Articles | Volume 15, issue 17
https://doi.org/10.5194/acp-15-10183-2015
https://doi.org/10.5194/acp-15-10183-2015
Research article
 | 
14 Sep 2015
Research article |  | 14 Sep 2015

Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

J. H. Slade, R. Thalman, J. Wang, and D. A. Knopf

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Daniel Knopf on behalf of the Authors (10 Jul 2015)  Author's response   Manuscript 
ED: Reconsider after minor revisions (Editor review) (31 Jul 2015) by David Topping
AR by Daniel Knopf on behalf of the Authors (15 Aug 2015)  Author's response 
ED: Publish as is (01 Sep 2015) by David Topping
AR by Daniel Knopf on behalf of the Authors (01 Sep 2015)
Download
Short summary
Aerosol particles undergo chemical modification during atmospheric transport due to reactions with trace gas species such as OH radicals affecting cloud formation and, thus, prediction of climate. Here, the cloud formation potential of surrogate biomass burning aerosol (BBA) is studied as a function of particle composition and OH exposure. We find that OH oxidation can alter the cloud formation potential of BBA, but its significance depends on the available water-soluble particulate material.
Altmetrics
Final-revised paper
Preprint