiculous solutions, at best, and model failure, at worst. “ 27 

 28 
34. p 28087, l 23: "In particular, a large increase in spread is found at dust source regions." 29 

Presumably because of the windspeed threshold for dust emission? How much bigger than 25% 30 
is the spread? 31 

 32 
Response:  With the meteorology ensemble, we now have different wind speeds associated 33 
with each ensemble member.  This produces different amounts of dust for each ensemble 34 
member since dust emissions are a function of wind speed, therefore, increasing the ensemble 35 
spread in these regions. “In particular, a large increase in spread is found at dust source regions. 36 
For example, the spread increases from approximately 20 to 50 % in the Northern Arabian 37 
Peninsula“ page 28087, lines 21-23. 38 

35. p 28088, l 1: "the meteorology ensemble increases spread for sea salt aerosol" Seasalt emission 39 
is presumably not governed by a windspeed threshold, although it will have a non-linear 40 
dependence on windspeed. Is this effect therefore larger for dust than seasalt? 41 
 42 
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Response:  We see a pretty good increase in spread for both dust and sea salt.  The increase in 1 
spread is determined by how much the wind speed varies across the ensemble for a particular 2 
region and at a particular time of interest and how that difference across the ensemble 3 
translates to sources via the emission function.  For dust, the emissions are represented as the 4 
surface friction velocity to the fourth power.  For sea salt, the emissions are a function of the 10 5 
meter wind speed raised to the 3.41 as described in Witek et al. 2007. 6 

 7 
36. p 28088 l 5: "The meteorology ensemble appears to be the main driver of ensemble 8 

spread." It may be good to remind the reader that you have assumed a 25% uncertainty 9 
in emissions. I find this rather low especially because this is uncertainty on short time- 10 
scales (hourly, daily). Already at longer time-scales (months, year) Granier et al 2011 11 
and Huneeus et al. 2011 find larger uncertainties over large regions. 12 

 13 
Response:  We will add this point to the above sentence. 14 
 15 
Manuscript change: The meteorology ensemble appears to be the main driver of ensemble 16 
spread when included with a 25% source-perturbed ensemble.   17 

 18 
37. p 28088, l 15: Regarding stabilization of ensemble spread, this is not obvious for WCONUS 19 

 20 
Response:  It’s hard to see in this region because there are large wildfires impacting WCONUS 21 
during the end of the simulation period.  With larger AOT being produced due to the fires, the 22 
ensemble spread will increase as well.  However, for longer simulations that have been 23 
conducted, we see no problems in this region with stabilization. 24 
 25 

38. p 28088, l 20: I suggest using brackets instead of commas to delineate "the square root of the 26 
sum of the ensemble variance and the observational error variance" 27 
 28 
Response:  Ok, thank you.  We will change this. 29 
 30 
Manuscript change: A good means for determining how well the ensemble system represents 31 
uncertainty is a comparison of the prior total spread (the square root of the sum of the 32 
ensemble variance and the observational error variance) in AOT to the prior RMSE.   33 

 34 
39. p 28092, l 3: couldn’t this be due to insufficient ensemble spread at low AOT? Several authors 35 

have pointed out that a positive variable like AOT can only have a large spread at small values if 36 
the distribution is allowed to be very skewed (i.e. non-Gaussian, contradicting a basic 37 
assumption in a Kalman filter). The small spreads that occur in ensemble runs are a direct result 38 
of small source perturbation at low mean source values. I believe this is an unresolved issue. 39 
 40 
Response:  Yes, we agree on this point and will include this in our discussion of the results. 41 
 42 
Manuscript change: This relationship is consistent across the experimental ENAAPS-DART 43 
configurations, represented by the different colors in Figure 7.  It indicates that the 44 
observational error is too large relative to the ensemble spread for small AOT values, with 45 
similar results found for other fire-impacted regions (South America, Southern Hemisphere 46 
Atlantic).  This relationship is likely caused by the ensemble spread being too small for small 47 
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AOT values since aerosol mass is a positive-definite quantity.  For data assimilation, this 1 
translates to a reduced impact of the observation on the model state. 2 

 3 
40. p 28092, l 7: The case of too small a spread at high AOT may also be the result of missing causes 4 

of uncertainty. E.g. you don’t perturb deposition processes. Perturbing them will have a bigger 5 
impact at high AOT than at low AOT because (again) AOT cannot go below zero. 6 
 7 
Response:  Yes, we agree that not having enough spread means that we aren’t capturing all the 8 
uncertainties. 9 
 10 
Manuscript change: For the case of large AOT in the North American Boreal for example, there 11 
is not enough spread and the uncertainty is underrepresented for all ENAAPS-DART experiments 12 
(Figure 7).  This may be the result of not using large enough source perturbations for smoke or 13 
the result of not accounting for uncertainties in physical processes such as deposition.  14 
However, other regions impacted by summertime burning events such as South America, the 15 
Southern Hemisphere Atlantic Ocean (Figure 7), the Eurasian Boreal region, and the Western 16 
United States also have a tendency to underrepresent uncertainty for large AOT events.  Smoke 17 
emissions have very large errors; often as large as an order of magnitude uncertainty (Reid et al. 18 
2009, 2013; Hyer et al., 2013).  As a result, a larger source perturbation (greater than the 25% 19 
standard deviation currently applied) for smoke emissions is likely needed to produce a better 20 
tuned system.   21 

 22 
41. p 28093, l 17: "since they are independent." The prior and the observations are also 23 

independent so this cannot be the reason to choose the posterior. 24 
 25 
Response:  Please see the response to comments 23 and 26. 26 
 27 

42. p 29095, l 7: "performance gains" The authors are undoubtably aware that this comes at a hefty 28 
cost: 4x more CPU requirements. I think that ’performance’ may not be the best word here as it 29 
implicitly suggests some optimal cost/benefit ratio. 30 
 31 
Response:  Thank you, we will reword this statement. 32 
 33 
Manuscript change: Initial results show that further reductions in RMSE can be achieved by 34 
increasing the ensemble number at most AERONET sites, including Beijing in East Asia and many 35 
Eastern US, North African, European/Mediterranean, and Boreal sites (Figure 9d).   36 
 37 

43. p 28096, l 1: It would be good at this stage to point out that NAVDAS-AOD does not include 38 
perturbed meteorology (as far as I understand it). I.e. something like Fig 10 is unlikely to be seen 39 
for NAVDAS-AOD 40 

 41 
Response:  NAVDAS-AOD and NAAPS can’t have a perturbed meteorology because it is a 42 
deterministic simulation. 43 
 44 

44. Sect 3.3 & 3.4 and Table 3 etc: an evaluation of a base model run (control) should be 45 
part of this analysis. Is there even a substantial improvement in AOT due to assimilation (either 46 
3DVAR or EAKF)? 47 

 48 
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Response:  Please see our response to comment 1 on this topic.  Our focus in this work is to see 1 
how the ENAAPS-DART system performs relative to the current operational system which serves 2 
as our baseline.  Including DA does produce an improvement in AOT.  We have subsequent work 3 
that will show this in more detail. 4 

 5 
45. p 28100, l 14-19: "On the other hand, the forecasts initialized with the EAKF fields do a better 6 

job capturing the leading edge of the dust front with the ENAAPS-DART version being smoother 7 
than the deterministic counterpart along the dust front. This demonstrates that the sharpness 8 
achieved in the ensemble data assimilation propagates in the forecast and is an advantage of 9 
using the EAKF initial conditions over the variational initial conditions for the short-term 10 
forecast." The use of ’sharpness’ and ’smooth’ confused me initially. Unless I am mistaken, they 11 
are not juxtaposed but describe different aspects. Consider repharsing this sentence. 12 
 13 
Response:  Yes, we can see where your confusion comes from in this statement.  We were 14 
referring to different aspect of the predicted dust front, which makes it confusing.  We will 15 
reword this discussion to make it clearer.  Thanks.   16 
 17 
Manuscript change: Both of the forecasts initialized with the 2dVAR fields capture the event, 18 
but like the analysis fields, don’t capture the sharp gradient as seen in the MODIS image.  On 19 
the other hand, the forecasts initialized with the EAKF fields do a better job capturing the AOT 20 
gradient at the leading edge of the dust front.  This demonstrates that the sharp gradient 21 
achieved in the ensemble data assimilation propagates in the forecast.  This is an advantage of 22 
using the EAKF initial conditions over the variational initial conditions for the short-term 23 
forecast.  24 

 25 
 26 

46. p 28100, l 5-19: I think it should be pointed out that a substantial part of the plume (eg the 27 
northern edge) is missed by all four forecasts. Please discuss possible causes. 28 

 29 
Response:  Since this is consistent across all forecasts, this is likely attributed by model physics 30 
which is consistent across these configurations. 31 
 32 
Manuscript change: The MODIS visible image and MODIS AOT for the dust case is also included 33 
and shows a narrow band of high optical thickness at the leading edge of the dust front.  All four 34 
configurations produce the dust plume, although the Northern portion of the plume is missing 35 
for all cases.  The missing portion of the plume is likely attributed to the model physics since 36 
this is consistent in NAAPS and ENAAPS.   37 

 38 
47. Section 4, Discussion: I suggest removing this Section in its entirety. It is not really a discussion 39 

but an extended summary. Its main points have already been discussed (in detail) in the main 40 
text. Important conclusions in this Discussion that are not yet in the Summary should be moved 41 
there and phrased more consisely. 42 
 43 
Response:  Thank you, we will rework the discussion. 44 
 45 

48. Section 5, Summary: consider my general comments. 46 
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 1 
Response:  Ok 2 

 3 
49. Fig 6: Not quite clear what is shown here. This is essentially the model forecast covariance? So it 4 

is with respect to a single location? Presumably the black dot in the top row (there are no dots 5 
in the lower rows)? It is the correlation in the AOT fields? 6 
 7 
Response:  This is the spatial correlation in the prior AOT relative to a point indicated by the 8 
black star.  This is meant to show how observational information will spread in different 9 
configurations of the ENAAPS-DART system.  The figure caption will be updated and the size of 10 
the black star is now increased in the figure. 11 
 12 
Manuscript change:  Figure 6. Ensemble correlation fields in the prior AOT relative to a 13 
point indicated by a black star for three different aerosol events: 14 
 15 

50. Fig 15: What does "Not all available MODIS observations are assimilated" refer to? I realise that 16 
the NRL-MODIS dataset is a subset of the official Col 5 product. But why show here a different 17 
product than that which you have assimilated? 18 

 19 
Response:  In this figure, we were trying to show the sharp gradient in the dust front that is 20 
produced in the ENAAPS-DART system is also seen in MODIS observations.  You can see this 21 
clearly when you look at all the observations.  That is why we included this figure, however, we 22 
will include an additional plot of just the assimilated observations (which are a subset of what 23 
has been shown already). 24 

 25 
 26 
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Reply to comments by T. Sekiyama: 1 

Thank you Thomas for the thoughtful review.  Below are our responses to your comments.  2 

1.  I was surprised that the adaptive inflation worked well for aerosol in this study because my 3 
adaptive inflation failed and diverged when I used a method other than Anderson 2009. I have 4 
thought that the adaptive inflation for aerosol is unstable due to a large uncertainty of aerosol 5 
modeling compared to NWP. What do you think? 6 

Response:  The adaptive inflation worked quite well (ie. stable) with the exception of regions 7 
impacted by fires.  Without any measures to control inflation in these regions, the adaptive 8 
inflation did in fact blow-up with inflation factors exceeding 10.  Eventually, unrealistic aerosol 9 
concentrations were produced and the simulations crashed.  This behavior of the adaptive 10 
inflation algorithm for fire-impacted regions indicates that there is an inconsistency between 11 
the observational and the background distribution in optical thickness.  Fire emissions have very 12 
large uncertainties and we thought were the likely drivers of the inconsistencies generating the 13 
unstable growth in the inflation factor since large and persistent fires were occurring during the 14 
simulation time period.  In order to create stability in the simulations, we tuned the standard 15 
deviation of the inflation factor and defined a maximum inflation factor (1.5).  However, we 16 
think that doing some tuning to the smoke emissions in the future would allow for the adaptive 17 
inflation to run without a maximum inflation needed.  These stability problems were discussed 18 
in the results section (page 28085, lines 7-27). 19 

2. It was not described in this paper how (and how much) the observation errors were estimated. 20 
Even though it is described in the references, the estimation method and size of observation 21 
errors are crucial for data assimilation. It is better to show the validity of the method (and error 22 
size) in the manuscript, if possible. Generally speaking, “observation errors” are underestimated 23 
because it is difficult to estimate spatial representativeness and remote-sensing bias. I am afraid 24 
that observation errors are unnaturally underestimated in this paper too. 25 
 26 
Response:  Yes, we agree that the observational errors are a crucial component of data 27 
assimilation.  The observational error estimates are based on long-term comparisons of MODIS 28 
Terra and Aqua AOT to AERONET AOT for over-ocean (Zhang and Reid, 2006, 2009) and over-29 
land (Hyer et al. 2011).  The observational error covariances are treated as diagonal matrices, so 30 
no accounting for correlated errors.  We can add more discussion on this in the paper.  In this 31 
study, since we are using the current operational system as a baseline for comparison, we 32 
wanted to assimilate the exact same product as is used in the NAVDAS-AOD system, so we made 33 
no changes to how the observational error is represented.  However, we can include some 34 
additional plots in the supplementary material to show what the observational error looks like.  35 
In future work, we may reevaluate the observational error. 36 
 37 
Manuscript change: The NAAPS/NAVDAS-AOD simulations are run with a 1 degree resolution 38 
and assimilate the same MODIS AOT observational dataset with the same observational errors 39 
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(Zhang et al. 2005; Zhang and Reid, 2006, 2009; Hyer et al. 2011; Shi et al. 2011) for 1 
consistency. 2 
 3 

 4 
 5 

3. All the emissions in this study were perturbed using the same factor for a given ensemble 6 
member. Actually, it is not a good way as the authors mentioned. Instead of that, there are 7 
some alternative techniques to reduce correlations between independent sources. For example, 8 
make perturbation factors one-by-one randomly each grid-point, 2) smooth out the distribution 9 
of the factors using a 3-dimensional smoothing filter, 3) and use the smoothed factors to 10 
perturb emission sources. Usually, the ensemble mean of the perturbed emission flux is not very 11 
shifted by this method. 12 
 13 
Response:  In this study, the same perturbation factor is applied for a given ensemble member 14 
for each source type.  As an example, smoke emissions for ensemble member n are all 15 
perturbed with the same randomly produced perturbation factor.  This essentially creates an 16 
infinite correlation lengthscale for smoke emissions that is only limited by the localization 17 
lengthscale. However, for ensemble member n, the perturbation factor for smoke, dust, sea salt, 18 
and anthropogenic and biogenic fine are not the same.  Thus, given our localization of X, we do 19 
have a regional smoothing parameter in a way built in.  We preferred this methodology to the 20 
moving Gaussian method in that method predefines the maximum length scales.  Here we 21 
wanted to see what naturally and reasonably covarried, and then look at how those covariance 22 
fields looked. We will make these points more clear in the manuscript.  But, as noted in the 23 
manuscript (page 28079, lines 20-21), we did initially try grid-by-grid source perturbations as 24 
you suggested.  We found this had no impact on ensemble spread, therefore, ruled this method 25 
out.  Indeed, the strategy used in this work for perturbing source functions worked well when 26 
the emission correlation lengthscale is greater than the localization lengthscale (ie. large 27 
spatially correlated aerosol events).  For source types in which the emission correlation 28 
lengthscale is less than the localization lengthscale (ie. spatially independent sources such as 29 
small boreal forest fires), we plan to test a perturbation function as you suggested.  We think 30 
this should provide substantial improvement in some problem regions identified in the 31 
manuscript (ie. Eastern united states, North American boreal regions). This problem, and the 32 
point you made above regarding adaptive inflation, are of course intertwined with your 33 
comment 1. 34 
 35 
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4. The authors are using a maximum inflation limit, but I am afraid that the maximum value (=1.30) 1 
is too small because adaptive inflation factors more than 2 or 3 are acceptable for NWP without 2 
any problem. 3 
 4 
Response:  The maximum inflation used in this work is actually 1.50 (page 28085, line 20).  5 
When we tested the free-running adaptive inflation without any constraints on the maximum 6 
inflation, the maximum inflation did not exceed 1.5 with the exception of fire-impacted regions 7 
where the adaptive inflation became unstable.  We believe this instability is due to the 8 
persistent nature of the fires during the simulation time period and an inconsistency between 9 
the background (dominated by emissions for these large fire events) and the observations.  This 10 
was the value for which we found the adaptive inflation was stable for fire regions; however, we 11 
think with some tuning of the fire emissions, we can let the adaptive inflation algorithm run 12 
freely without a maximum inflation constraint.  This is work planned for future studies. 13 
 14 

5. The authors say, “the ensemble isn’t fully representing the distribution with an excess of 15 
observations occurring of low ranks,” but when the rank histogram shows a one-side peak, it is 16 
only certain that the ensemble members have a large bias. With only the information of “one-17 
side peak,” we don’t know whether the ensemble spread is small or not. 18 
 19 
Response:  When the majority of observations are below the lowest bin, this indicates bias in 20 
the ensemble relative to the observations, just as you stated.  Yes, we agree that since the 21 
observations are mostly below the ensemble members, you can’t state much about the actual 22 
spread of the ensemble relative to the observational spread.  What we meant with this 23 
statement is that the ensemble members aren’t capturing the low AOT values of the observed 24 
distribution.  We will revise this statement to make it clearer.  25 

 26 
Manuscript change: The Eurasian Boreal smoke region rank histogram, consistent with the 27 
evaluation of the total spread to RMSE ratio, shows that the ensemble isn’t capturing low AOT 28 
values of the observed distribution, with an excess of observations occurring for low ranks. 29 
 30 

6. If AOT values are small, it’s no wonder AOT observational errors are relatively large because the 31 
error of remote sensing is almost independent from the AOT (=retrieved) value. On the other 32 
hand, when AOT values are small, it’s impossible to make a large ensemble spread. This is a 33 
disadvantage of ensemble data assimilation. 34 
 35 
Response:  Yes, we agree with your statement.  Since we have a positive-definite state variable, 36 
the ensemble spread can only be so large for small AOT values.  The result is that the 37 
observational error is much greater than the forecast error and the assimilation would weight 38 
the analysis mostly to the background.  So if there is a bias present, the assimilation won’t be 39 
able to correct for this.  We will include the fact that this is a limitation of ensemble data 40 
assimilation as you mentioned. 41 
 42 
Manuscript change: At the lower end of the AOT distribution (< 0.1), the total spread (combined 43 
ensemble spread and observational error) exceeds the RMSE; however, it is found that the 44 
observational error dominates the total spread (Figure 7).  This relationship is consistent across 45 
the experimental ENAAPS-DART configurations, represented by the different colors in Figure 7.  46 
It indicates that the observational error is too large relative to the ensemble spread for small 47 
AOT values, with similar results found for other fire-impacted regions (South America, Southern 48 
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Hemisphere Atlantic).  This relationship is likely caused by the ensemble spread being too 1 
small for small AOT values since aerosol mass is a positive-definite quantity.  For data 2 
assimilation, this translates to a reduced impact of the observation on the model state for small 3 
AOT. 4 
 5 

7. Do the authors mean that there is a large difference between meteorological analyses since 6 
there are few meteorological observations in the Southern Ocean? If so, this sentence (Line 18-7 
20) is a little confusing. 8 

 9 
Response:  NAAPS and ENAAPS are offline, so here we are assimilating only aerosol-related 10 
observations.  There are no AOT observations being assimilated in the Southern Ocean.  11 
Between deterministic NAAPS and ensemble NAAPS (ENAAPS), the only difference is the data 12 
assimilation system and the meteorology fields (deterministic NOGAPS and the ensemble 13 
NOGAPS fields) they are run on.  Since there are no AOT observations being assimilated in the 14 
Southern Ocean, any differences between the NAAPS/NAVDAS-AOD simulation and the 15 
ENAAPS-DART simulation are due to differences in the meteorology fields used to drive the 16 
simulations.  For example, sea salt emissions are parameterized as a function of wind speed.  17 
Differences in wind speed between deterministic and ensemble meteorology fields would 18 
impact sea salt emissions and therefore, the optical thickness in the region.  Likewise, 19 
differences in humidity fields would impact the optical thickness.   We will add to the discussion 20 
in the manuscript to make this point more clear. 21 
 22 
Manuscript change: Since there are very few AOT observations for assimilation in the Southern 23 
Ocean, any differences in this region are attributed to differences in the deterministic and 24 
ensemble meteorology fields (winds, humidity) that drive the models.  For example, 25 
differences in wind would impact sea salt emissions and therefore, optical thickness in the 26 
region.  Likewise, differences in humidity fields would impact the optical thickness. 27 
 28 

8. The authors often use the term “variational” (assimilation, system, initial condition, etc.) as an 29 
inferior method to the EAKF, but the “variational” method is the 2D Var in this paper. We have 30 
another variational method, the 4D Var, which is comparable or superior to the EAKF. It is better 31 
to always use the term “2D Var” in this paper to avoid confusion 32 

 33 
Response:  Yes, we agree with your statement and will update the manuscript to be clear that 34 
we refer to 2D Var and not all variational methods.   35 
 36 
 37 

9. I could not understand the meaning of “the optimal combined meteorology and source 38 
ensemble”. What is optimal? 39 

 40 
Response:  Here we meant that the combined source and meteorology ensemble performed 41 
better than source-perturbed or meteorology ensemble alone and was the chosen approach.  42 
We will revise this statement to say the chosen configuration instead of optimal.  43 
 44 
Manuscript change: The example, shown in Figure 15, shows the analysis increments for the 45 
NAVDAS-AOD 2DVar system as well as analysis increments for ENAAPS-DART, both for the 46 
source only and the combined meteorology and source ensemble.   47 
 48 
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10. In this study, the EAKF system captures sharp gradients while the 2D Var smooths plume 1 
distributions. However, the EAKF and 2D Var have similar RMSE and bias. That means, probably, 2 
although the EAKF result looks realistic, the plume location is slightly shifted from the real one. 3 
It is difficult to judge which is better “sharp but slightly-shifted plumes” or “blunt but broadly-4 
covering plumes” as operational prediction/warning, I think. 5 

 6 
Response: Yes, we agree that it is difficult to define which is better in this instance depending on 7 
what the application of the forecast is (ie. Smoothed out event would give a larger warning 8 
region).   However, we think the real advantage of the ensemble approach is that we can 9 
produce more realistic corrections to the state fields (which produce sharper gradients that are 10 
consistent with what is seen from satellite) which will become more important as additional 11 
observational information is introduced into the system, such as Lidar and other spatially limited 12 
pieces of information.   13 
 14 
Manuscript change: On the other hand, the 2DVar system produces a dust plume feature that is 15 
smoothed out.  This dust case demonstrates a major advantage of the EAKF system over the 16 
2dVar in its ability to spread information in a realistic manner and as a result, capture sharp 17 
gradients.  It is anticipated that the ability of the EAKF to produce more realistic corrections to 18 
the state field will become more important as additional observational information is 19 
introduced into the system, such as Lidar and other spatially limited pieces of information.   20 

 21 
11. Are these RMSE global? 22 
 23 

Response:  Yes, these are global. 24 
 25 
Manuscript change: The 24-hour forecast global RMSE against AERONET AOT with 26 
bootstrapped 95% confidence intervals 27 
 28 

12. The authors say, “the observational error may be too large for small AOT values, which could 29 
also contribute to the positive bias”, but I don’t think so. Generally speaking, it is extremely 30 
difficult to assimilate zero or almost zero values like small AOT. It is because a population that 31 
contains a lot of zeros (or almost zeros) and is not allowed to be negative values (e.g., radar-32 
measured precipitation) is not Gaussian-distributed. Fundamentally, it is nonsense to quantify 33 
the error of non-Gaussian-distributed values using a standard deviation. However, data 34 
assimilation assumes everything Gaussian. It is the reason why zero-value assimilation is 35 
difficult. The positive bias observed in smoke regions may be relevant to non-Gaussian AOT 36 
distribution and irrelevant to the size of AOT observational error. 37 

 38 
Response:  Thank you for your input on this.  We agree with your statement and will add 39 
discussion on this issue. There has been discussion here on to what extent this is a real problem, 40 
and what is the best way to cope with, ranging from complex transforms to something simple, 41 
like assimilate in log space.  42 
 43 
Manuscript change: The discussion and conclusion were consolidated, but we have changed our 44 
discussion in the manuscript to talk about dealing with small AOT values (such as changes to 45 
comment 6 above) as well as in the conclusions. 46 
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 1 
13. I am very interested in NH Pacific Ocean, Arctic, and Antarctic. 2 

 3 
Response:  We can add additional plots to the supplementary material for these regions. 4 
 5 

 6 
 7 

14. Why did the authors plot MODIS AOT that was not quality-controlled? I would like to see the 8 
comparison between assimilated observations (= quality-controlled AOT) and assimilation 9 
results. 10 

 11 
Response:  We were trying to show the sharp-gradient present in the MODIS AOT observations.  12 
This can be seen pretty clearly when all AOT values are shown, however, we added an additional 13 
plot with assimilated AOT only. 14 
 15 
 16 

15. I am very interested in why the AOT over the Sahara is largely changed by the 2DVar although 17 
there is almost no observation over the Sahara. The influence radius of observations in 2D Var is 18 
only 250 km or so, right? 19 
 20 
Response:  The radius of influence for the variational system is determined through an 21 
exponential function as defined in Zhang et al. 2008.  If R is the distance between observation 22 
and background location and L is the defined 200km lengthscale, the function is (1+R/L)*exp(-23 
R/L).  An influence can be present beyond the defined 200km lengthscale; however, the impact 24 
will decrease with distance. 25 
 26 

16. Page 28080, Line 16: The description “over 13 land regions” is actually “over 15 land regions”? 27 
 28 
Response:  Thank you, we updated this to 15. 29 
 30 
Manuscript change: The experimental 6-hour AOT forecasts are evaluated over 15 land regions 31 
as indicated in Figure 1 as well as six ocean regions, including the northern and southern 32 
hemisphere Pacific and Atlantic Oceans, the Indian and the Southern Ocean. 33 
 34 

17. Page 28085, Line 11: There are two spellings “blow-up” and “blowup” in this manuscript. 35 
Choose either one 36 
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 1 
Manuscript change:  We changed this to “blow up”.  Thank you. 2 
 3 

18. Page 28090, Line 18: Is it necessary after “large” to put a comma? 4 
 5 
Response:  I think with multiple adjectives, we need to separate them with a comma.  We could 6 
be wrong though. 7 
 8 

19. Page 28092, Line 22: isn’t -> is not 9 
 10 
Manuscript change: The Eurasian Boreal smoke region rank histogram, consistent with the 11 
evaluation of the total spread to RMSE ratio, shows that the ensemble is not capturing low AOT 12 
values in the observed distribution, with an excess of observations occurring for low ranks.   13 
  14 

20. Page 28093, Lines 10 and 12, etc.:There are two expressions “meteorology ensemble” and 15 
“NOGAPS ensemble” in this manuscript. Choose either one. 16 
 17 
Manuscript change:  These were changed to either “meteorology ensemble” or “NOGAPS 18 
meteorology ensemble”.  The NOGAPS is included at times to be specific about where the 19 
meteorology fields come from. 20 
 21 
 22 

21. Page 28093, Line 29: There are two spellings “source-perturbed” and “source perturbed” in this 23 
manuscript. Choose either one 24 
 25 
Manuscript change: These were all updated to “source-perturbed”.  Thanks. 26 

 27 
22. Page 28094, Line 27: Putting “(Table 2)” at the end of this sentence, it becomes easy 28 

understandable. 29 
 30 
Response:  This paragraph is talking about the evaluation of the posterior relative to AERONET 31 
AOT.  Table 2 is the evaluation of the prior to MODIS AOT.   32 

 33 
23. Figure 4: The characters “a” “h” in the figure panels are too small and extremely unreadable 34 

 35 
Manuscript change:  This figure was updated with larger font. 36 
 37 
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 1 
 2 

24. Figure 6: It is very difficult to find a “point”, especially in (b) panels 3 
 4 
Manuscript change:  This figure was updated with larger black stars. 5 
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 1 
25. Figure 11: Some of the AOT observation plots are illegible, especially on 22 August 2 

 3 
Response:  In the AERONET AOT timeseries plot, there aren’t any observations on August 22.   4 
 5 

26. Caption of Figures 11 and 12: The “analysis” is plotted here, I think. But the caption says, 6 
“predicted total AOT”. 7 

 8 
Response:  Yes, you are correct.  We changed the caption to be more specific.  Thank you. 9 
 10 
Manuscript change: Timeseries of analysis total AOT (grey 11 

 12 
27. Figure 16: It is hard to find the area where the MODIS plot indicates, at a glance 13 

 14 
Response:  We were trying to zoom in to the leading edge to show how sharp the gradient is.  15 
We will update the caption to make it clearer. 16 
 17 
Manuscript change: A zoomed in MODIS true color image of the leading edge of the dust plume 18 
is also shown as well as MODIS AOT (550nm) observations.   19 
 20 
 21 
 22 
 23 
 24 
 25 
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Response to Referee A. Benedetti’s Comments 1 

Thank you, Angela for taking the time to review the paper.  We very much appreciate all of your 2 
comments.  Please see our responses below. 3 

1. Page 4 Line 33.I would say “research” arena rather than “operational” arena as to my knowledge 4 
at the moment there are no operational ensemble systems for aerosols (although the situation 5 
may soon change). 6 
 7 
Response: We agree, we will update this statement to make it accurate.  Thanks. 8 
 9 
Manuscript change: A core rationale for developing ENAAPS was to experiment with ensemble 10 
data assimilation techniques which have been successfully implemented at operational centers 11 
on an experimental basis (e.g., Sekiyama et al. 2010).   12 
 13 

2. Page 5 Line 10. Here, like elsewhere where the comparison between the ensemble and 14 
variational systems was made, I thought it would be good to see the background error 15 
covariance matrices for the ensemble and the variational system side by side. Perhaps, if 16 
possible, for future work as well, it would be interesting showing the increments from a single 17 
observation experiment to show how the different background error statistics affect the 18 
distribution of the increments and spread to neighbouring points the information from a single 19 
observation 20 
 21 
Response: We agree that showing the analysis increments and error covariances would be 22 
helpful.  We do show analysis increments for our Saharan dust case in Figure 15, but we can add 23 
a few other examples in the supplementary material.  Yes, we agree that some single 24 
observation experiments would be nice to show as well.  We might not show those types of 25 
experiments in this paper since it is already quite long, but we definitely will in subsequent 26 
papers. 27 
 28 

 29 
Analysis increments (posterior-prior AOT) and posterior AOT fields from the 2DVar NAVDAS-30 
AOD and the DART-EAKF for a dust event on August 2, 2013 (18Z). 31 
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3. Page 6 Line 22. How is the adaptive inflation estimated? Is it based on first guess departures? I 1 
know that the reader can look up the references, but just a sentence to explain briefly what the 2 
estimation is based on would be welcome. 3 
 4 
Response:  We added some more information on the adaptive inflation in the methods section. 5 
Thank you for the suggestion. 6 
 7 
Manuscript change: An alternative method to a uniform multiplicative inflation is adaptive 8 
covariance inflation (Anderson 2009) which produces temporally and spatially varying inflation 9 
factors.  This approach is based on a Bayesian algorithm that estimates the inflation with time 10 
as part of the state update, using a normally distributed inflation factor associated with each 11 
element of the model state vector.  An initial inflation factor of 1 (ie. no inflation) was set for 12 
all locations and a fixed standard deviation of 0.4 was used.   13 
 14 

4. Page 7 Line 12. 25% seems like a large perturbation, although later you say that it might be small 15 
for certain emissions (for example fires). How is this value assigned? I am surprised that 16 
location-dependent perturbations did not help with the ensemble performance, as you later 17 
mention that for localized sources the ensemble had the problem of over-correlating them. 18 
Perhaps the perturbations should be a function of the source spatial extension and intensity. I 19 
really do not know, just wondering. 20 

 21 
Response:  In general, we have seemed to get the opposite reaction, that the source 22 
perturbation is small.  We selected 25% as a pretty conservative estimate of the source 23 
perturbation with the expectation that we would evaluate the system performance and see 24 
what adjustments needed to be made.  In general, we found that the system did pretty well in 25 
representing uncertainty (spread ~ RMSE) with this perturbations with the exception of fire-26 
impacted regions.  For these regions, we weren’t getting enough spread, especially for high AOT 27 
events.  This tells us that we probably need to increase the source perturbation for fires.  Fire 28 
emissions are also highly uncertain, so needing perturbations larger than 25% for these 29 
emissions is not unexpected. 30 
 31 
The perturbations to the aerosol sources aren’t location-dependent (we will work to make this 32 
clearer in the methods).  We initially tried random perturbations that were drawn for each grid, 33 
however, we ruled this method out (page 28079, lines 20-21).  The method that we did use in 34 
this work was to apply a randomly drawn perturbation for each aerosol source and for each 35 
ensemble member.  This essentially creates large correlations between all emissions of aerosol 36 
of a given source-type (dust as an example), only limited by the localization.  So for emissions in 37 
which the correlation lengthscale is smaller than the localization lengthscale (such as pollution 38 
sources), we identified issues. For events in which the correlation lengthscale is greater than the 39 
localization lengthscale, this method worked well (ie. large smoke and dust plumes).  We have 40 
plans to reassess the source perturbations in future work to better deal with emissions for 41 
pollution events and small fires. 42 
 43 

5. Page 11 Line 9. Please do explain briefly the methodology behind AI 44 
 45 
Response:  We agree.  We added some additional information in the methods section that we 46 
think will clarify the AI discussion in the rest of the paper. 47 
 48 
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6. Line 19. That points to model shortcomings which are not likely to be corrected with DA 1 
 2 

Response: Yes, we agree.  We think that this is related to issues in the smoke emissions. The 3 
adaptive inflation is trying to correct for inconsistencies in the model prior and the observations 4 
by inflating.  The smoke emissions are persistent during this time period and are likely 5 
contributing to the discrepancy between the model distribution and observations which leads to 6 
over-inflation by the AI and eventually, a crashing of the model.  This is why we think we need to 7 
do some tuning to the smoke emissions and hope that this will alleviate the problem. We hope 8 
that once we tune the smoke emissions, the AI can be run without any measures for preventing 9 
inflation blow up. 10 
 11 
Manuscript change: The inflation factor blow up indicates that the discrepancy between the 12 
prior and observational distributions increased over time, producing unrealistic AOT values and 13 
aerosol mass concentrations, eventually leading the model to crash.  This type of behavior is 14 
indicative of model shortcomings related to smoke aerosol.   15 
 16 

7. Page 12 Line 11. Well phrased. This is another one of the issues related to the fact that the 17 
aerosol problem is under-constrained. 18 

 19 
Response:  Thanks! 20 
 21 

8. Page 15 Line 35. An interesting conclusion about the observation errors being too large for small 22 
AOTs. Perhaps the methodology of Desroziers et al (2005) could be applied to ascertain so in a 23 
more mathematical way. [Desroziers, G., Berre, L., Chapnik, B. and Poli, P. (2005), Diagnosis of 24 
observation, background and analysis-error statistics in observation space. Q.J.R. Meteorol. Soc., 25 
131: 3385–3396. doi:10.1256/qj.05.108] 26 
 27 
Response:  We should clarify that we mean that the observational error is too large relative to 28 
the ensemble spread.  This is probably more likely due to aerosol being a positive-definite, 29 
therefore, it is hard to get enough spread near-zero.  We added some discussion on this point.   30 
However, this still has an important implication for data assimilation in that the observations 31 
won’t have much impact.   We have been discussing different ways to deal with this issue, 32 
including doing a data transform on the observations before assimilation. 33 
 34 

9. Page 19 Line 12. The fact that the RMSE values of the two analysis are not statistically different 35 
might also mean that the system is driven more by the observations than the background, and 36 
perhaps the observations errors are too small. This may seem to contradict what said on page 37 
15 line 35, but the two things may co-exist as the balance is to be obtained between the 38 
background errors and the observation errors and it is possible that the analysis draws too much 39 
to the observations (i.e. the background errors are large with respect to the observation errors). 40 
Again, perhaps an analysis of the departures of both the variational and ensemble analyses 41 
could offer some insight on this particular aspect. 42 
 43 
Response: Yes, we agree, the observations are pulling the priors in the two systems to similar 44 
values (although there are differences such as over ocean where we aren’t verifying with 45 
AERONET).  The ensemble system tends to produce larger AOT values (positive bias) and the 46 
observations in general pull the AOT lower.  The deterministic system tends to produce smaller 47 
AOT values (negative bias) and the observations tend to pull the AOT higher (see figure below).  48 
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However, the analysis increments tend to be smaller for the ensemble system than the 1 
deterministic system.  This means that the forecast error as specified for the 2DVar system is 2 
quite large and puts a lot of weight toward the obs.  The forecast error determined by the 3 
ensemble is smaller and as a result has a smaller analysis increment (ie. less obs impact), this 4 
would indicate that the ensemble system is doing a better job in the short-term forecast (prior) 5 
at least at AERONET sites 6 

 7 
 8 

10. Page 19 Line 15. Please use another verb other than “produced”, like “displayed”. 9 
 10 
Response:  Thank you, we updated this and similar wording throughout the text. 11 
 12 

11. Page 19, Line 39 As already mentioned, it would be good to see a plot of the background error 13 
covariance matrices for the variational and the ensemble system (single observation experiment 14 
increments would also do the job). Figure 15 shows some of this, but it would be good to have a 15 
dedicated single observation experiment. 16 
 17 
Response:  We may reserve single observations experiments for subsequent papers since this 18 
paper is already quite lengthy. 19 
 20 

12. Page 20 Line 16. To be fair to the variational system, it is definitely not tuned at all to capture 21 
sharp gradients. I presume the 2D-Var background error covariance matrix is spatially 22 
homogeneous, constant and with fixed correlation length. It seems to be asking too 23 
much of the system. 24 
 25 
Response:  Yes, we agree that the 2DVar system won’t be able to capture gradients based on 26 
how the error covariance matrix is defined.  This is meant to demonstrate why an ensemble 27 
approach might be the chosen approach moving forward or at least should be part of the 28 
operational runs, especially as we begin to incorporate spatially-limited observations. 29 
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 1 
13. Page 24 Line 32. Have you looked what happens at longer forecast ranges than 24h? 2 

 3 
Response:  No, not at this point in time.  However, we have plans to implement this system 4 
semi-operationally and will begin to evaluate forecasts out to a few days. 5 

 6 

 7 
 8 
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