Articles | Volume 15, issue 14
https://doi.org/10.5194/acp-15-8457-2015
https://doi.org/10.5194/acp-15-8457-2015
Peer-reviewed comment
 | 
29 Jul 2015
Peer-reviewed comment |  | 29 Jul 2015

X-ray computed microtomography of sea ice – comment on "A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (2014)

R. W. Obbard

Related authors

A network model for characterizing brine channels in sea ice
Ross M. Lieblappen, Deip D. Kumar, Scott D. Pauls, and Rachel W. Obbard
The Cryosphere, 12, 1013–1026, https://doi.org/10.5194/tc-12-1013-2018,https://doi.org/10.5194/tc-12-1013-2018, 2018
Short summary
The role of blowing snow in the activation of bromine over first-year Antarctic sea ice
R. M. Lieb-Lappen and R. W. Obbard
Atmos. Chem. Phys., 15, 7537–7545, https://doi.org/10.5194/acp-15-7537-2015,https://doi.org/10.5194/acp-15-7537-2015, 2015
Short summary

Related subject area

Subject: Hydrosphere Interactions | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The ice–vapour interface during growth and sublimation
Maria Cascajo-Castresana, Sylvie Morin, and Alexander M. Bittner
Atmos. Chem. Phys., 21, 18629–18640, https://doi.org/10.5194/acp-21-18629-2021,https://doi.org/10.5194/acp-21-18629-2021, 2021
Short summary
Diffusion of volatile organics through porous snow: impact of surface adsorption and grain boundaries
T. Bartels-Rausch, S. N. Wren, S. Schreiber, F. Riche, M. Schneebeli, and M. Ammann
Atmos. Chem. Phys., 13, 6727–6739, https://doi.org/10.5194/acp-13-6727-2013,https://doi.org/10.5194/acp-13-6727-2013, 2013
A new modeling tool for the diffusion of gases in ice or amorphous binary mixture in the polar stratosphere and the upper troposphere
C. A. Varotsos and R. Zellner
Atmos. Chem. Phys., 10, 3099–3105, https://doi.org/10.5194/acp-10-3099-2010,https://doi.org/10.5194/acp-10-3099-2010, 2010

Cited articles

Golden, K. M., Eicken, H., Heaton, A. L., Miner, J., Pringle, D. J., and Zhu, J.: Thermal evolution of permeability and microstructure in sea ice, Geophys. Res. Lett., 34, L16501, https://doi.org/10.1029/2007GL030447, 2007.
Light, B., Maykut, G. A., and Grenfell, T. C.: Effects of temperature on the microstructure of first-year Arctic sea ice, J. Geophys. Res., 108, 3051, https://doi.org/10.1029/2001JC000887, 2003.
Marion, G. M., Farren, R. E., and Komrowski, A. J.: Alternative pathways for seawater freezing, Cold Reg. Sci. Technol., 29, 259–266, 1999.
Murshed, M. M., Klapp, S. A., Enzmann, F., Szeder, T., Huthwelker, T., Stampanoni, M., Marone, F., Hintermüller , C., Bohrmann, G., Kuhs, W. F., and Kersten, M.: Natural gas hydrate investigations by synchrotron radiation X-ray cryo-tomographic microscopy (SRXCTM), Geophys. Res. Lett., 35, L23612, https://doi.org/10.1029/2008GL035460, 2008.
Download
Short summary
This paper, "X-ray computed microtomography of sea ice" is a comment on a recent paper, "A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow (Atmos. Chem. Phys., 14, 1587–1633, 2014)". Our paper corrects a part of the review paper, which was inaccurate regarding the capabilities of X-ray computed microtomography to reveal liquid brine inclusions in sea ice.
Altmetrics
Final-revised paper
Preprint