Articles | Volume 15, issue 10
https://doi.org/10.5194/acp-15-5359-2015
https://doi.org/10.5194/acp-15-5359-2015
Research article
 | 
18 May 2015
Research article |  | 18 May 2015

Mercury vapor air–surface exchange measured by collocated micrometeorological and enclosure methods – Part II: Bias and uncertainty analysis

W. Zhu, J. Sommar, C.-J. Lin, and X. Feng

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Xinbin Feng on behalf of the Authors (23 Apr 2015)  Author's response   Manuscript 
ED: Publish as is (24 Apr 2015) by Leiming Zhang
AR by Xinbin Feng on behalf of the Authors (27 Apr 2015)
Short summary
Bias and uncertainty in Hg flux measured by micrometeorological methods (MM) and dynamic flux chambers (DFCs) are assessed from two field inter-comparison campaigns. DFC flux bias follows a diurnal cycle due to modified temperature and radiation balance inside the chamber. The precision in concentration difference measurements poses critical constraint on obtaining a larger fraction of significant MM flux. Asynchronous sampling impairs flux accuracy under varying atmospheric Hg concentration.
Altmetrics
Final-revised paper
Preprint