Articles | Volume 16, issue 21
https://doi.org/10.5194/acp-16-13945-2016
https://doi.org/10.5194/acp-16-13945-2016
Research article
 | 
11 Nov 2016
Research article |  | 11 Nov 2016

Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean

Gillian Young, Hazel M. Jones, Thomas W. Choularton, Jonathan Crosier, Keith N. Bower, Martin W. Gallagher, Rhiannon S. Davies, Ian A. Renfrew, Andrew D. Elvidge, Eoghan Darbyshire, Franco Marenco, Philip R. A. Brown, Hugo M. A. Ricketts, Paul J. Connolly, Gary Lloyd, Paul I. Williams, James D. Allan, Jonathan W. Taylor, Dantong Liu, and Michael J. Flynn

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Gillian McCusker on behalf of the Authors (02 Sep 2016)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (19 Sep 2016) by Martina Krämer
RR by Anonymous Referee #1 (21 Sep 2016)
RR by Anonymous Referee #2 (21 Sep 2016)
ED: Publish as is (21 Sep 2016) by Martina Krämer
AR by Gillian McCusker on behalf of the Authors (23 Sep 2016)  Manuscript 
Download
Short summary
Clouds are intricately coupled to the Arctic sea ice. Our inability to accurately model cloud fractions causes large uncertainties in predicted radiative interactions in this region, therefore, affecting sea ice forecasts. Here, we present measurements of cloud microphysics, aerosol properties, and thermodynamic structure over the transition from sea ice to ocean to improve our understanding of the relationship between the Arctic atmosphere and clouds which develop in this region.
Altmetrics
Final-revised paper
Preprint