Articles | Volume 16, issue 17
https://doi.org/10.5194/acp-16-11125-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-11125-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang, China
University of Chinese Academy of Sciences, Beijing, China
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang, China
Center for Advances in Water and Air Quality, Lamar University,
Beaumont, TX, USA
Department of Civil and Environmental Engineering, Lamar
University, Beaumont, TX, USA
Wei Yuan
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang, China
University of Chinese Academy of Sciences, Beijing, China
Jonas Sommar
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang, China
Wei Zhu
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang, China
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang, China
Related authors
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Terry Keating, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-65, https://doi.org/10.5194/gmd-2024-65, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed to inform the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic and multi-media mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases in the environment.
Xuewu Fu, Chen Liu, Hui Zhang, Yue Xu, Hui Zhang, Jun Li, Xiaopu Lyu, Gan Zhang, Hai Guo, Xun Wang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 6721–6734, https://doi.org/10.5194/acp-21-6721-2021, https://doi.org/10.5194/acp-21-6721-2021, 2021
Short summary
Short summary
TGM concentrations and isotopic compositions in 10 Chinese cities showed strong seasonality with higher TGM concentrations and Δ199Hg and lower δ202Hg in summer. We found the seasonal variations in TGM concentrations and isotopic compositions were highly related to regional surface Hg(0) emissions, suggesting land surface Hg(0) emissions are an important source of atmospheric TGM that contribute dominantly to the seasonal variations in TGM concentrations and isotopic compositions.
Xuewu Fu, Wei Zhu, Hui Zhang, Jonas Sommar, Ben Yu, Xu Yang, Xun Wang, Che-Jen Lin, and Xinbin Feng
Atmos. Chem. Phys., 16, 12861–12873, https://doi.org/10.5194/acp-16-12861-2016, https://doi.org/10.5194/acp-16-12861-2016, 2016
Wei Zhu, Che-Jen Lin, Xun Wang, Jonas Sommar, Xuewu Fu, and Xinbin Feng
Atmos. Chem. Phys., 16, 4451–4480, https://doi.org/10.5194/acp-16-4451-2016, https://doi.org/10.5194/acp-16-4451-2016, 2016
Short summary
Short summary
Reliable quantification of air-surfaces flux of elemental mercury vapor (Hg0) is crucial for understanding Hg global biogeochemical cycles. In this study, we provide a comprehensive review on the state of science in the atmosphere-surface exchange of elemental Hg. We compiled an up-to-date global observational flux database and discuss the implication of flux data on global Hg budget. The knowledge gap and research needs for future measurements and modeling efforts were discussed.
Jonas O. Sommar, Xueling Tang, Xinyu Shi, Guangyi Sun, Che-Jen Lin, and Xinbin Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-4190, https://doi.org/10.5194/egusphere-2024-4190, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
A more thorough understanding of the complex processes involved in the atmospheric Hg cycle has been achieved. The dynamics of the cycle are influenced by a rapid redox chemistry with several oxidation states and effects of multiphase interactions. This review provides a detailed analysis of the atmospheric chemistry of Hg in both the lower and upper atmosphere, together with a synthesis of the latest kinetic, thermochemical, photochemical, and isotopic fractionation data.
Qiang Pu, Bo Meng, Jen-How Huang, Kun Zhang, Jiang Liu, Yurong Liu, Mahmoud A. Abdelhafiz, and Xinbin Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-590, https://doi.org/10.5194/egusphere-2024-590, 2024
Short summary
Short summary
This study examines the effect of dissolved organic matter (DOM) on microbial mercury (Hg) methylation in paddy soils. It uncovers that DOM regulates Hg methylation mainly through altering core Hg-methylating microbiome composition and boosting the growth of core Hg-methylating microorganisms. The study highlights that in the regulation of methylmercury formation in paddy soils, more attention should be paid to changes in DOM concentration and composition.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Terry Keating, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-65, https://doi.org/10.5194/gmd-2024-65, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed to inform the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic and multi-media mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases in the environment.
Hui Zhang, Xuewu Fu, Ben Yu, Baoxin Li, Peng Liu, Guoqing Zhang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 15847–15859, https://doi.org/10.5194/acp-21-15847-2021, https://doi.org/10.5194/acp-21-15847-2021, 2021
Short summary
Short summary
Our observations of speciated atmospheric mercury at the Waliguan GAW Baseline Observatory show that concentrations of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) were elevated compared to the Northern Hemisphere background. We propose that the major sources of GEM and PBM were mainly related to anthropogenic emissions and desert dust sources. This study highlights that dust-related sources played an important role in the variations of PBM in the Tibetan Plateau.
Xuewu Fu, Chen Liu, Hui Zhang, Yue Xu, Hui Zhang, Jun Li, Xiaopu Lyu, Gan Zhang, Hai Guo, Xun Wang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 6721–6734, https://doi.org/10.5194/acp-21-6721-2021, https://doi.org/10.5194/acp-21-6721-2021, 2021
Short summary
Short summary
TGM concentrations and isotopic compositions in 10 Chinese cities showed strong seasonality with higher TGM concentrations and Δ199Hg and lower δ202Hg in summer. We found the seasonal variations in TGM concentrations and isotopic compositions were highly related to regional surface Hg(0) emissions, suggesting land surface Hg(0) emissions are an important source of atmospheric TGM that contribute dominantly to the seasonal variations in TGM concentrations and isotopic compositions.
Jun Zhou, Zhangwei Wang, Xiaoshan Zhang, Charles T. Driscoll, and Che-Jen Lin
Atmos. Chem. Phys., 20, 16117–16133, https://doi.org/10.5194/acp-20-16117-2020, https://doi.org/10.5194/acp-20-16117-2020, 2020
Short summary
Short summary
Mercury (Hg) emissions from natural resources have a large uncertainty, which is mainly derived from the forest. A long-term and multiplot (10) study of soil–air fluxes at subtropical and temperate forests was conducted. Forest soils are an important atmospheric Hg source, especially for subtropical forests. The compensation points imply that the atmospheric Hg concentration plays a critical role in inhibiting Hg emissions from the forest floor. Climate change can enhance soil Hg emissions.
Jun Zhou, Zhangwei Wang, Xiaoshan Zhang, Charles Driscoll, and Che-Jen Lin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-161, https://doi.org/10.5194/acp-2019-161, 2019
Preprint withdrawn
Short summary
Short summary
Previous studies showed that Hg emissions from the natural resource exists large uncertainty, which was mainly derived from the forest with a large uncertainty range. Long-term and multi-plot (five) study of soil-air fluxes and the vertical distribution of Hg in a subtropical forest were conducted to reduce the uncertainty. Additionally, The Hg diffusion coefficients (Ds) between soil and atmosphere was investigated, which should provide a foundation for future model development.
Leiming Zhang, Seth Lyman, Huiting Mao, Che-Jen Lin, David A. Gay, Shuxiao Wang, Mae Sexauer Gustin, Xinbin Feng, and Frank Wania
Atmos. Chem. Phys., 17, 9133–9144, https://doi.org/10.5194/acp-17-9133-2017, https://doi.org/10.5194/acp-17-9133-2017, 2017
Short summary
Short summary
Future research needs are proposed for improving the understanding of atmospheric mercury cycling. These include refinement of mercury emission estimations, quantification of dry deposition and air–surface exchange, improvement of the treatment of chemical mechanisms in chemical transport models, increase in the accuracy of oxidized mercury measurements, better interpretation of atmospheric mercury chemistry data, and harmonization of network operation.
Oleg Travnikov, Hélène Angot, Paulo Artaxo, Mariantonia Bencardino, Johannes Bieser, Francesco D'Amore, Ashu Dastoor, Francesco De Simone, María del Carmen Diéguez, Aurélien Dommergue, Ralf Ebinghaus, Xin Bin Feng, Christian N. Gencarelli, Ian M. Hedgecock, Olivier Magand, Lynwill Martin, Volker Matthias, Nikolay Mashyanov, Nicola Pirrone, Ramesh Ramachandran, Katie Alana Read, Andrei Ryjkov, Noelle E. Selin, Fabrizio Sena, Shaojie Song, Francesca Sprovieri, Dennis Wip, Ingvar Wängberg, and Xin Yang
Atmos. Chem. Phys., 17, 5271–5295, https://doi.org/10.5194/acp-17-5271-2017, https://doi.org/10.5194/acp-17-5271-2017, 2017
Short summary
Short summary
The study provides a complex analysis of processes governing Hg fate in the atmosphere involving both measurement data and simulation results of chemical transport models. Evaluation of the model simulations and numerical experiments against observations allows explaining spatial and temporal variations of Hg concentration in the near-surface atmospheric layer and shows possibility of multiple pathways of Hg oxidation occurring concurrently in various parts of the atmosphere.
Francesca Sprovieri, Nicola Pirrone, Mariantonia Bencardino, Francesco D'Amore, Helene Angot, Carlo Barbante, Ernst-Günther Brunke, Flor Arcega-Cabrera, Warren Cairns, Sara Comero, María del Carmen Diéguez, Aurélien Dommergue, Ralf Ebinghaus, Xin Bin Feng, Xuewu Fu, Patricia Elizabeth Garcia, Bernd Manfred Gawlik, Ulla Hageström, Katarina Hansson, Milena Horvat, Jože Kotnik, Casper Labuschagne, Olivier Magand, Lynwill Martin, Nikolay Mashyanov, Thumeka Mkololo, John Munthe, Vladimir Obolkin, Martha Ramirez Islas, Fabrizio Sena, Vernon Somerset, Pia Spandow, Massimiliano Vardè, Chavon Walters, Ingvar Wängberg, Andreas Weigelt, Xu Yang, and Hui Zhang
Atmos. Chem. Phys., 17, 2689–2708, https://doi.org/10.5194/acp-17-2689-2017, https://doi.org/10.5194/acp-17-2689-2017, 2017
Short summary
Short summary
The results on total mercury (THg) wet deposition flux obtained within the GMOS network have been presented and discussed to understand the atmospheric Hg cycling and its seasonal depositional patterns over the 2011–2015 period. The data set provides new insight into baseline concentrations of THg concentrations in precipitation particularly in regions where wet deposition and atmospheric Hg species were not investigated before, opening the way for additional measurements and modeling studies.
Francesco De Simone, Paulo Artaxo, Mariantonia Bencardino, Sergio Cinnirella, Francesco Carbone, Francesco D'Amore, Aurélien Dommergue, Xin Bin Feng, Christian N. Gencarelli, Ian M. Hedgecock, Matthew S. Landis, Francesca Sprovieri, Noriuki Suzuki, Ingvar Wängberg, and Nicola Pirrone
Atmos. Chem. Phys., 17, 1881–1899, https://doi.org/10.5194/acp-17-1881-2017, https://doi.org/10.5194/acp-17-1881-2017, 2017
Short summary
Short summary
Biomass burning (BB) releases of Hg, usually considered to be Hg(0), are a significant global source of atmospheric Hg. However there is experimental evidence that a fraction of this Hg is bound to particulate matter, Hg(P). This modelling study shows how increasing fractions of Hg(P) reduce the availability of Hg to the global pool, raising Hg exposure for those regions characterized by high BB, with implications for the sub-Arctic and also rice-growing areas in South-East Asia.
Hui Zhang, Xuewu Fu, Che-Jen Lin, Lihai Shang, Yiping Zhang, Xinbin Feng, and Cynthia Lin
Atmos. Chem. Phys., 16, 13131–13148, https://doi.org/10.5194/acp-16-13131-2016, https://doi.org/10.5194/acp-16-13131-2016, 2016
Xuewu Fu, Wei Zhu, Hui Zhang, Jonas Sommar, Ben Yu, Xu Yang, Xun Wang, Che-Jen Lin, and Xinbin Feng
Atmos. Chem. Phys., 16, 12861–12873, https://doi.org/10.5194/acp-16-12861-2016, https://doi.org/10.5194/acp-16-12861-2016, 2016
Francesca Sprovieri, Nicola Pirrone, Mariantonia Bencardino, Francesco D'Amore, Francesco Carbone, Sergio Cinnirella, Valentino Mannarino, Matthew Landis, Ralf Ebinghaus, Andreas Weigelt, Ernst-Günther Brunke, Casper Labuschagne, Lynwill Martin, John Munthe, Ingvar Wängberg, Paulo Artaxo, Fernando Morais, Henrique de Melo Jorge Barbosa, Joel Brito, Warren Cairns, Carlo Barbante, María del Carmen Diéguez, Patricia Elizabeth Garcia, Aurélien Dommergue, Helene Angot, Olivier Magand, Henrik Skov, Milena Horvat, Jože Kotnik, Katie Alana Read, Luis Mendes Neves, Bernd Manfred Gawlik, Fabrizio Sena, Nikolay Mashyanov, Vladimir Obolkin, Dennis Wip, Xin Bin Feng, Hui Zhang, Xuewu Fu, Ramesh Ramachandran, Daniel Cossa, Joël Knoery, Nicolas Marusczak, Michelle Nerentorp, and Claus Norstrom
Atmos. Chem. Phys., 16, 11915–11935, https://doi.org/10.5194/acp-16-11915-2016, https://doi.org/10.5194/acp-16-11915-2016, 2016
Short summary
Short summary
This work presents atmospheric Hg concentrations recorded within the GMOS global network analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. The over-arching benefit of this coordinated Hg monitoring network would clearly be the production of high-quality measurement datasets on a global scale useful in developing and validating models on different spatial and temporal scales.
Xuewu Fu, Xu Yang, Xiaofang Lang, Jun Zhou, Hui Zhang, Ben Yu, Haiyu Yan, Che-Jen Lin, and Xinbin Feng
Atmos. Chem. Phys., 16, 11547–11562, https://doi.org/10.5194/acp-16-11547-2016, https://doi.org/10.5194/acp-16-11547-2016, 2016
Zhuyun Ye, Huiting Mao, Che-Jen Lin, and Su Youn Kim
Atmos. Chem. Phys., 16, 8461–8478, https://doi.org/10.5194/acp-16-8461-2016, https://doi.org/10.5194/acp-16-8461-2016, 2016
Short summary
Short summary
In this study, a state-of-the-art chemical mechanism was incorporated into a box model to investigate the atmospheric Hg cycling in different environments. As a result, for each of the three environments, GOM diurnal cycles of over half the selected cases were reasonably represented by the box model. A realistic model can be a powerful tool, providing important information on atmospheric Hg cycling and implications for policy makers.
Ingvar Wängberg, Ulla Hageström, Jonas Sommar, and Martin Ferm
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-528, https://doi.org/10.5194/acp-2016-528, 2016
Preprint withdrawn
Lei Zhao, Christopher W. N Anderson, Guangle Qiu, Bo Meng, Dingyong Wang, and Xinbin Feng
Biogeosciences, 13, 2429–2440, https://doi.org/10.5194/bg-13-2429-2016, https://doi.org/10.5194/bg-13-2429-2016, 2016
Wei Zhu, Che-Jen Lin, Xun Wang, Jonas Sommar, Xuewu Fu, and Xinbin Feng
Atmos. Chem. Phys., 16, 4451–4480, https://doi.org/10.5194/acp-16-4451-2016, https://doi.org/10.5194/acp-16-4451-2016, 2016
Short summary
Short summary
Reliable quantification of air-surfaces flux of elemental mercury vapor (Hg0) is crucial for understanding Hg global biogeochemical cycles. In this study, we provide a comprehensive review on the state of science in the atmosphere-surface exchange of elemental Hg. We compiled an up-to-date global observational flux database and discuss the implication of flux data on global Hg budget. The knowledge gap and research needs for future measurements and modeling efforts were discussed.
Jonas Sommar, Wei Zhu, Lihai Shang, Che-Jen Lin, and Xinbin Feng
Biogeosciences, 13, 2029–2049, https://doi.org/10.5194/bg-13-2029-2016, https://doi.org/10.5194/bg-13-2029-2016, 2016
Short summary
Short summary
A micrometeorological method (REA) has been implemented to assess the role of cereal crop fields in the North China Plain as a source or sink of elemental mercury vapor (Hg0) during the course of a full year. In combination with chamber measurements under the canopy, the above-canopy REA measurements provided evidence for a balance between Hg0 ground emissions and uptake of Hg0 by the crop foliage, with net emissions prevailing from the ecosystem during the majority of a year.
Lei Zhang, Shuxiao Wang, Qingru Wu, Fengyang Wang, Che-Jen Lin, Leiming Zhang, Mulin Hui, Mei Yang, Haitao Su, and Jiming Hao
Atmos. Chem. Phys., 16, 2417–2433, https://doi.org/10.5194/acp-16-2417-2016, https://doi.org/10.5194/acp-16-2417-2016, 2016
S. Osterwalder, J. Fritsche, C. Alewell, M. Schmutz, M. B. Nilsson, G. Jocher, J. Sommar, J. Rinne, and K. Bishop
Atmos. Meas. Tech., 9, 509–524, https://doi.org/10.5194/amt-9-509-2016, https://doi.org/10.5194/amt-9-509-2016, 2016
Short summary
Short summary
Human activities have increased mercury (Hg) cycling between land and atmosphere. To define landscapes as sinks or sources of Hg we have developed an advanced REA system for long-term measurements of gaseous elemental Hg exchange. It was tested in two contrasting environments: above Basel, Switzerland, and a peatland in Sweden. Both landscapes showed net Hg emission (15 and 3 ng m−2 h−1, respectively). The novel system will help to advance our understanding of Hg exchange on an ecosystem scale.
X. W. Fu, H. Zhang, B. Yu, X. Wang, C.-J. Lin, and X. B. Feng
Atmos. Chem. Phys., 15, 9455–9476, https://doi.org/10.5194/acp-15-9455-2015, https://doi.org/10.5194/acp-15-9455-2015, 2015
W. Zhu, J. Sommar, C.-J. Lin, and X. Feng
Atmos. Chem. Phys., 15, 5359–5376, https://doi.org/10.5194/acp-15-5359-2015, https://doi.org/10.5194/acp-15-5359-2015, 2015
Short summary
Short summary
Bias and uncertainty in Hg flux measured by micrometeorological methods (MM) and dynamic flux chambers (DFCs) are assessed from two field inter-comparison campaigns.
DFC flux bias follows a diurnal cycle due to modified temperature and radiation balance inside the chamber.
The precision in concentration difference measurements poses critical constraint on obtaining a larger fraction of significant MM flux. Asynchronous sampling impairs flux accuracy under varying atmospheric Hg concentration.
X. W. Fu, H. Zhang, C.-J. Lin, X. B. Feng, L. X. Zhou, and S. X. Fang
Atmos. Chem. Phys., 15, 1013–1028, https://doi.org/10.5194/acp-15-1013-2015, https://doi.org/10.5194/acp-15-1013-2015, 2015
Short summary
Short summary
This paper is the first to report correlation slopes of GEM/CO, GEM/CO2, GEM/CH4, CH4/CO, CH4/CO2, and CO/CO2 for mainland China, South Asia, the Indochinese Peninsula, and Central Asia, and applied the values to estimate GEM emissions in the four source regions. The estimated Hg0 emissions for mainland China, South Asia, the Indochinese Peninsula, and Central Asia using GEM/CO and GEM/CO2 correlation slopes are in the ranges of 1071-1187, 340-470, 125, and 54-90t, respectively.
H. Zhang, X. W. Fu, C.-J. Lin, X. Wang, and X. B. Feng
Atmos. Chem. Phys., 15, 653–665, https://doi.org/10.5194/acp-15-653-2015, https://doi.org/10.5194/acp-15-653-2015, 2015
W. Zhu, J. Sommar, C.-J. Lin, and X. Feng
Atmos. Chem. Phys., 15, 685–702, https://doi.org/10.5194/acp-15-685-2015, https://doi.org/10.5194/acp-15-685-2015, 2015
Short summary
Short summary
Mercury vapor fluxes measured by the micrometeorological (MM) and dynamic flux chambers (DFCs) methods were compared. Distinct temporal trends existed between MM and DFCs fluxes; the novel chamber method provided net cumulative flux on a level with those derived by MM methods. Statistical analysis indicated that the medians of turbulent fluxes estimated by three MM techniques were not significantly different. Recommendations are given regarding the deployment of Hg flux quantification methods.
X. Wang, C.-J. Lin, and X. Feng
Atmos. Chem. Phys., 14, 6273–6287, https://doi.org/10.5194/acp-14-6273-2014, https://doi.org/10.5194/acp-14-6273-2014, 2014
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Anthropogenic emission controls reduce summertime ozone–temperature sensitivity in the United States
Investigating the response of China's surface ozone concentration to the future changes of multiple factors
Assessing the relative impacts of satellite ozone and its precursor observations to improve global tropospheric ozone analysis using multiple chemical reanalysis systems
Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate
Air-pollution-satellite-based CO2 emission inversion: system evaluation, sensitivity analysis, and future research direction
Insights into ozone pollution control in urban areas by decoupling meteorological factors based on machine learning
Quantification of regional net CO2 flux errors in the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (MIP) ensemble using airborne measurements
Reactive nitrogen in and around the northeastern and mid-Atlantic US: sources, sinks, and connections with ozone
Preindustrial-to-present-day changes in atmospheric carbon monoxide: agreement and gaps between ice archives and global model reconstructions
Investigating processes influencing simulation of local Arctic wintertime anthropogenic pollution in Fairbanks, Alaska, during ALPACA-2022
Urban ozone formation and sensitivities to volatile chemical products, cooking emissions, and NOx upwind of and within two Los Angeles Basin cities
Causes of growing middle-to-upper tropospheric ozone over the northwest Pacific region
Impact of introducing electric vehicles on ground-level O3 and PM2.5 in the Greater Tokyo Area: yearly trends and the importance of changes in the urban heat island effect
A CO2–Δ14CO2 inversion setup for estimating European fossil CO2 emissions
Maximum ozone concentrations in the southwestern US and Texas: implications of the growing predominance of the background contribution
Derivation of atmospheric reaction mechanisms for volatile organic compounds by the SAPRC mechanism generation system (MechGen)
Seasonal, regional, and vertical characteristics of high-carbon-monoxide plumes along with their associated ozone anomalies, as seen by IAGOS between 2002 and 2019
The potential of drone observations to improve air quality predictions by 4D-Var
Process analysis of elevated concentrations of organic acids at Whiteface Mountain, New York
Ozone source attribution in polluted European areas during summer 2017 as simulated with MECO(n)
Opinion: Challenges and needs of tropospheric chemical mechanism development
The atmospheric oxidizing capacity in China – Part 2: Sensitivity to emissions of primary pollutants
Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
Review of source analyses of ambient volatile organic compounds considering reactive losses: methods of reducing loss effects, impacts of losses, and sources
Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications
An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Performance evaluation of UKESM1 for surface ozone across the pan-tropics
Constraining light dependency in modeled emissions through comparison to observed biogenic volatile organic compound (BVOC) concentrations in a southeastern US forest
A global re-analysis of regionally resolved emissions and atmospheric mole fractions of SF6 for the period 2005–2021
Monoterpene oxidation pathways initiated by acyl peroxy radical addition
Tropospheric ozone precursors: global and regional distributions, trends, and variability
Sensitivity of climate effects of hydrogen to leakage size, location, and chemical background
The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs)
Local and transboundary contributions to nitrogen loadings across East Asia using CMAQ-ISAM and GEMS-informed emissions inventory during the winter-spring transition
Ether and ester formation from peroxy radical recombination: a qualitative reaction channel analysis
ACEIC: a comprehensive anthropogenic chlorine emission inventory for China
Impact of methane and other precursor emission reductions on surface ozone in Europe: scenario analysis using the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre – West (MSC-W) model
Chemistry-climate feedback of atmospheric methane in a methane emission flux driven chemistry-climate model
Natural emissions of VOC and NOx over Africa constrained by TROPOMI HCHO and NO2 data using the MAGRITTEv1.1 model
Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2
Revisiting the high tropospheric ozone over Southern Africa: overestimated biomass burning and underestimated anthropogenic emissions
Enhanced understanding of atmospheric blocking modulation on ozone dynamics within a high-resolution Earth system model
Estimating the variability of NOx emissions from Wuhan with TROPOMI NO2 data during 2018 to 2023
An improved estimate of inorganic iodine emissions from the ocean using a coupled surface microlayer box model
Technical note: A comparative study of chemistry schemes for volcanic sulfur dioxide in Lagrangian transport simulations: a case study of the 2019 Raikoke eruption
Evaluating tropospheric nitrogen dioxide in UKCA using OMI satellite retrievals over South and East Asia
Impact of improved representation of volatile organic compound emissions and production of NOx reservoirs on modeled urban ozone production
The effect of different climate and air quality policies in China on in situ ozone production in Beijing
Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations
Intercomparison of GEOS-Chem and CAM-chem tropospheric oxidant chemistry within the Community Earth System Model version 2 (CESM2)
Shuai Li, Haolin Wang, and Xiao Lu
Atmos. Chem. Phys., 25, 2725–2743, https://doi.org/10.5194/acp-25-2725-2025, https://doi.org/10.5194/acp-25-2725-2025, 2025
Short summary
Short summary
Summertime ozone–temperature sensitivity has decreased by 50 % from 3.0 ppbv per K in 1990 to 1.5 ppb per K in 2021 in the US. GEOS-Chem simulations show that anthropogenic nitrogen oxide emission reduction is the dominant driver of ozone–temperature sensitivity decline by influencing both temperature direct and temperature indirect processes. Reduced ozone–temperature sensitivity has decreased ozone enhancement from low to high temperatures by an average of 6.8 ppbv across the US.
Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao
Atmos. Chem. Phys., 25, 2649–2666, https://doi.org/10.5194/acp-25-2649-2025, https://doi.org/10.5194/acp-25-2649-2025, 2025
Short summary
Short summary
We develop a modeling framework to predict future ozone concentrations (till the 2060s) in China following an IPCC scenario. We evaluate the contributions of climatic, anthropogenic, and biogenic factors by season and region. We find persistent emission controls will alter the nonlinear response of ozone to its precursors and dominate the declining ozone level. The outcomes highlight the importance of human actions, even with a climate penalty on air quality.
Takashi Sekiya, Emanuele Emili, Kazuyuki Miyazaki, Antje Inness, Zhen Qu, R. Bradley Pierce, Dylan Jones, Helen Worden, William Y. Y. Cheng, Vincent Huijnen, and Gerbrand Koren
Atmos. Chem. Phys., 25, 2243–2268, https://doi.org/10.5194/acp-25-2243-2025, https://doi.org/10.5194/acp-25-2243-2025, 2025
Short summary
Short summary
Five global chemical reanalysis datasets were used to assess the relative impacts of assimilating satellite ozone and its precursor measurements on tropospheric ozone analyses for 2010. The multiple reanalysis system comparison allows an evaluation of the dependency of the impacts on different reanalysis systems. The results suggested the importance of satellite ozone and its precursor measurements for improving ozone analysis in the whole troposphere, with varying magnitudes among the systems.
Maureen Beaudor, Didier Hauglustaine, Juliette Lathière, Martin Van Damme, Lieven Clarisse, and Nicolas Vuichard
Atmos. Chem. Phys., 25, 2017–2046, https://doi.org/10.5194/acp-25-2017-2025, https://doi.org/10.5194/acp-25-2017-2025, 2025
Short summary
Short summary
Agriculture is the biggest ammonia (NH3) source, impacting air quality, climate, and ecosystems. Because of food demand, NH3 emissions are projected to rise by 2100. Using a global model, we analyzed the impact of present and future NH3 emissions generated from a land model. Our results show improved ammonia patterns compared to a reference inventory. Future scenarios predict up to 70 % increase in global NH3 burden, with significant changes in radiative forcing that can greatly elevate N2O.
Hui Li, Jiaxin Qiu, and Bo Zheng
Atmos. Chem. Phys., 25, 1949–1963, https://doi.org/10.5194/acp-25-1949-2025, https://doi.org/10.5194/acp-25-1949-2025, 2025
Short summary
Short summary
We conduct a sensitivity analysis with 31 tests on various factors including prior emissions, model resolution, satellite constraint, and other system configurations to assess the vulnerability of emission estimates across temporal, sectoral, and regional dimensions. This reveals the robustness of emissions estimated by this air-pollution-satellite-based CO2 emission inversion system, with relative change between tests and base inversion below 4.0 % for national annual NOx and CO2 emissions.
Yuqing Qiu, Xin Li, Wenxuan Chai, Yi Liu, Mengdi Song, Xudong Tian, Qiaoli Zou, Wenjun Lou, Wangyao Zhang, Juan Li, and Yuanhang Zhang
Atmos. Chem. Phys., 25, 1749–1763, https://doi.org/10.5194/acp-25-1749-2025, https://doi.org/10.5194/acp-25-1749-2025, 2025
Short summary
Short summary
The chemical reactions of ozone (O3) formation are related to meteorology and local emissions. Here, a random forest approach was used to eliminate the effects of meteorological factors (dispersion or transport) on O3 and its precursors. Variations in the sensitivity of O3 formation and the apportionment of emission sources were revealed after meteorological normalization. Our results suggest that meteorological variations should be considered when diagnosing O3 formation.
Jeongmin Yun, Junjie Liu, Brendan Byrne, Brad Weir, Lesley E. Ott, Kathryn McKain, Bianca C. Baier, Luciana V. Gatti, and Sebastien C. Biraud
Atmos. Chem. Phys., 25, 1725–1748, https://doi.org/10.5194/acp-25-1725-2025, https://doi.org/10.5194/acp-25-1725-2025, 2025
Short summary
Short summary
This study quantifies errors in regional net surface–atmosphere CO2 flux estimates from an inverse model ensemble using airborne CO2 measurements. Our results show that flux error estimates based on observations significantly exceed those computed from the ensemble spread of flux estimates in regions with high fossil fuel emissions. This finding suggests the presence of systematic biases in the inversion estimates, associated with errors in the fossil fuel emissions common to all models.
Min Huang, Gregory R. Carmichael, Kevin W. Bowman, Isabelle De Smedt, Andreas Colliander, Michael H. Cosh, Sujay V. Kumar, Alex B. Guenther, Scott J. Janz, Ryan M. Stauffer, Anne M. Thompson, Niko M. Fedkin, Robert J. Swap, John D. Bolten, and Alicia T. Joseph
Atmos. Chem. Phys., 25, 1449–1476, https://doi.org/10.5194/acp-25-1449-2025, https://doi.org/10.5194/acp-25-1449-2025, 2025
Short summary
Short summary
We use model simulations along with multiplatform, multidisciplinary observations and a range of analysis methods to estimate and understand the distributions, temporal changes, and impacts of reactive nitrogen and ozone over the most populous US region that has undergone significant environmental changes. Deposition, biogenic emissions, and extra-regional sources have been playing increasingly important roles in controlling pollutant budgets in this area as local anthropogenic emissions drop.
Xavier Faïn, Sophie Szopa, Vaishali Naïk, Patricia Martinerie, David M. Etheridge, Rachael H. Rhodes, Cathy M. Trudinger, Vasilii V. Petrenko, Kévin Fourteau, and Philip Place
Atmos. Chem. Phys., 25, 1105–1119, https://doi.org/10.5194/acp-25-1105-2025, https://doi.org/10.5194/acp-25-1105-2025, 2025
Short summary
Short summary
Carbon monoxide (CO) plays a crucial role in the atmosphere's oxidizing capacity. In this study, we analyse how historical (1850–2014) [CO] outputs from state-of-the-art global chemistry–climate models over Greenland and Antarctica are able to capture both absolute values and trends recorded in multi-site ice archives. A disparity in [CO] growth rates emerges in the Northern Hemisphere between models and observations from 1920–1975 CE, possibly linked to uncertainties in CO emission factors.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
Atmos. Chem. Phys., 25, 1063–1104, https://doi.org/10.5194/acp-25-1063-2025, https://doi.org/10.5194/acp-25-1063-2025, 2025
Short summary
Short summary
Processes influencing dispersion of local anthropogenic pollution in Arctic wintertime are investigated with Lagrangian dispersion modelling. Simulated power plant plume rise that considers temperature inversion layers improves results compared to observations (interior Alaska). Modelled surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching −35°C are required to reproduce observed NOx.
Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke
Atmos. Chem. Phys., 25, 1121–1143, https://doi.org/10.5194/acp-25-1121-2025, https://doi.org/10.5194/acp-25-1121-2025, 2025
Short summary
Short summary
In urban areas, emissions from everyday products like paints, cleaners, and personal care products, along with non-traditional sources such as cooking, are increasingly important and impact air quality. This study uses a box model to evaluate how these emissions impact ozone in the Los Angeles Basin and quantifies the impact of gaseous cooking emissions. Accurate representation of these and other anthropogenic sources in inventories is crucial for informing effective air quality policies.
Xiaodan Ma, Jianping Huang, Michaela I. Hegglin, Patrick Jöckel, and Tianliang Zhao
Atmos. Chem. Phys., 25, 943–958, https://doi.org/10.5194/acp-25-943-2025, https://doi.org/10.5194/acp-25-943-2025, 2025
Short summary
Short summary
Our research explored changes in ozone levels in the northwest Pacific region over 30 years, revealing a significant increase in the middle-to-upper troposphere, especially during spring and summer. This rise is influenced by both stratospheric and tropospheric sources, which affect climate and air quality in East Asia. This work underscores the need for continued study to understand underlying mechanisms.
Hiroo Hata, Norifumi Mizushima, and Tomohiko Ihara
Atmos. Chem. Phys., 25, 1037–1061, https://doi.org/10.5194/acp-25-1037-2025, https://doi.org/10.5194/acp-25-1037-2025, 2025
Short summary
Short summary
The introduction of battery electric vehicles (BEVs) is expected to reduce the primary air pollutants from vehicular exhaust and evaporative emissions while reducing the anthropogenic heat produced by vehicles, ultimately mitigating the urban heat island (UHI) effect. This study revealed the impact of introducing BEVs on the decrease in the UHI effect and the impact of BEVs on the formation of tropospheric ozone and fine particulate matter in the Greater Tokyo Area of Japan.
Carlos Gómez-Ortiz, Guillaume Monteil, Sourish Basu, and Marko Scholze
Atmos. Chem. Phys., 25, 397–424, https://doi.org/10.5194/acp-25-397-2025, https://doi.org/10.5194/acp-25-397-2025, 2025
Short summary
Short summary
In this paper, we test new implementations of our inverse modeling tool to estimate the weekly and regional CO2 emissions from fossil fuels in Europe. We use synthetic atmospheric observations of CO2 and radiocarbon (14CO2) to trace emissions to their sources, while separating the natural and fossil CO2. Our tool accurately estimates fossil CO2 emissions in densely monitored regions like western/central Europe. This approach aids in developing strategies for reducing CO2 emissions.
David D. Parrish, Ian C. Faloona, and Richard G. Derwent
Atmos. Chem. Phys., 25, 263–289, https://doi.org/10.5194/acp-25-263-2025, https://doi.org/10.5194/acp-25-263-2025, 2025
Short summary
Short summary
Observation-based estimates of contributions to maximum ozone (O3) concentrations show that background O3 can exceed the air quality standard of 70 ppb in the southwestern US, precluding standard attainment. Over the past 4 decades, US anthropogenic O3 has decreased by a factor of ~ 6.3, while wildfire contributions have increased, so that the background now dominates maximum concentrations, even in Los Angeles, and the occurrence of maximum O3 has shifted from the eastern to the western US.
William P. L. Carter, Jia Jiang, John J. Orlando, and Kelley C. Barsanti
Atmos. Chem. Phys., 25, 199–242, https://doi.org/10.5194/acp-25-199-2025, https://doi.org/10.5194/acp-25-199-2025, 2025
Short summary
Short summary
This paper describes the scientific basis for gas-phase atmospheric chemical mechanisms derived using the SAPRC mechanism generation system, MechGen. It can derive mechanisms for most organic compounds with C, H, O, or N atoms, including initial reactions of organics with OH, O3, NO3, and O3P or by photolysis, as well as the reactions of the various types of intermediates that are formed. The paper includes a description of areas of uncertainty where additional research and updates are needed.
Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret
Atmos. Chem. Phys., 24, 13975–14004, https://doi.org/10.5194/acp-24-13975-2024, https://doi.org/10.5194/acp-24-13975-2024, 2024
Short summary
Short summary
Our study examines intense-carbon-monoxide (CO) pollution events measured by commercial aircraft from the In-service Aircraft for a Global Observing System (IAGOS) research infrastructure. We combine these measurements with the SOFT-IO model to trace the origin of the observed CO. A comprehensive analysis of the geographical origin, source type, seasonal variation, and ozone levels of these pollution events is provided.
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024, https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary
Short summary
Four-dimensional variational data assimilation allows for the simultaneous optimisation of initial values and emission rates by using trace-gas profiles from drone observations in a regional air quality model. Assimilated profiles positively impact the representation of air pollutants in the model by improving their vertical distribution and ground-level concentrations. This case study highlights the potential of drone data to enhance air quality analyses including local emission evaluation.
Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance
Atmos. Chem. Phys., 24, 13693–13713, https://doi.org/10.5194/acp-24-13693-2024, https://doi.org/10.5194/acp-24-13693-2024, 2024
Short summary
Short summary
This work uses chemical transport and box modeling to study the gas- and aqueous-phase production of organic acid concentrations measured in cloud water at the summit of Whiteface Mountain on 1 July 2018. Isoprene was the major source of formic, acetic, and oxalic acid. Gas-phase chemistry greatly underestimated formic and acetic acid, indicating missing sources, while cloud chemistry was a key source of oxalic acid. More studies of organic acids are required to better constrain their sources.
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 24, 13503–13523, https://doi.org/10.5194/acp-24-13503-2024, https://doi.org/10.5194/acp-24-13503-2024, 2024
Short summary
Short summary
Anthropogenic emissions are a major source of precursors of tropospheric ozone. As ozone formation is highly non-linear, we apply a global–regional chemistry–climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. Our analysis shows that the contribution of European anthropogenic emissions largely increases during large ozone periods, indicating that emissions from these sectors drive ozone values.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington
Atmos. Chem. Phys., 24, 13317–13339, https://doi.org/10.5194/acp-24-13317-2024, https://doi.org/10.5194/acp-24-13317-2024, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes in the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses the advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 24, 12943–12962, https://doi.org/10.5194/acp-24-12943-2024, https://doi.org/10.5194/acp-24-12943-2024, 2024
Short summary
Short summary
This paper employs a regional chemical transport model to quantify the sensitivity of air pollutants and photochemical parameters to specified emission reductions in China for representative winter and summer conditions. The study provides insights into further air quality control in China with reduced primary emissions.
T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O.T. Pye
Atmos. Chem. Phys., 24, 12903–12924, https://doi.org/10.5194/acp-24-12903-2024, https://doi.org/10.5194/acp-24-12903-2024, 2024
Short summary
Short summary
We develop the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 2 to improve predictions of formaldehyde in ambient air compared to satellite-, aircraft-, and ground-based observations. With the updated chemistry, we estimate the cancer risk from inhalation exposure to ambient formaldehyde across the contiguous USA and predict that 40 % of this risk is controllable through reductions in anthropogenic emissions of nitrogen oxides and reactive organic carbon.
Baoshuang Liu, Yao Gu, Yutong Wu, Qili Dai, Shaojie Song, Yinchang Feng, and Philip K. Hopke
Atmos. Chem. Phys., 24, 12861–12879, https://doi.org/10.5194/acp-24-12861-2024, https://doi.org/10.5194/acp-24-12861-2024, 2024
Short summary
Short summary
Reactive loss of volatile organic compounds (VOCs) is a long-term issue yet to be resolved in VOC source analyses. We assess common methods of, and existing issues in, reducing losses, impacts of losses, and sources in current source analyses. We offer a potential supporting role for solving issues of VOC conversion. Source analyses of consumed VOCs that reacted to produce ozone and secondary organic aerosols can play an important role in the effective control of secondary pollution in air.
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024, https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
Short summary
We investigate the hourly variation of NO2 columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO2 columns to explain the weaker hourly variation in NO2 columns than at the surface.
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024, https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary
Short summary
We incorporated each HONO process into the current CMAQ modeling framework to enhance the accuracy of HONO mixing ratio predictions. These results expand our understanding of HONO photochemistry and identify crucial sources of HONO that impact the total HONO budget in Seoul, South Korea. Through this investigation, we contribute to resolving discrepancies in understanding chemical transport models, with implications for better air quality management and environmental protection in the region.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 24, 12495–12507, https://doi.org/10.5194/acp-24-12495-2024, https://doi.org/10.5194/acp-24-12495-2024, 2024
Short summary
Short summary
Climate change will bring about changes in parameters that are currently used in global-scale models to calculate biogenic emissions. This study seeks to understand the factors driving these models by comparing long-term datasets of biogenic compounds to modeled emissions. We note that the light-dependent fractions currently used in models do not accurately represent regional observations. We provide evidence for the time-dependent variation in this parameter for future modifications to models.
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Dominika Pasik, Thomas Golin Almeida, Emelda Ahongshangbam, Siddharth Iyer, and Nanna Myllys
EGUsphere, https://doi.org/10.5194/egusphere-2024-3464, https://doi.org/10.5194/egusphere-2024-3464, 2024
Short summary
Short summary
We used quantum chemistry methods to investigate the oxidation mechanisms of acyl peroxy radicals (APRs) with various monoterpenes. Our findings reveal unique oxidation pathways for different monoterpenes, leading to either chain-terminating products or highly reactive intermediates that can contribute to particle formation in the atmosphere. This research highlights APRs as potentially significant but underexplored atmospheric oxidants, which may influence future approaches to modeling climate.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Ragnhild Bieltvedt Skeie, Marit Sandstad, Srinath Krishnan, Gunnar Myhre, and Maria Sand
EGUsphere, https://doi.org/10.5194/egusphere-2024-3079, https://doi.org/10.5194/egusphere-2024-3079, 2024
Short summary
Short summary
Hydrogen leakages can alter the amount of climate gases in the atmosphere and hence have a climate impact. In this study we investigate, using an atmospheric chemistry model, how this indirect climate effect differs for different amounts of leakages, where the hydrogen leaks and if this effect changes in the future. The effect is largest for emissions far from areas where hydrogen is removed from the atmosphere by the soil, but these are not relevant locations for a future hydrogen economy.
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024, https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary
Short summary
We quantified the contributions of land transport, shipping, and aviation emissions to tropospheric ozone; its radiative forcing; and the reductions of the methane lifetime using chemistry-climate model simulations. The contributions were analysed for the conditions of 2015 and for three projections for the year 2050. The results highlight the challenges of mitigating ozone formed by emissions of the transport sector, caused by the non-linearitiy of the ozone chemistry and the long lifetime.
Jincheol Park, Yunsoo Choi, and Sagun Kayastha
EGUsphere, https://doi.org/10.5194/egusphere-2024-3312, https://doi.org/10.5194/egusphere-2024-3312, 2024
Short summary
Short summary
We investigated NOx emissions’ contributions to nitrogen loadings across five regions of East Asia during the 2022 winter-spring transition through chemical transport modeling informed by satellite data. As seasons progress, local contributions within each region to its NOy budget decreased from 32 %–43 % to 23 %–30 %, while transboundary contributions increased from 16 %–33 % to 27 %–37 %, driven by a shift in synoptic settings that allowed pollutants to spread more broadly across the regions.
Lauri Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Kurtén
Atmos. Chem. Phys., 24, 11679–11699, https://doi.org/10.5194/acp-24-11679-2024, https://doi.org/10.5194/acp-24-11679-2024, 2024
Short summary
Short summary
In this article we investigate the formation of large, sticky molecules from various organic compounds entering the atmosphere as primary emissions and the degree to which these processes may contribute to organic aerosol particle mass. More specifically, we qualitatively investigate a recently discovered chemical reaction channel for one of the most important short-lived radical compounds, peroxy radicals, and discover which of these reactions are most atmospherically important.
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
Atmos. Chem. Phys., 24, 11521–11544, https://doi.org/10.5194/acp-24-11521-2024, https://doi.org/10.5194/acp-24-11521-2024, 2024
Short summary
Short summary
This study establishes an inventory of anthropogenic chlorine emissions in China in 2019 with expanded species (HCl, Cl-, Cl2, HOCl) and sources (41 specific sources). The inventory is validated by a modeling study against the observations. This study enhances the understanding of anthropogenic chlorine emissions in the atmosphere, identifies key sources, and provides scientific support for pollution control and climate change.
Willem E. van Caspel, Zbigniew Klimont, Chris Heyes, and Hilde Fagerli
Atmos. Chem. Phys., 24, 11545–11563, https://doi.org/10.5194/acp-24-11545-2024, https://doi.org/10.5194/acp-24-11545-2024, 2024
Short summary
Short summary
Methane in the atmosphere contributes to the production of ozone gas – an air pollutant and greenhouse gas. Our results highlight that simultaneous reductions in methane emissions help avoid offsetting the air pollution benefits already achieved by the already-approved precursor emission reductions by 2050 in the European Monitoring and Evaluation Programme region, while also playing an important role in bringing air pollution further down towards World Health Organization guideline limits.
Laura Stecher, Franziska Winterstein, Patrick Jöckel, Michael Ponater, Mariano Mertens, and Martin Dameris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2938, https://doi.org/10.5194/egusphere-2024-2938, 2024
Short summary
Short summary
Methane, the second most important anthropogenic greenhouse gas, is chemically decomposed in the atmosphere. The chemical sink of atmospheric methane is not constant, but depends on the temperature and on the abundance of its reaction partners. In this study, we use a global chemistry-climate model to assess the feedback of atmospheric methane induced by changes of the chemical sink in a warming climate, and its implications for the chemical composition and the surface air temperature change.
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
EGUsphere, https://doi.org/10.5194/egusphere-2024-2912, https://doi.org/10.5194/egusphere-2024-2912, 2024
Short summary
Short summary
Vegetation releases biogenic volatile organic compounds, while soils and lightning contribute to the natural emissions of nitrogen oxides into the atmosphere. These gases interact in complex ways. Using satellite data and models, we developed a new method to simultaneously optimise these natural emissions over Africa in 2019. Our approach led to an increase in natural emissions that is supported by independent data showing that current estimates are underestimated.
Tia R. Scarpelli, Paul I. Palmer, Mark Lunt, Ingrid Super, and Arjan Droste
Atmos. Chem. Phys., 24, 10773–10791, https://doi.org/10.5194/acp-24-10773-2024, https://doi.org/10.5194/acp-24-10773-2024, 2024
Short summary
Short summary
Under the Paris Agreement, countries must track their anthropogenic greenhouse gas emissions. This study describes a method to determine self-consistent estimates for combustion emissions and natural fluxes of CO2 from atmospheric data. We report consistent estimates inferred using this approach from satellite data and ground-based data over Europe, suggesting that satellite data can be used to determine national anthropogenic CO2 emissions for countries where ground-based CO2 data are absent.
Yufen Wang, Ke Li, Xi Chen, Zhenjiang Yang, Minglong Tang, Pascoal M. D. Campos, Yang Yang, Xu Yue, and Hong Liao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2576, https://doi.org/10.5194/egusphere-2024-2576, 2024
Short summary
Short summary
The impact of biomass burning and anthropogenic emissions on high tropospheric ozone was not well studied in Southern Africa. We combined the model simulation with recent observations at the surface and from space to quantify tropospheric ozone and its main drivers in Southern Africa. Our work focuses on the impact of emissions from different sources at different spatial scales, contributing to a comprehensive understanding of air pollution drivers and their uncertainties in Southern Africa.
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2500, https://doi.org/10.5194/egusphere-2024-2500, 2024
Short summary
Short summary
Unlike traditional numerical studies, we apply a high-resolution Earth system model, improving simulations of ozone and large-scale circulations such as atmospheric blocking. In addition to local heatwave effects, we quantify the impact of atmospheric blocking on downstream ozone concentrations, which is closely associated with the blocking position. We identify three major pathways of Rossby wave propagation, stressing the critical role of large-scale circulation play in regional air quality.
Qianqian Zhang, K. Folkert Boersma, Chiel van der Laan, Alba Mols, Bin Zhao, Shengyue Li, and Yuepeng Pan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2641, https://doi.org/10.5194/egusphere-2024-2641, 2024
Short summary
Short summary
Accurate NOx emission estimates are required to better understand air pollution. This study investigates and demonstrates the ability of the superposition column model in combination with TROPOMI tropospheric NO2 column data to estimate city-scale NOx emissions and lifetimes and their variabilities. The results of this work nevertheless confirm the strength of the superposition column model in estimating urban NOx emissions with reasonable accuracy.
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024, https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary
Short summary
Iodine-mediated loss of ozone to the ocean surface and the subsequent emission of iodine species has a large effect on the troposphere. Here we combine recent experimental insights to develop a box model of the process, which we then parameterize and incorporate into the GEOS-Chem transport model. We find that these new insights have a small impact on the total emission of iodine but significantly change its distribution.
Mingzhao Liu, Lars Hoffmann, Jens-Uwe Grooß, Zhongyin Cai, Sabine Grießbach, and Yi Heng
EGUsphere, https://doi.org/10.5194/egusphere-2024-2596, https://doi.org/10.5194/egusphere-2024-2596, 2024
Short summary
Short summary
We studied the transport and chemical decomposition of volcanic SO2, focusing on the 2019 Raikoke event. By comparing two different chemistry modeling schemes, we found that including complex chemical reactions leads to a more accurate prediction of how long SO2 stays in the atmosphere. This research helps improve our understanding of volcanic pollution and its impact on air quality and climate, providing better tools for scientists to track and predict the movement of these pollutants.
Alok K. Pandey, David S. Stevenson, Alcide Zhao, Richard J. Pope, Ryan Hossaini, Krishan Kumar, and Marytn P. Chipperfield
EGUsphere, https://doi.org/10.5194/egusphere-2024-2686, https://doi.org/10.5194/egusphere-2024-2686, 2024
Short summary
Short summary
Nitrogen dioxide is an air pollutant largely controlled by human activity that affects ozone, methane and aerosols. Satellite instruments can quantify column NO2, and by carefully matching the time and location of measurements, enable evaluation of model simulations. NO2 over SE Asia is assessed, showing that the model captures many features of the measurements, but also important differences that suggest model deficiencies in representing several aspects of the atmospheric chemistry of NO2.
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024, https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
Short summary
Human activities result in the emission of volatile organic compounds (VOCs) that contribute to air pollution. Detailed VOC measurements were taken during a field study in South Korea. When compared to VOC inventories, large discrepancies showed underestimates from chemical products, liquefied petroleum gas, and long-range transport. Improved emissions and chemistry of these VOCs better described urban pollution. The new chemical scheme is relevant to urban areas and other VOC sources.
Beth S. Nelson, Zhenze Liu, Freya A. Squires, Marvin Shaw, James R. Hopkins, Jacqueline F. Hamilton, Andrew R. Rickard, Alastair C. Lewis, Zongbo Shi, and James D. Lee
Atmos. Chem. Phys., 24, 9031–9044, https://doi.org/10.5194/acp-24-9031-2024, https://doi.org/10.5194/acp-24-9031-2024, 2024
Short summary
Short summary
The impact of combined air quality and carbon neutrality policies on O3 formation in Beijing was investigated. Emissions inventory data were used to estimate future pollutant mixing ratios relative to ground-level observations. O3 production was found to be most sensitive to changes in alkenes, but large reductions in less reactive compounds led to larger reductions in future O3 production. This study highlights the importance of understanding the emissions of organic pollutants.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Atmos. Chem. Phys., 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024, https://doi.org/10.5194/acp-24-8607-2024, 2024
Short summary
Short summary
Tropospheric ozone is a major air pollutant, a greenhouse gas, and a major indicator of model skill. Global atmospheric chemistry models show large differences in simulations of tropospheric ozone, but isolating sources of differences is complicated by different model environments. By implementing the GEOS-Chem model side by side to CAM-chem within a common Earth system model, we identify and evaluate specific differences between the two models and their impacts on key chemical species.
Cited articles
Ariya, P. A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G., Poulain, A., Ryjkov, A., Semeniuk, K., Subir, M., and Toyota, K.: Mercury Physicochemical and Biogeochemical Transformation in the Atmosphere and at Atmospheric Interfaces: A Review and Future Directions, Chem. Rev., 115, 3760–3802, 2015.
Bash, J. O.: Description and initial simulation of a dynamic bidirectional air-surface exchange model for mercury in Community Multiscale Air Quality (CMAQ) model, J. Geophys. Res.-Atmos., 115, 621–631, https://doi.org/10.1029/2009JD012834, 2010.
Bash, J. O., Miller, D. R., Meyer, T. H., and Bresnahan, P. A.: Northeast United States and Southeast Canada natural mercury emissions estimated with a surface emission model, Atmos. Environ., 38, 5683–5692, 2004.
Bash, J. O., Bresnahan, P., and Miller, D. R.: Dynamic surface interface exchanges of mercury: A review and compartmentalized modeling framework, J. Appl. Meteorol. Climatol., 46, 1606–1618, https://doi.org/10.1175/jam2553.1, 2007.
Carpi, A. and Lindberg, S. E.: Application of a Teflon (TM) dynamic flux chamber for quantifying soil mercury flux: Tests and results over background soil, Atmos. Environ., 32, 873–882, 1998.
Chen, L., Wang, H. H., Liu, J. F., Tong, Y. D., Ou, L. B., Zhang, W., Hu, D., Chen, C., and Wang, X. J.: Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions, Atmos. Chem. Phys., 14, 10163–10176, https://doi.org/10.5194/acp-14-10163-2014, 2014.
Choi, H. D. and Holsen, T. M.: Gaseous mercury fluxes from the forest floor of the Adirondacks, Environ. Pollut., 157, 592–600, 2009.
Ciani, A., Goss, K. U., and Schwarzenbach, R. P.: Light penetration in soil and particulate minerals, Eur. J. Soil. Sci., 56, 561–574, 2005.
Cui, L., Feng, X., Lin, C.-J., Wang, X., Meng, B., Wang, X., and Wang, H.: Accumulation and translocation of 198Hg in four crop species, Environ. Toxicol. Chem., 33, 334–340, 2014.
Demers, J. D., Blum, J. D., and Zak, D. R.: Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle, Global Biogeochem. Cy., 27, 222–238, https://doi.org/10.1002/gbc.20021, 2013.
Eamus, D., Myers, B., Duff, G., and Williams, R.: A cost-benefit analysis of leaves of eight Australian savanna tree species of differing leaf life-span, Photosynthetica, 36, 575–586, 1999.
Ericksen, J. and Gustin, M. S.: Air-surface exchange of mercury with soils amended with ash materials, J. Air Waste Manage., 56, 977–992, 2006.
Ericksen, J. A., Gustin, M. S., Xin, M., Weisberg, P. J., and Fernandez, G. C. J.: Air-soil exchange of mercury from background soils in the United States, Sci Total Environ., 366, 851–863, 2006.
Fain, X., Grangeon, S., Bahlmann, E., Fritsche, J., Obrist, D., Dommergue, A., Ferrari, C. P., Cairns, W., Ebinghaus, R., Barbante, C., Cescon, P., and Boutron, C.: Diurnal production of gaseous mercury in the alpine snowpack before snowmelt, J. Geophys. Res.-Atmos., 112, 5671–5674, https://doi.org/10.1029/2007JD008520, 2007.
FAO: State of the World's Forests 2014, FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, Rome, 93–100, 2014.
Feng, X., Qiu, G., Wang, S., and Shang, L.: Distribution and speciation of mercury in surface waters in mercury mining areas in Wanshan, Southwestern China, J. Phys. Iv, 107, 455–458, 2003.
Feng, X. B., Sommar, J., Gardfeldt, K., and Lindqvist, O.: Exchange flux of total gaseous mercury between air and natural water surfaces in summer season, Sci. China Ser. D, 45, 211–220, 2002.
Feng, X. B., Wang, S. F., Qiu, G. A., Hou, Y. M., and Tang, S. L.: Total gaseous mercury emissions from soil in Guiyang, Guizhou, China, J. Geophys. Res.-Atmos., 110, 1891–1904, https://doi.org/10.1029/2004JD005643, 2005.
Feng, X. B., Wang, S. F., Qiu, G. G., He, T. R., Li, G. H., Li, Z. G., and Shang, L. H.: Total gaseous mercury exchange between water and air during cloudy weather conditions over Hongfeng Reservoir, Guizhou, China, J. Geophys. Res.-Atmos., 113, 797–801, https://doi.org/10.1029/2007JD009600, 2008.
Fritsche, J., Wohlfahrt, G., Ammann, C., Zeeman, M., Hammerle, A., Obrist, D., and Alewell, C.: Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale, Atmos. Chem. Phys., 8, 7709–7722, https://doi.org/10.5194/acp-8-7709-2008, 2008.
Fu, X. W., Feng, X. B., and Wang, S. F.: Exchange fluxes of Hg between surfaces and atmosphere in the eastern flank of Mount Gongga, Sichuan province, southwestern China, J. Geophys. Res.-Atmos., 113, 253–270, https://doi.org/10.1029/2008JD009814, 2008.
Fu, X. W., Feng, X. B., Zhang, G., Xu, W. H., Li, X. D., Yao, H., Liang, P., Li, J., Sommar, J., Yin, R. S., and Liu, N.: Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow, J. Geophys. Res.-Atmos., 115, 620–631, https://doi.org/10.1029/2009JD012958, 2010.
Fu, X. W., Feng, X. B., Zhang, H., Yu, B., and Chen, L. G.: Mercury emissions from natural surfaces highly impacted by human activities in Guangzhou province, South China, Atmos. Environ., 54, 185–193, 2012.
Fu, X. W., Feng, X. B., Guo, Y. N., Meng, B., Yin, R. S., and Yao, H.: Distribution and production of reactive mercury and dissolved gaseous mercury in surface waters and water/air mercury flux in reservoirs on Wujiang River, Southwest China, J. Geophys. Res.-Atmos., 118, 3905–3917, 2013a.
Fu, X. W., Feng, X. B., Yin, R. S., and Zhang, H.: Diurnal variations of total mercury, reactive mercury, and dissolved gaseous mercury concentrations and water/air mercury flux in warm and cold seasons from freshwaters of southwestern China, Environ. Toxicol. Chem., 32, 2256–2265, 2013b.
Fu, X. W., Zhang, H., Yu, B., Wang, X., Lin, C.-J., and Feng, X. B.: Observations of atmospheric mercury in China: a critical review, Atmos. Chem. Phys., 15, 9455–9476, https://doi.org/10.5194/acp-15-9455-2015, 2015.
Gbor, P. K., Wen, D. Y., Meng, F., Yang, F. Q., Zhang, B. N., and Sloan, J. J.: Improved model for mercury emission, transport and deposition, Atmos. Environ., 40, 973–983, https://doi.org/10.1016/j.atmosenv.2005.10.040, 2006.
Gbor, P. K., Wen, D. Y., Meng, F., Yang, F. Q., and Sloan, J. J.: Modeling of mercury emission, transport and deposition in North America, Atmos. Environ., 41, 1135–1149, https://doi.org/10.1016/j.atmosenv.2006.10.005, 2007.
Graydon, J. A., St Louis, V. L., Lindberg, S. E., Hintelmann, H., and Krabbenhoft, D. P.: Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber, Environ. Sci. Technol., 40, 4680–4688, 2006.
Gustin, M. S., Lindberg, S. E., and Weisberg, P. J.: An update on the natural sources and sinks of atmospheric mercury, Appl. Geochem., 23, 482–493, 2008a.
Gustin, M. S., Lindberg, S. E., and Weisberg, P. J.: An update on the natural sources and sinks of atmospheric mercury, Appl. Geochem., 23, 482–493, https://doi.org/10.1016/j.apgeochem.2007.12.010, 2008b.
Gustin, M. S., Amos, H. M., Huang, J., Miller, M. B., and Heidecorn, K.: Measuring and modeling mercury in the atmosphere: a critical review, Atmos. Chem. Phys., 15, 5697–5713, https://doi.org/10.5194/acp-15-5697-2015, 2015.
He, F., Zheng, W., Liang, L. Y., and Gu, B. H.: Mercury photolytic transformation affected by low-molecular-weight natural organics in water, Sci. Total Environ., 416, 429–435, 2012.
Hebert, V. R. and Miller, G. C.: Depth dependence of direct and indirect photolysis on soil surfaces, J. Agr. Food Chem., 38, 913–918, https://doi.org/10.1021/jf00093a069, 1990.
Hood, A., Gutjahr, C. C. M., and Heacock, R. L.: Organic Metamorphism and the Generation of Petroleum, AAPG Bulletin, 59, 986–996, 1975.
Horowitz, H. M., Jacob, D. J., Amos, H. M., Streets, D. G., and Sunderland, E. M.: Historical Mercury Releases from Commercial Products: Global Environmental Implications, Environ. Sci. Technol., 48, 10242–10250, 2014.
Ishida, A., Diloksumpun, S., Ladpala, P., Staporn, D., Panuthai, S., Gamo, M., Yazaki, K., Ishizuka, M., and Puangchit, L.: Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand, Tree Physiol., 26, 643–656, 2006.
Jaffe, D., Prestbo, E., Swartzendruber, P., Weiss-Penzias, P., Kato, S., Takami, A., Hatakeyama, S., and Kajii, Y.: Export of atmospheric mercury from Asia, Atmos. Environ., 39, 3029–3038, 2005.
Kissinger, H. E.: Reaction Kinetics in Differential Thermal Analysis, J. Phys. Chem., 29, 1702–1706, https://doi.org/10.1021/ac60131a045, 1957.
Kuiken, T., Gustin, M., Zhang, H., Lindberg, S., and Sedinger, B.: Mercury emission from terrestrial background surfaces in the eastern USA. II: Air/surface exchange of mercury within forests from South Carolina to New England, Appl. Geochem., 23, 356–368, 2008a.
Kuiken, T., Zhang, H., Gustin, M., and Lindberg, S.: Mercury emission from terrestrial background surfaces in the eastern USA. Part I: Air/surface exchange of mercury within a southeastern deciduous forest (Tennessee) over one year, Appl. Geochem., 23, 345–355, 2008b.
Laacouri, A., Nater, E. A., and Kolka, R. K.: Distribution and Uptake Dynamics of Mercury in Leaves of Common Deciduous Tree Species in Minnesota, USA, Environ. Sci. Technol., 47, 10462–10470, 2013.
Lalonde, J. D., Amyot, M., Doyon, M. R., and Auclair, J. C.: Photo-induced Hg(II) reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada), J. Geophys. Res.-Atmos., 108, 4200, https://doi.org/10.1029/2001jd001534, 2003.
Lee, S. Z., Chang, L., Chen, C. M., Tsai, Y. I., and Liu, M. C.: Predicting soil-water partition coefficients for Hg(II) from soil properties, Water Sci. Technol., 43, 187–196, 2001.
Li, M., Xi, X. H., Xiao, G. Y., Cheng, H. X., Yang, Z. F., Zhou, G. H., Ye, J. Y., and Li, Z. H.: National multi-purpose regional geochemical survey in China, J. Geochem. Explor., 139, 21–30, 2014.
Lin, C. J., Lindberg, S. E., Ho, T. C., and Jang, C.: Development of a processor in BEIS3 for estimating vegetative mercury emission in the continental United States, Atmos. Environ., 39, 7529–7540, 2005.
Lin, C.-J., Gustin, M. S., Singhasuk, P., Eckley, C., and Miller, M.: Empirical Models for Estimating Mercury Flux from Soils, Environ. Sci. Technol., 44, 8522–8528, 10.1021/es1021735, 2010a.
Lin, C.-J., Pan, L., Streets, D. G., Shetty, S. K., Jang, C., Feng, X., Chu, H.-W., and Ho, T. C.: Estimating mercury emission outflow from East Asia using CMAQ-Hg, Atmos. Chem. Phys., 10, 1853–1864, https://doi.org/10.5194/acp-10-1853-2010, 2010b.
Lin, C. J., Zhu, W., Li, X. C., Feng, X. B., Sommar, J., and Shang, L. H.: Novel Dynamic Flux Chamber for Measuring Air-Surface Exchange of Hg-o from Soils, Environ. Sci. Technol., 46, 8910–8920, https://doi.org/10.1021/Es3012386, 2012.
Lindberg, S. E., Zhang, H., Gustin, M., Vette, A., Marsik, F., Owens, J., Casimir, A., Ebinghaus, R., Edwards, G., Fitzgerald, C., Kemp, J., Kock, H. H., London, J., Majewski, M., Poissant, L., Pilote, M., Rasmussen, P., Schaedlich, F., Schneeberger, D., Sommar, J., Turner, R., Wallschlager, D., and Xiao, Z.: Increases in mercury emissions from desert soils in response to rainfall and irrigation, J. Geophys. Res.-Atmos., 104, 21879–21888, 1999.
Lindberg, S. E., Dong, W. J., and Meyers, T.: Transpiration of gaseous elemental mercury through vegetation in a subtropical wetland in Florida, Atmos. Environ., 36, 5207–5219, 2002.
Lindberg, S. E., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X. B., Fitzgerald, W., Pirrone, N., Prestbo, E., and Seigneur, C.: A synthesis of progress and uncertainties in attributing the sources of mercury in deposition, Ambio, 36, 19–32, 2007.
Liu, L., Xu, X. L., Zhuang, D. F., Chen, X., and Li, S.: Changes in the Potential Multiple Cropping System in Response to Climate Change in China from 1960–2010, Plos One, 8, 12, https://doi.org/10.1371/journal.pone.0080990, 2013.
Liu, Y. B., Ju, W. M., Chen, J. M., Zhu, G. L., Xing, B. L., Zhu, J. F., and He, M. Z.: Spatial and temporal variations of forest LAI in China during 2000–2010, Chinese Sci. Bull., 57, 2846–2856, 2012.
Lyon, B. F., Ambrose, R., Rice, G., and Maxwell, C. J.: Calculation of soil-water and benthic sediment partition coefficients for mercury, Chemosphere, 35, 791–808, 1997.
Ma, M., Wang, D. Y., Du, H. X., Zheng, Z., and Wei, S. Q.: Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China, Environ. Sci. Pollut. R, 22, 20007–20018, https://doi.org/10.1007/s11356-015-5152-9, 2015.
Mann, E. A., Mallory, M. L., Ziegler, S. E., Avery, T. S., Tordon, R., and O'Driscoll, N. J.: Photoreducible Mercury Loss from Arctic Snow Is Influenced by Temperature and Snow Age, Environ. Sci. Technol., 49, 12120–12126, 2015.
Mauclair, C., Layshock, J., and Carpi, A.: Quantifying the effect of humic matter on the emission of mercury from artificial soil surfaces, Appl. Geochem., 23, 594–601, 2008.
Maxwell, J. A., Holsen, T. M., and Mondal, S.: Gaseous Elemental Mercury (GEM) Emissions from Snow Surfaces in Northern New York, Plos One, 8, 7, https://doi.org/10.1371/journal.pone.0069342, 2013.
Moan, J.: 7 Visible Light and UV Radiation, Radiation, 69, 85–102, 2001.
Moore, C. and Carpi, A.: Mechanisms of the emission of mercury from soil: Role of UV radiation, J. Geophys. Res.-Atmos., 110, D24302, https://doi.org/10.1029/2004JD005567, 2005.
Moore, C. W. and Castro, M. S.: Investigation of factors affecting gaseous mercury concentrations in soils, Sci. Total Environ., 419, 136–143, 2012.
O'Driscoll, N. J., Siciliano, S. D., Lean, D. R. S., and Amyot, M.: Gross photoreduction kinetics of mercury in temperate freshwater lakes and rivers: Application to a general model of DGM dynamics, Environ. Sci. Technol., 40, 837–843, 2006.
Obrist, D., Pokharel, A. K., and Moore, C.: Vertical Profile Measurements of Soil Air Suggest Immobilization of Gaseous Elemental Mercury in Mineral Soil, Environ. Sci. Technol., 48, 2242–2252, 2014.
Pacyna, J. M., Travnikov, O., De Simone, F., Hedgecock, I. M., Sundseth, K., Pacyna, E. G., Steenhuisen, F., Pirrone, N., Munthe, J., and Kindbom, K.: Current and future levels of mercury atmospheric pollution on global scale, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-370, in review, 2016.
Pannu, R.: QUANTIFYING MERCURY REDUCTION KINETICS IN SOILS, Degree of Doctor of Philosophy, Department of Soil Science, University of Saskatchewan, 156 pp., 2012.
Pannu, R., Siciliano, S. D., and O'Driscoll, N. J.: Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils, Environ. Pollut., 193, 138–146, 2014.
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., and Telmer, K.: Global mercury emissions to the atmosphere from anthropogenic and natural sources, Atmos. Chem. Phys., 10, 5951–5964, https://doi.org/10.5194/acp-10-5951-2010, 2010.
Poissant, L., Pilote, M., Yumvihoze, E., and Lean, D.: Mercury concentrations and foliage/atmosphere fluxes in a maple forest ecosystem in Quebec, Canada, J. Geophys. Res.-Atmos., 113, D10307, https://doi.org/10.1029/2007jd009510, 2008.
Quinones, J. L. and Carpi, A.: An Investigation of the Kinetic Processes Influencing Mercury Emissions from Sand and Soil Samples of Varying Thickness, J. Environ. Qual., 40, 647–652, https://doi.org/10.2134/jeq2010.0327, 2011.
Qureshi, A., O'Driscoll, N. J., MacLeod, M., Neuhold, Y. M., and Hungerbuhler, K.: Photoreactions of Mercury in Surface Ocean Water: Gross Reaction Kinetics and Possible Pathways, Environ. Sci. Technol., 44, 644–649, 2010.
Qureshi, A., MacLeod, M., and Hungerbuhler, K.: Quantifying uncertainties in the global mass balance of mercury, Global Biogeochem. Cy., 25, GB4012, https://doi.org/10.1029/2011gb004068, 2011.
Ran, Y. H., Li, X., Lu, L., and Li, Z. Y.: Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory, Int. J. Geogr. Inf. Sci., 26, 169–191, 2012.
Risch, M. R., DeWild, J. F., Krabbenhoft, D. P., Kolka, R. K., and Zhang, L. M.: Litterfall mercury dry deposition in the eastern USA, Environ. Pollut., 161, 284–290, 2012.
Sauve, S., Hendershot, W., and Allen, H. E.: Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter, Environ. Sci. Technol., 34, 1125–1131, 2000.
Scholtz, M. T., Van Heyst, B. J., and Schroeder, W.: Modelling of mercury emissions from background soils, Sci. Total Environ., 304, 185–207, https://doi.org/10.1016/s0048-9697(02)00568-5, 2003.
Selin, N. E.: Global Biogeochemical Cycling of Mercury: A Review, Annu. Rev. Env. Resour., 34, 43–63, 2009.
Selin, N. E., Jacob, D. J., Yantosca, R. M., Strode, S., Jaegle, L., and Sunderland, E. M.: Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition, Global Biogeochem. Cy., 22, GB3099, https://doi.org/10.1029/2007GB003040, 2008.
Shangguan, W., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., Ji, D., Ye, A., Yuan, H., Zhang, Q., Chen, D., Chen, M., Chu, J., Dou, Y., Guo, J., Li, H., Li, J., Liang, L., Liang, X., Liu, H., Liu, S., Miao, C., and Zhang, Y.: A China data set of soil properties for land surface modeling, J. Adv. Model Earth Sy., 5, 212–224, https://doi.org/10.1002/jame.20026, 2013.
Shetty, S. K., Lin, C. J., Streets, D. G., and Jang, C.: Model estimate of mercury emission from natural sources in East Asia, Atmos. Environ., 42, 8674–8685, 2008.
Si, L. and Ariya, P. A.: Aqueous photoreduction of oxidized mercury species in presence of selected alkanethiols, Chemosphere, 84, 1079–1084, 2011.
Si, L. and Ariya, P. A.: Photochemical reactions of divalent mercury with thioglycolic acid: Formation of mercuric sulfide particles, Chemosphere, 119, 467–472, 2015.
Smith-Downey, N. V., Sunderland, E. M., and Jacob, D. J.: Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model, J. Geophys. Res.-Biogeo., 115, G03008, https://doi.org/10.1029/2009jg001124, 2010.
Sobrado, M. A.: Cost-Benefit Relationships in Deciduous and Evergreen Leaves of Tropical Dry Forest Species, Funct. Ecol., 5, 608–616, 1991.
Sommar, J., Zhu, W., Lin, C. J., and Feng, X. B.: Field Approaches to Measure Hg Exchange Between Natural Surfaces and the Atmosphere A Review, Crit. Rev. Environ. Sci. Technol., 43, 1657–1739, https://doi.org/10.1080/10643389.2012.671733, 2013a.
Sommar, J., Zhu, W., Shang, L. H., Feng, X. B., and Lin, C. J.: A whole-air relaxed eddy accumulation measurement system for sampling vertical vapour exchange of elemental mercury, Tellus B, 65, 98–110, https://doi.org/10.3402/tellusb.v65i0.19940, 2013b.
Sommar, J., Zhu, W., Shang, L., Lin, C.-J., and Feng, X.: Seasonal variations in metallic mercury (Hg0) vapor exchange over biannual wheat-corn rotation cropland in the North China Plain, Biogeosciences, 13, 2029–2049, https://doi.org/10.5194/bg-13-2029-2016, 2016a.
Sommar, J., Zhu, W., Shang, L., Lin, C.-J., and Feng, X.: Seasonal variations in metallic mercury (Hg0) vapor exchange over biannual wheat-corn rotation cropland in the North China Plain, Biogeosciences, 13, 2029–2049, https://doi.org/10.5194/bg-13-2029-2016, 2016b.
Song, S., Selin, N. E., Soerensen, A. L., Angot, H., Artz, R., Brooks, S., Brunke, E.-G., Conley, G., Dommergue, A., Ebinghaus, R., Holsen, T. M., Jaffe, D. A., Kang, S., Kelley, P., Luke, W. T., Magand, O., Marumoto, K., Pfaffhuber, K. A., Ren, X., Sheu, G.-R., Slemr, F., Warneke, T., Weigelt, A., Weiss-Penzias, P., Wip, D. C., and Zhang, Q.: Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling, Atmos. Chem. Phys., 15, 7103–7125, https://doi.org/10.5194/acp-15-7103-2015, 2015.
Streets, D. G., Zhang, Q., and Wu, Y.: Projections of Global Mercury Emissions in 2050, Environ. Sci. Technol., 43, 2983–2988, 2009.
Streets, D. G., Devane, M. K., Lu, Z. F., Bond, T. C., Sunderland, E. M., and Jacob, D. J.: All-Time Releases of Mercury to the Atmosphere from Human Activities, Environ. Sci. Technol., 45, 10485–10491, 2011.
Strode, S. A., Jaegle, L., Jaffe, D. A., Swartzendruber, P. C., Selin, N. E., Holmes, C., and Yantosca, R. M.: Trans-Pacific transport of mercury, J. Geophys. Res.-Atmos., 113, D15305, https://doi.org/10.1029/2007JD009428, 2008.
Wang, D. Y., He, L., Shi, X. J., Wei, S. Q., and Feng, X. B.: Release flux of mercury from different environmental surfaces in Chongqing, China, Chemosphere, 64, 1845–1854, 2006.
Wang, R. L., Yu, G. R., He, N. P., Wang, Q. F., Zhao, N., Xu, Z. W., and Ge, J. P.: Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity, Sci Rep-Uk, 5, 14454, https://doi.org/10.1038/srep14454, 2015.
Wang, S., Zhang, L., Wang, L., Wu, Q., Wang, F., and Hao, J.: A review of atmospheric mercury emissions, pollution and control in China, Frontiers of Environ. Sci. Eng., 8, 631–649, https://doi.org/10.1007/s11783-014-0673-x, 2014.
Wang, S. F., Feng, X. B., Qiu, G. L., Wei, Z. Q., and Xiao, T. F.: Mercury emission to atmosphere from Lanmuchang Hg-Tl mining area, Southwestern Guizhou, China, Atmos. Environ., 39, 7459–7473, 2005.
Wang, X., Lin, C.-J., and Feng, X.: Sensitivity analysis of an updated bidirectional air-surface exchange model for elemental mercury vapor, Atmos. Chem. Phys., 14, 6273–6287, https://doi.org/10.5194/acp-14-6273-2014, 2014.
Wang, Z. W., Zhang, X. S., Xiao, J. S., Zhijia, C., and Yu, P. Z.: Mercury fluxes and pools in three subtropical forested catchments, southwest China, Environ. Pollut., 157, 801–808, 2009.
Wright, L. P. and Zhang, L. M.: An approach estimating bidirectional air-surface exchange for gaseous elemental mercury at AMNet sites, J. Adv. Model Earth Sy., 7, 35–49, 2015.
Xu, X. H., Yang, X. S., Miller, D. R., Helble, J. J., and Carley, R. J.: Formulation of bi-directional atmosphere-surface exchanges of elemental mercury, Atmos. Environ., 33, 4345–4355, https://doi.org/10.1016/S1352-2310(99)00245-9, 1999.
Yin, R., Feng, X., and Meng, B.: Stable Hg Isotope Variation in Rice Plants (Oryza sativa L.) from the Wanshan Hg Mining District, SW China, Environ. Sci. Technol., 47, 2238–2245, https://doi.org/10.1021/es304302a, 2013.
Yuan, H., Dai, Y. J., Xiao, Z. Q., Ji, D. Y., and Shangguan, W.: Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling, Remote Sens. Environ., 115, 1171–1187, 2011.
Zhang, H. and Lindberg, S. E.: Processes influencing the emission of mercury from soils: A conceptual model, J. Geophys. Res.-Atmos., 104, 21889–21896, 1999.
Zhang, H., Lindberg, S. E., and Gustin, M. S.: Nature of diel trend of mercury emission from soil: Current understanding and hypotheses, Abstr. Pap. Am. Chem. S, 222, U429–U429, 2001.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082, https://doi.org/10.5194/acp-3-2067-2003, 2003.
Zhang, L., Blanchard, P., Gay, D. A., Prestbo, E. M., Risch, M. R., Johnson, D., Narayan, J., Zsolway, R., Holsen, T. M., Miller, E. K., Castro, M. S., Graydon, J. A., Louis, V. L. St., and Dalziel, J.: Estimation of speciated and total mercury dry deposition at monitoring locations in eastern and central North America, Atmos. Chem. Phys., 12, 4327–4340, https://doi.org/10.5194/acp-12-4327-2012, 2012a.
Zhang, L., Blanchard, P., Johnson, D., Dastoor, A., Ryzhkov, A., Lin, C. J., Vijayaraghavan, K., Gay, D., Holsen, T. M., Huang, J., Graydon, J. A., St Louis, V. L., Castro, M. S., Miller, E. K., Marsik, F., Lu, J., Poissant, L., Pilote, M., and Zhang, K. M.: Assessment of modeled mercury dry deposition over the Great Lakes region, Environ. Pollut., 161, 272–283, 2012b.
Zhang, L., Wang, S. X., Wang, L., Wu, Y., Duan, L., Wu, Q. R., Wang, F. Y., Yang, M., Yang, H., Hao, J. M., and Liu, X.: Updated Emission Inventories for Speciated Atmospheric Mercury from Anthropogenic Sources in China, Environ. Sci. Technol., 49, 3185–3194, 2015.
Zhang, L. X., Hu, Z. M., Fan, J. W., Zhou, D. C., and Tang, F. P.: A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems, Front. Earth Sci., 8, 599–609, 2014.
Zhang, Y., Jacob, D. J., Horowitz, H. M., Chen, L., Amos, H. M., Krabbenhoft, D. P., Slemr, F., St. Louis, V. L., and Sunderland, E. M.: Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions, P. Natl. Acad. Sci., 113, 526–531, https://doi.org/10.1073/pnas.1516312113, 2016.
Zhu, J., Wang, D., Liu, X., and Zhang, Y.: Mercury fluxes from air/surface interfaces in paddy field and dry land, Appl. Geochem., 26, 249–255, https://doi.org/10.1016/j.apgeochem.2010.11.025, 2011.
Zhu, J., Wang, T., Bieser, J., and Matthias, V.: Source attribution and process analysis for atmospheric mercury in eastern China simulated by CMAQ-Hg, Atmos. Chem. Phys., 15, 8767–8779, https://doi.org/10.5194/acp-15-8767-2015, 2015.
Zhu, J. S., Wang, D. Y., and Ma, M.: Mercury release flux and its influencing factors at the air-water interface in paddy field in Chongqing, China, Chinese Sci. Bull., 58, 266–274, 2013.
Zhu, W.: Deployment and Evaluation of Enclosure and Micrometeorological Techniques for Quantifying Air-surface Exchange of Gaseous Elemental Mercury over Agricultural Lands, Doctor of Natural Science, University of Chinese Academy of Sciences, University of Chinese Academy of Sciences, 169 pp., 2014.
Zhu, W., Sommar, J., Lin, C.-J., and Feng, X.: Mercury vapor air-surface exchange measured by collocated micrometeorological and enclosure methods – Part I: Data comparability and method characteristics, Atmos. Chem. Phys., 15, 685–702, https://doi.org/10.5194/acp-15-685-2015, 2015a.
Zhu, W., Sommar, J., Lin, C.-J., and Feng, X.: Mercury vapor air-surface exchange measured by collocated micrometeorological and enclosure methods – Part II: Bias and uncertainty analysis, Atmos. Chem. Phys., 15, 5359–5376, https://doi.org/10.5194/acp-15-5359-2015, 2015b.
Zhu, W., Lin, C.-J., Wang, X., Sommar, J., Fu, X., and Feng, X.: Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review, Atmos. Chem. Phys., 16, 4451–4480, https://doi.org/10.5194/acp-16-4451-2016, 2016.
Short summary
We developed a mechanistic model for estimating the emission of elemental mercury vapor (Hg0) from natural surfaces in China. The development implements recent advancements in the understanding of air–soil and air–foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and landuse changes by agricultural activities, and is examined through a systematic set of sensitivity simulations.
We developed a mechanistic model for estimating the emission of elemental mercury vapor (Hg0)...
Altmetrics
Final-revised paper
Preprint