Articles | Volume 14, issue 17
https://doi.org/10.5194/acp-14-9363-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-9363-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Greenhouse gas network design using backward Lagrangian particle dispersion modelling − Part 1: Methodology and Australian test case
Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, VIC 3195, Australia
A. Nickless
Global Change and Ecosystem Dynamics, CSIR, Pretoria, 0005, South Africa
P. J. Rayner
School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
R. M. Law
Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, VIC 3195, Australia
G. Roff
Centre for Australian Weather and Climate Research, Australian Bureau of Meteorology, Docklands, VIC 3008, Australia
P. Fraser
Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, VIC 3195, Australia
Viewed
Total article views: 3,756 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Mar 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,213 | 1,411 | 132 | 3,756 | 122 | 101 |
- HTML: 2,213
- PDF: 1,411
- XML: 132
- Total: 3,756
- BibTeX: 122
- EndNote: 101
Total article views: 2,839 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Sep 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,722 | 1,012 | 105 | 2,839 | 107 | 98 |
- HTML: 1,722
- PDF: 1,012
- XML: 105
- Total: 2,839
- BibTeX: 107
- EndNote: 98
Total article views: 917 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Mar 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
491 | 399 | 27 | 917 | 15 | 3 |
- HTML: 491
- PDF: 399
- XML: 27
- Total: 917
- BibTeX: 15
- EndNote: 3
Cited
19 citations as recorded by crossref.
- Tower-based greenhouse gas measurement network design—The National Institute of Standards and Technology North East Corridor Testbed I. Lopez-Coto et al. 10.1007/s00376-017-6094-6
- Estimates of CO<sub>2</sub> fluxes over the city of Cape Town, South Africa, through Bayesian inverse modelling A. Nickless et al. 10.5194/acp-18-4765-2018
- Greenhouse gas network design using backward Lagrangian particle dispersion modelling – Part 2: Sensitivity analyses and South African test case A. Nickless et al. 10.5194/acp-15-2051-2015
- Designing additional CO2 in-situ surface observation networks over South Korea using bayesian inversion coupled with Lagrangian modelling S. Takele Kenea et al. 10.1016/j.atmosenv.2024.120471
- On the potential of the ICOS atmospheric CO<sub>2</sub> measurement network for estimating the biogenic CO<sub>2</sub> budget of Europe N. Kadygrov et al. 10.5194/acp-15-12765-2015
- Designing optimal greenhouse gas observing networks that consider performance and cost D. Lucas et al. 10.5194/gi-4-121-2015
- Designing optimal greenhouse gas monitoring networks for Australia T. Ziehn et al. 10.5194/gi-5-1-2016
- Designing an Atmospheric Monitoring Network to Verify National CO2 Emissions S. Sim et al. 10.1007/s13143-023-00343-3
- Representativeness assessment of the pan-Arctic eddy covariance site network and optimized future enhancements M. Pallandt et al. 10.5194/bg-19-559-2022
- Site selection and effects of background towers on urban CO2 estimates: A case study from central downtown Zhengzhou in China G. Ren et al. 10.1016/j.envres.2024.120169
- Designing surface CO2 monitoring network to constrain the Indian land fluxes K. Nalini et al. 10.1016/j.atmosenv.2019.117003
- The potential of Orbiting Carbon Observatory-2 data to reduce the uncertainties in CO<sub>2</sub> surface fluxes over Australia using a variational assimilation scheme Y. Villalobos et al. 10.5194/acp-20-8473-2020
- Greenhouse gas observation network design for Africa A. Nickless et al. 10.1080/16000889.2020.1824486
- An atmospheric inversion over the city of Cape Town: sensitivity analyses A. Nickless et al. 10.5194/acp-19-7789-2019
- Sixty years of radiocarbon dioxide measurements at Wellington, New Zealand: 1954–2014 J. Turnbull et al. 10.5194/acp-17-14771-2017
- Design and evaluation of CO<sub>2</sub> observation network to optimize surface CO<sub>2</sub> fluxes in Asia using observation system simulation experiments J. Park & H. Kim 10.5194/acp-20-5175-2020
- Reviews and syntheses: guiding the evolution of the observing system for the carbon cycle through quantitative network design T. Kaminski & P. Rayner 10.5194/bg-14-4755-2017
- Comparison of the genetic algorithm and incremental optimisation routines for a Bayesian inverse modelling based network design A. Nickless et al. 10.1088/1361-6420/aab46c
- Exploring the utility of quantitative network design in evaluating Arctic sea ice thickness sampling strategies T. Kaminski et al. 10.5194/tc-9-1721-2015
18 citations as recorded by crossref.
- Tower-based greenhouse gas measurement network design—The National Institute of Standards and Technology North East Corridor Testbed I. Lopez-Coto et al. 10.1007/s00376-017-6094-6
- Estimates of CO<sub>2</sub> fluxes over the city of Cape Town, South Africa, through Bayesian inverse modelling A. Nickless et al. 10.5194/acp-18-4765-2018
- Greenhouse gas network design using backward Lagrangian particle dispersion modelling – Part 2: Sensitivity analyses and South African test case A. Nickless et al. 10.5194/acp-15-2051-2015
- Designing additional CO2 in-situ surface observation networks over South Korea using bayesian inversion coupled with Lagrangian modelling S. Takele Kenea et al. 10.1016/j.atmosenv.2024.120471
- On the potential of the ICOS atmospheric CO<sub>2</sub> measurement network for estimating the biogenic CO<sub>2</sub> budget of Europe N. Kadygrov et al. 10.5194/acp-15-12765-2015
- Designing optimal greenhouse gas observing networks that consider performance and cost D. Lucas et al. 10.5194/gi-4-121-2015
- Designing optimal greenhouse gas monitoring networks for Australia T. Ziehn et al. 10.5194/gi-5-1-2016
- Designing an Atmospheric Monitoring Network to Verify National CO2 Emissions S. Sim et al. 10.1007/s13143-023-00343-3
- Representativeness assessment of the pan-Arctic eddy covariance site network and optimized future enhancements M. Pallandt et al. 10.5194/bg-19-559-2022
- Site selection and effects of background towers on urban CO2 estimates: A case study from central downtown Zhengzhou in China G. Ren et al. 10.1016/j.envres.2024.120169
- Designing surface CO2 monitoring network to constrain the Indian land fluxes K. Nalini et al. 10.1016/j.atmosenv.2019.117003
- The potential of Orbiting Carbon Observatory-2 data to reduce the uncertainties in CO<sub>2</sub> surface fluxes over Australia using a variational assimilation scheme Y. Villalobos et al. 10.5194/acp-20-8473-2020
- Greenhouse gas observation network design for Africa A. Nickless et al. 10.1080/16000889.2020.1824486
- An atmospheric inversion over the city of Cape Town: sensitivity analyses A. Nickless et al. 10.5194/acp-19-7789-2019
- Sixty years of radiocarbon dioxide measurements at Wellington, New Zealand: 1954–2014 J. Turnbull et al. 10.5194/acp-17-14771-2017
- Design and evaluation of CO<sub>2</sub> observation network to optimize surface CO<sub>2</sub> fluxes in Asia using observation system simulation experiments J. Park & H. Kim 10.5194/acp-20-5175-2020
- Reviews and syntheses: guiding the evolution of the observing system for the carbon cycle through quantitative network design T. Kaminski & P. Rayner 10.5194/bg-14-4755-2017
- Comparison of the genetic algorithm and incremental optimisation routines for a Bayesian inverse modelling based network design A. Nickless et al. 10.1088/1361-6420/aab46c
Saved (final revised paper)
Discussed (final revised paper)
Latest update: 23 Nov 2024
Altmetrics
Final-revised paper
Preprint