Articles | Volume 15, issue 18
https://doi.org/10.5194/acp-15-10669-2015
https://doi.org/10.5194/acp-15-10669-2015
Research article
 | 
25 Sep 2015
Research article |  | 25 Sep 2015

Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3 aerosol during the 2013 Southern Oxidant and Aerosol Study

H. M. Allen, D. C. Draper, B. R. Ayres, A. Ault, A. Bondy, S. Takahama, R. L. Modini, K. Baumann, E. Edgerton, C. Knote, A. Laskin, B. Wang, and J. L. Fry

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Juliane Fry on behalf of the Authors (21 Aug 2015)  Author's response   Manuscript 
ED: Publish as is (02 Sep 2015) by Alexander Pszenny
AR by Juliane Fry on behalf of the Authors (03 Sep 2015)  Author's response   Manuscript 
Short summary
We report ion chromatographic measurements of gas- and aerosol-phase inorganic species at the SOAS 2013 field study. Our particular focus is on inorganic nitrate aerosol formation via HNO3 uptake onto coarse-mode dust and sea salt particles, which we find to be the dominant source of episodic inorganic nitrate at this site, due to the high acidity of the particles preventing formation of NH4NO3. We calculate a production rate of inorganic nitrate aerosol.
Altmetrics
Final-revised paper
Preprint