Articles | Volume 14, issue 2
https://doi.org/10.5194/acp-14-551-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-551-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Pressure dependent isotopic fractionation in the photolysis of formaldehyde-d2
E. J. K. Nilsson
Division of Combustion Physics, Department of Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden
J. A. Schmidt
Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
M. S. Johnson
Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
Related authors
L. M. T. Joelsson, J. A. Schmidt, E. J. K. Nilsson, T. Blunier, D. W. T. Griffith, S. Ono, and M. S. Johnson
Atmos. Chem. Phys., 16, 4439–4449, https://doi.org/10.5194/acp-16-4439-2016, https://doi.org/10.5194/acp-16-4439-2016, 2016
Short summary
Short summary
We present experimental kinetic isotope effects (KIE) for the OH oxidation of CH3D and 13CH3D and their temperature dependence. Our determination of the 13CH3D + OH KIE is novel and we find no "clumped" isotope effect within the experimental uncertainty.
Katrine A. Gorham, Sam Abernethy, Tyler R. Jones, Peter Hess, Natalie M. Mahowald, Daphne Meidan, Matthew S. Johnson, Maarten M. J. W. van Herpen, Yangyang Xu, Alfonso Saiz-Lopez, Thomas Röckmann, Chloe A. Brashear, Erika Reinhardt, and David Mann
Atmos. Chem. Phys., 24, 5659–5670, https://doi.org/10.5194/acp-24-5659-2024, https://doi.org/10.5194/acp-24-5659-2024, 2024
Short summary
Short summary
Rapid reduction in atmospheric methane is needed to slow the rate of global warming. Reducing anthropogenic methane emissions is a top priority. However, atmospheric methane is also impacted by rising natural emissions and changing sinks. Studies of possible atmospheric methane removal approaches, such as iron salt aerosols to increase the chlorine radical sink, benefit from a roadmapped approach to understand if there may be viable and socially acceptable ways to decrease future risk.
Marie K. Mikkelsen, Jesper B. Liisberg, Maarten M. J. W. van Herpen, Kurt V. Mikkelsen, and Matthew S. Johnson
Aerosol Research, 2, 31–47, https://doi.org/10.5194/ar-2-31-2024, https://doi.org/10.5194/ar-2-31-2024, 2024
Short summary
Short summary
We analyze the mechanism whereby sunlight and iron catalyze the production of chlorine from chloride in sea spray aerosol. This process occurs naturally over the North Atlantic and is the single most important source of chlorine. We investigate the mechanism using quantum chemistry, laboratory experiments, and aqueous chemistry modelling. The process will change depending on competing ions, light distribution, acidity, and chloride concentration.
Louise Bøge Frederickson, Ruta Sidaraviciute, Johan Albrecht Schmidt, Ole Hertel, and Matthew Stanley Johnson
Atmos. Chem. Phys., 22, 13949–13965, https://doi.org/10.5194/acp-22-13949-2022, https://doi.org/10.5194/acp-22-13949-2022, 2022
Short summary
Short summary
Low-cost sensors see additional pollution that is not seen with traditional regional air quality monitoring stations. This additional local pollution is sufficient to cause exceedance of the World Health Organization exposure thresholds. Analysis shows that a significant amount of the NO2 pollution we observe is local, mainly due to road traffic. This article demonstrates how networks of nodes containing low-cost pollution sensors can powerfully extend existing monitoring programmes.
Merve Polat, Jesper Baldtzer Liisberg, Morten Krogsbøll, Thomas Blunier, and Matthew S. Johnson
Atmos. Meas. Tech., 14, 8041–8067, https://doi.org/10.5194/amt-14-8041-2021, https://doi.org/10.5194/amt-14-8041-2021, 2021
Short summary
Short summary
We have designed a process for removing methane from a gas stream so that nitrous oxide can be measured without interference. These are both key long-lived greenhouse gases frequently studied in relation to ice cores, plants, water treatment and so on. However, many researchers are not aware of the problem of methane interference, and in addition there have not been good methods available for solving the problem. Here we present and evaluate such a method.
Mary E. Whelan, Sinikka T. Lennartz, Teresa E. Gimeno, Richard Wehr, Georg Wohlfahrt, Yuting Wang, Linda M. J. Kooijmans, Timothy W. Hilton, Sauveur Belviso, Philippe Peylin, Róisín Commane, Wu Sun, Huilin Chen, Le Kuai, Ivan Mammarella, Kadmiel Maseyk, Max Berkelhammer, King-Fai Li, Dan Yakir, Andrew Zumkehr, Yoko Katayama, Jérôme Ogée, Felix M. Spielmann, Florian Kitz, Bharat Rastogi, Jürgen Kesselmeier, Julia Marshall, Kukka-Maaria Erkkilä, Lisa Wingate, Laura K. Meredith, Wei He, Rüdiger Bunk, Thomas Launois, Timo Vesala, Johan A. Schmidt, Cédric G. Fichot, Ulli Seibt, Scott Saleska, Eric S. Saltzman, Stephen A. Montzka, Joseph A. Berry, and J. Elliott Campbell
Biogeosciences, 15, 3625–3657, https://doi.org/10.5194/bg-15-3625-2018, https://doi.org/10.5194/bg-15-3625-2018, 2018
Short summary
Short summary
Measurements of the trace gas carbonyl sulfide (OCS) are helpful in quantifying photosynthesis at previously unknowable temporal and spatial scales. While CO2 is both consumed and produced within ecosystems, OCS is mostly produced in the oceans or from specific industries, and destroyed in plant leaves in proportion to CO2. This review summarizes the advancements we have made in the understanding of OCS exchange and applications to vital ecosystem water and carbon cycle questions.
Theodore K. Koenig, Rainer Volkamer, Sunil Baidar, Barbara Dix, Siyuan Wang, Daniel C. Anderson, Ross J. Salawitch, Pamela A. Wales, Carlos A. Cuevas, Rafael P. Fernandez, Alfonso Saiz-Lopez, Mathew J. Evans, Tomás Sherwen, Daniel J. Jacob, Johan Schmidt, Douglas Kinnison, Jean-François Lamarque, Eric C. Apel, James C. Bresch, Teresa Campos, Frank M. Flocke, Samuel R. Hall, Shawn B. Honomichl, Rebecca Hornbrook, Jørgen B. Jensen, Richard Lueb, Denise D. Montzka, Laura L. Pan, J. Michael Reeves, Sue M. Schauffler, Kirk Ullmann, Andrew J. Weinheimer, Elliot L. Atlas, Valeria Donets, Maria A. Navarro, Daniel Riemer, Nicola J. Blake, Dexian Chen, L. Gregory Huey, David J. Tanner, Thomas F. Hanisco, and Glenn M. Wolfe
Atmos. Chem. Phys., 17, 15245–15270, https://doi.org/10.5194/acp-17-15245-2017, https://doi.org/10.5194/acp-17-15245-2017, 2017
Short summary
Short summary
Tropospheric inorganic bromine (BrO and Bry) shows a C-shaped profile over the tropical western Pacific Ocean, and supports previous speculation that marine convection is a source for inorganic bromine from sea salt to the upper troposphere. The Bry profile in the tropical tropopause layer (TTL) is complex, suggesting that the total Bry budget in the TTL is not closed without considering aerosol bromide. The implications for atmospheric composition and bromine sources are discussed.
Carl Meusinger, Ulrike Dusek, Stephanie M. King, Rupert Holzinger, Thomas Rosenørn, Peter Sperlich, Maxime Julien, Gerald S. Remaud, Merete Bilde, Thomas Röckmann, and Matthew S. Johnson
Atmos. Chem. Phys., 17, 6373–6391, https://doi.org/10.5194/acp-17-6373-2017, https://doi.org/10.5194/acp-17-6373-2017, 2017
Short summary
Short summary
Isotope studies can constrain budgets of secondary organic aerosol (SOA) that is pivotal to air pollution and climate. SOA from α-pinene ozonolysis was found to be enriched in 13C relative to the precursor. The observed difference in 13C between the gas and particle phases may arise from isotope-dependent changes in branching ratios. Alternatively, some gas-phase products involve carbon atoms from highly enriched and depleted sites, giving a non-kinetic origin to the observed fractionations.
Hannah M. Horowitz, Daniel J. Jacob, Yanxu Zhang, Theodore S. Dibble, Franz Slemr, Helen M. Amos, Johan A. Schmidt, Elizabeth S. Corbitt, Eloïse A. Marais, and Elsie M. Sunderland
Atmos. Chem. Phys., 17, 6353–6371, https://doi.org/10.5194/acp-17-6353-2017, https://doi.org/10.5194/acp-17-6353-2017, 2017
Short summary
Short summary
Mercury is a toxic, global pollutant released to the air from human activities like coal burning. Chemical reactions in air determine how far mercury is transported before it is deposited to the environment, where it may be converted to a form that accumulates in fish. We use a 3-D atmospheric model to evaluate a new set of chemical reactions and its effects on mercury deposition. We find it is consistent with observations and leads to increased deposition to oceans, especially in the tropics.
Tomás Sherwen, Mat J. Evans, Lucy J. Carpenter, Johan A. Schmidt, and Loretta J. Mickley
Atmos. Chem. Phys., 17, 1557–1569, https://doi.org/10.5194/acp-17-1557-2017, https://doi.org/10.5194/acp-17-1557-2017, 2017
Short summary
Short summary
We model pre-industrial to present day changes using the GEOS-Chem global chemical transport model with halogens (Cl, Br, I). The model better captures pre-industrial O3 observations with halogens included. Halogens buffer the tropospheric forcing of O3 (RFTO3) from pre-industrial to present day, reducing RFTO3 by 0.087 Wm−2. This reduction is greater than that from halogens on stratospheric O3 (−0.05 Wm−2). This suggests that models that do not include halogens will overestimate RFTO3by ~ 25%.
Tomás Sherwen, Johan A. Schmidt, Mat J. Evans, Lucy J. Carpenter, Katja Großmann, Sebastian D. Eastham, Daniel J. Jacob, Barbara Dix, Theodore K. Koenig, Roman Sinreich, Ivan Ortega, Rainer Volkamer, Alfonso Saiz-Lopez, Cristina Prados-Roman, Anoop S. Mahajan, and Carlos Ordóñez
Atmos. Chem. Phys., 16, 12239–12271, https://doi.org/10.5194/acp-16-12239-2016, https://doi.org/10.5194/acp-16-12239-2016, 2016
Short summary
Short summary
We present a simulation of tropospheric Cl, Br, I chemistry within the GEOS-Chem CTM. We find a decrease in tropospheric ozone burden of 18.6 % and a 8.2 % decrease in global mean OH concentrations. Cl oxidation of some VOCs range from 15 to 27 % of the total loss. Bromine plays a small role in oxidising oVOCs. Surface ozone, ozone sondes, and methane lifetime are in general improved by the inclusion of halogens. We argue that simulated bromine and chlorine represent a lower limit.
Qianjie Chen, Lei Geng, Johan A. Schmidt, Zhouqing Xie, Hui Kang, Jordi Dachs, Jihong Cole-Dai, Andrew J. Schauer, Madeline G. Camp, and Becky Alexander
Atmos. Chem. Phys., 16, 11433–11450, https://doi.org/10.5194/acp-16-11433-2016, https://doi.org/10.5194/acp-16-11433-2016, 2016
Short summary
Short summary
The formation mechanisms of sulfate in the marine boundary layer are not well understood, which could result in large uncertainties in aerosol radiative forcing. We measure the oxygen isotopic composition (Δ17O) of sulfate collected in the MBL and analyze with a global transport model. Our results suggest that 33–50 % of MBL sulfate is formed via oxidation of S(IV) by hypohalous acids HOBr / HOCl in the aqueous phase, and the daily-mean HOBr/HOCl concentrations are on the order of 0.01–0.1 ppt.
Anders B. Bluhme, Jonas L. Ingemar, Carl Meusinger, and Matthew S. Johnson
Atmos. Meas. Tech., 9, 2669–2673, https://doi.org/10.5194/amt-9-2669-2016, https://doi.org/10.5194/amt-9-2669-2016, 2016
Short summary
Short summary
Hydrogen sulfide (H2S) is a malodorous, very poisonous, and flammable gas. It can be detected as SO2 using fluorescence after conversion using a hot catalyst. This technique is well established and as such also recommended by authorities such as the EPA. Our paper describes how at a relative humidity as low as 5 %, significant amounts of H2S pass the instrument undetected. At ambient levels of relative humidity, up to 1/3 of all H2S passes the instrument unnoticed.
L. M. T. Joelsson, J. A. Schmidt, E. J. K. Nilsson, T. Blunier, D. W. T. Griffith, S. Ono, and M. S. Johnson
Atmos. Chem. Phys., 16, 4439–4449, https://doi.org/10.5194/acp-16-4439-2016, https://doi.org/10.5194/acp-16-4439-2016, 2016
Short summary
Short summary
We present experimental kinetic isotope effects (KIE) for the OH oxidation of CH3D and 13CH3D and their temperature dependence. Our determination of the 13CH3D + OH KIE is novel and we find no "clumped" isotope effect within the experimental uncertainty.
T. A. Berhanu, J. Savarino, J. Erbland, W. C. Vicars, S. Preunkert, J. F. Martins, and M. S. Johnson
Atmos. Chem. Phys., 15, 11243–11256, https://doi.org/10.5194/acp-15-11243-2015, https://doi.org/10.5194/acp-15-11243-2015, 2015
Short summary
Short summary
In this field study at Dome C, Antarctica, we investigated the effect of solar UV photolysis on the stable isotopes of nitrate in snow via comparison of two identical snow pits while exposing only one to solar UV. From the difference between the average isotopic fractionations calculated for each pit, we determined a purely photolytic nitrogen isotopic fractionation of -55.8‰, in good agreement with what has been recently determined in a laboratory study.
J. A. Schmidt, M. S. Johnson, S. Hattori, N. Yoshida, S. Nanbu, and R. Schinke
Atmos. Chem. Phys., 13, 1511–1520, https://doi.org/10.5194/acp-13-1511-2013, https://doi.org/10.5194/acp-13-1511-2013, 2013
Related subject area
Subject: Isotopes | Research Activity: Laboratory Studies | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
SO2 photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols
Multiple-sulfur isotope effects during photolysis of carbonyl sulfide
Ultraviolet absorption cross sections of carbonyl sulfide isotopologues OC32S, OC33S, OC34S and O13CS: isotopic fractionation in photolysis and atmospheric implications
A. R. Whitehill, B. Jiang, H. Guo, and S. Ono
Atmos. Chem. Phys., 15, 1843–1864, https://doi.org/10.5194/acp-15-1843-2015, https://doi.org/10.5194/acp-15-1843-2015, 2015
Y. Lin, M. S. Sim, and S. Ono
Atmos. Chem. Phys., 11, 10283–10292, https://doi.org/10.5194/acp-11-10283-2011, https://doi.org/10.5194/acp-11-10283-2011, 2011
S. Hattori, S. O. Danielache, M. S. Johnson, J. A. Schmidt, H. G. Kjaergaard, S. Toyoda, Y. Ueno, and N. Yoshida
Atmos. Chem. Phys., 11, 10293–10303, https://doi.org/10.5194/acp-11-10293-2011, https://doi.org/10.5194/acp-11-10293-2011, 2011
Cited articles
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Subcommittee, I.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II; gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Batenburg, A. M., Schuck, T. J., Baker, A. K., Zahn, A., Brenninkmeijer, C. A. M., and Röckmann, T.: The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft, Atmos. Chem. Phys., 12, 4633–4646, https://doi.org/10.5194/acp-12-4633-2012, 2012.
Billing, G. D. and Mikkelsen, K. V.: Introduction to Molecular Dynamics and Chemical Kinetics, Wiley-Interscience Publication, 45–49, 1996.
Bowman, J. M. and Suits, A. G.: Roaming reactions: The third way, Phys. Today, 64, 33–37, 2011.
Bowman, J. M. and Zhang, X.: New insights on reaction dynamics from formaldehyde photodissociation, Phys. Chem. Chem. Phys., 8, 321–332, https://doi.org/10.1039/B512847C, 2006.
Brenninkmeijer, C. A. M., Janssen, C., Kaiser, J., Röckmann, T., Rhee, T. S., and Assonov, S. S.: Isotope Effects in the Chemistry of Atmospheric Trace Compounds, Chem. Rev., 103, 5125–5162, https://doi.org/10.1021/cr020644k, 2003.
Deegan, M. J. O. and Knowles, P. J.: Perturbative corrections to account for triple excitations in closed and open shell coupled cluster theories, Chem. Phys. Lett., 227, 321–326, https://doi.org/10.1016/0009-2614(94)00815-9, 1994.
Dunning, T. H. J.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys., 90, 1007–1023, https://doi.org/10.1063/1.456153, 1989.
Ehhalt, D. H. and Rohrer, F.: The tropospheric cycle of H2: a critical review, Tellus B, 61, 500–535, https://doi.org/10.1111/j.1600-0889.2009.00416.x, 2009.
Feilberg, K., Griffith, D., Johnson, M., and Nielsen, C.: The 13C and \chemD kinetic isotope effects in the reaction of CH4 with \chemCl, Int. J. Chem. Kinet., 37, 110–118, 2005a.
Feilberg, K. L., D'Anna, B., Johnson, M. S., and Nielsen, C. J.: Relative Tropospheric Photolysis Rates of \chemHCHO, \chemH^{13CHO}, \chemHCH^{18O}, and \chemDCDO Measured at the European Photoreactor Facility, J. Phys. Chem. A, 109, 8314–8319, https://doi.org/10.1021/jp0513723, 2005b.
Feilberg, K. L., D'Anna, B., Johnson, M. S., and Nielsen, C. J.: Relative Tropospheric Photolysis Rates of \chemHCHO, \chemH^{13CHO}, \chemHCH^{18O}, and \chemDCDO Measured at the European Photoreactor Facility, J. Phys. Chem. A, 111, 992–992, https://doi.org/10.1021/jp068794c, 2007a.
Feilberg, K. L., Johnson, M. S., Bacak, A., Rockmann, T., and Nielsen, C. J.: Relative tropospheric photolysis rates of \chemHCHO and \chemHCDO measured at the European photoreactor facility, J. Phys. Chem. A, 111, 9034–9046, 2007b.
Gerst, S. and Quay, P.: Deuterium component of the global molecular hydrogen cycle, J. Geophys. Res., 106, 5021, https://doi.org/10.1029/2000JD900593, 2001.
Gratien, A., Nilsson, E., Doussin, J.-F., Johnson, M. S., Nielsen, C. J., Stenstr\om, Y., and Picquet-Varrault, B.: UV and IR Absorption Cross-sections of \chemHCHO, \chemHCDO, and \chemDCDO, J. Phys. Chem. A, 111, 11506–11513, https://doi.org/10.1021/jp074288r, 2007.
Gray, S., Miller, W., Yamaguchi, Y., and Schaefer, H.: J. Am. Chem. Soc., 103, 1900–1904, 1981.
Griffith, D. W.: Synthetic Calibration and Quantitative Analysis of Gas-Phase FT-IR Spectra, Appl. Spectrosc., 50, 59–70, https://doi.org/10.1366/0003702963906627, 1996.
Halkier, A., Helgaker, T., Jørgensen, P., Klopper, W., Koch, H., Olsen, J., and Wilson, A. K.: Basis-set convergence in correlated calculations on \chemNe, N2, and H2O, Chem. Phys. Lett., 286, 243–252, https://doi.org/10.1016/S0009-2614(98)00111-0, 1998.
Herath, N. and Suits, A.: Roaming radical reactions, Phys. Chem. Let., 2, 642–647, 2011.
Hu, H., Dibble, T., Tyndall, G., and Orlando, J.: Temperature-Dependent Branching Ratios of Deuterated Methoxy Radicals \chem(CH2DO•) Reacting With O2, J. Phys. Chem. A, 116, 6295–6302, 2012.
Johnson, M. S., Feilberg, K. L., and von Hessberg, Nielsen, O. J.: Isotope effects in atmospheric processes, Chem. Soc. Rev., 31, 313–323, 2002.
Knowles, P. J., Hampel, C., and Werner, H.-J.: Coupled cluster theory for high spin, open shell reference wave functions, J. Chem. Phys., 99, 5219–5227, https://doi.org/10.1063/1.465990, 1993.
Knowles, P. J., Hampel, C., and Werner, H.-J.: Erratum: "Coupled cluster theory for high spin, open shell reference wave functions" [ J. Chem. Phys. 99, 5219 (1993)], J. Chem. Phys., 112, 3106–3107, https://doi.org/10.1063/1.480886, 2000.
Krol, M., Houweling, S., Bregman, B., van den Broek, M., Segers, A., van Velthoven, P., Peters, W., Dentener, F., and Bergamaschi, P.: The two-way nested global chemistry-transport zoom model TM5: algorithm and applications, Atmos. Chem. Phys., 5, 417–432, https://doi.org/10.5194/acp-5-417-2005, 2005.
Lahankar, S. A., Chambreau, S. D., Zhang, X., Bowman, J. M., and Suits, A. G.: Energy dependence of the roaming atom pathway in formaldehyde decomposition, J. Chem. Phys., 126, 44 314–44 314, 2007.
Mar, K. A., McCarthy, M. C., Connell, P., and Boering, K. A.: Modeling the photochemical origins of the extreme deuterium enrichment in stratospheric H2, J. Geophys. Res., 112, D19302, https://doi.org/10.1029/2006JD007403, 2007.
Miller, W.: Tunneling corrections to unimolecular rate constants, with application to formaldehyde, J. Am. Chem. Soc., 101, 6810–6814, 1979.
Nilsson, E. J. K., Johnson, M. S., Taketani, F., Matsumi, Y., Hurley, M. D., and Wallington, T. J.: Atmospheric deuterium fractionation: HCHO and HCDO yields in the CH2DO + O2 reaction, Atmos. Chem. Phys., 7, 5873–5881, https://doi.org/10.5194/acp-7-5873-2007, 2007.
Nilsson, E. J. K., Bache-Andreassen, L., Johnson, M. S., and Nielsen, C. J.: Relative Tropospheric Photolysis Rates of Acetaldehyde and Formaldehyde Isotopologues Measured at the European Photoreactor Facility, J. Phys. Chem. A, 113, 3498–3504, https://doi.org/10.1021/jp811113c, 2009a.
Nilsson, E. J. K., Eskebjerg, C., and Johnson, M. S.: A photochemical reactor for studies of atmospheric chemistry, Atmos. Env., 43, 3029–3033, https://doi.org/10.1016/j.atmosenv.2009.02.034, 2009b.
Nilsson, E. J. K., Andersen, V. F., Skov, H., and Johnson, M. S.: Pressure dependence of the deuterium isotope effect in the photolysis of formaldehyde by ultraviolet light, Atmos. Chem. Phys., 10, 3455–3462, https://doi.org/10.5194/acp-10-3455-2010, 2010.
Pieterse, G., Krol, M. C., Batenburg, A. M., Steele, L. P., Krummel, P. B., Langenfelds, R. L., and Röckmann, T.: Global modelling of H2 mixing ratios and isotopic compositions with the TM5 model, Atmos. Chem. Phys., 11, 7001–7026, https://doi.org/10.5194/acp-11-7001-2011, 2011.
Rhee, T. S., Brenninkmeijer, C. A. M., and Röckmann, T.: Hydrogen isotope fractionation in the photolysis of formaldehyde, Atmos. Chem. Phys., 8, 1353–1366, 2008.
Röckmann, T., Jöckel, P., Gros, V., Bräunlich, M., Possnert, G., and Brenninkmeijer, C. A. M.: Using 14C, 13C, 18O and 17O isotopic variations to provide insights into the high northern latitude surface \chemCO inventory, Atmos. Chem. Phys., 2, 147–159, https://doi.org/10.5194/acp-2-147-2002, 2002.
Röckmann, T., Rhee, T. S., and Engel, A.: Heavy hydrogen in the stratosphere, Atmos. Chem. Phys., 3, 2015–2023, https://doi.org/10.5194/acp-3-2015-2003, 2003.
Röckmann, T., Walter, S., Bohn, B., Wegener, R., Spahn, H., Brauers, T., Tillmann, R., Schlosser, E., Koppmann, R., and Rohrer, F.: Isotope effect in the formation of H2 from H2CO studied at the atmospheric simulation chamber SAPHIR, Atmos. Chem. Phys., 10, 5343–5357, https://doi.org/10.5194/acp-10-5343-2010, 2010.
Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. E., Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J. P., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J. M., Gamache, R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., Mandin, J. Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E., Moazzen-Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V. I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M., Simeckova, M., Smith, M. A. H., Sung, K., Tashkun, S. A., Tennyson, J., Toth, R. A., Vandaele, A. C., and Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 110, 533–572, 2009.
Sander, S. P., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., FinlaysonPitts, B. J., Huie, R. E., and Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation Number 15, National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, JPL Publication 06-2, 2006.
Schmidt, J. A., Johnson, M. S., Jung, Y., Danielache, S. O., Hattori, S., and Yoshida, N.: Predictions of the sulfur and carbon isotope effects in the \chemOH + OCS reaction, Chem. Phys. Let., 531, 64–69, https://doi.org/10.1016/j.cplett.2012.02.049, 2012.
Seinfeld, J. and Pandis, S.: From air pollution to climate change, Atmospheric Chemistry and Physics, John Wiley & Sons, New York, 1326, 1998.
Simonsen, J., Rusteika, N., Johnson, M. S., and Sølling, T. I.: Atmospheric photochemical loss of H and $H_2$ from formaldehyde: the relevance of ultrafast processes, Phys. Chem. Chem. Phys., 10, 674–680, 2008.
Stein, S. E. and Rabinovitch, B. S.: Accurate evaluation of internal energy level sums and densities including anharmonic oscillators and hindered rotors, J. Chem. Phys., 58, 2438–2445, https://doi.org/10.1063/1.1679522, 1973.
Townsend, D., Lahankar, S. A., Lee, S. K., Chambreau, S. D., Suits, A. G., Zhang, X., Rheinecker, J., Harding, L. B., and Bowman, J. M.: The Roaming Atom: Straying from the Reaction Path in Formaldehyde Decomposition, Science, 306, 1158–1161, https://doi.org/10.1126/science.1104386, 2004.
Troe, J.: Analysis of Quantum Yields for the Photolysis of Formaldehyde at > 310 nm, J. Phys. Chem. A, 111, 3868–3874, https://doi.org/10.1021/jp066886w, 2007.
Wardlaw, D. M. and Marcus, R. A.: Adv. Chem. Phys., 70, 231–263, https://doi.org/10.1002/9780470141199.ch7, 1988.
Watts, J. D., Gauss, J., and Bartlett, R. J.: Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients, J. Chem. Phys., 98, 8718–8733, https://doi.org/10.1063/1.464480, 1993.
Woon, D. E. and Dunning, T. H. J.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon, J. Chem. Phys., 98, 1358–1371, https://doi.org/10.1063/1.464303, 1993.
Altmetrics
Final-revised paper
Preprint