Articles | Volume 14, issue 9
https://doi.org/10.5194/acp-14-4441-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-4441-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Atmospheric deposition of polybromodiphenyl ethers in remote mountain regions of Europe
L. Arellano
Institute of Environmental Assessment and Water Research (IDǼA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
P. Fernández
Institute of Environmental Assessment and Water Research (IDǼA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
J. F. López
Institute of Environmental Assessment and Water Research (IDǼA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
N. L. Rose
Environmental Change Research Centre, University College London, Gower Street, London, WC1E 6BT, UK
U. Nickus
Institute of Meteorology and Geophysics, University of Innsbruck, Innrain 52, Innsbruck, Austria
H. Thies
Institute of Zoology and Limnology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
E. Stuchlik
Hydrobiological Station, Institute for Environmental Studies, Charles University in Prague, P.O. Box 47, 388 01 Blatna, Czech Republic
L. Camarero
Centre for Advanced Studies of Blanes (CEAB-CSIC), Accés a la Cala St. Francesc 14, 17300 Blanes, Catalonia, Spain
J. Catalan
Centre for Ecological Research and Forestry Applications (CREAF), Campus UAB, Edifici C, 08193 Cerdanyola, Catalonia, Spain
J. O. Grimalt
Institute of Environmental Assessment and Water Research (IDǼA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
Related authors
L. Arellano, P. Fernández, R. Fonts, N. L. Rose, U. Nickus, H. Thies, E. Stuchlík, L. Camarero, J. Catalan, and J. O. Grimalt
Atmos. Chem. Phys., 15, 6069–6085, https://doi.org/10.5194/acp-15-6069-2015, https://doi.org/10.5194/acp-15-6069-2015, 2015
Short summary
Short summary
Despite the regulations in the use of polychlorobiphenyls (PCBs), an increase in atmospheric deposition fluxes of these pollutants in high-altitude mountain areas of Europe is observed for the period between 1996 and 2006. In contrast, atmospheric deposition of organochlorine pesticides showed a strong decrease. Volatilization from soils or melting glaciers related to climate change and the differences in physical–chemical properties between compounds may explain the observed temporal trend.
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024, https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
Short summary
Marine sediments are excellent archives for reconstructing past changes in climate and ocean circulation. Yet, dating uncertainties, particularly during the 20th century, pose major challenges. Here we propose a novel chronostratigraphic approach that uses anthropogenic signals, such as the oceanic 13C Suess effect and spheroidal carbonaceous fly-ash particles, to reduce age model uncertainties in high-resolution marine archives over the 20th century.
Lourdes Arellano, Pilar Fernández, Barend L. van Drooge, Neil L. Rose, Ulrike Nickus, Hansjoerg Thies, Evzen Stuchlík, Lluís Camarero, Jordi Catalan, and Joan O. Grimalt
Atmos. Chem. Phys., 18, 16081–16097, https://doi.org/10.5194/acp-18-16081-2018, https://doi.org/10.5194/acp-18-16081-2018, 2018
Short summary
Short summary
Mountain areas are key for studying the impact of diffuse pollution due to human activities on the continental areas. Polycyclic aromatic hydrocarbons (PAHs), human carcinogens with increased levels since the 1950s, are significant constituents of this pollution. We determined PAHs in monthly atmospheric deposition collected in European high mountain areas. The number of sites, period of study and sampling frequency provide the most comprehensive description of PAH fallout at remote sites.
L. Arellano, P. Fernández, R. Fonts, N. L. Rose, U. Nickus, H. Thies, E. Stuchlík, L. Camarero, J. Catalan, and J. O. Grimalt
Atmos. Chem. Phys., 15, 6069–6085, https://doi.org/10.5194/acp-15-6069-2015, https://doi.org/10.5194/acp-15-6069-2015, 2015
Short summary
Short summary
Despite the regulations in the use of polychlorobiphenyls (PCBs), an increase in atmospheric deposition fluxes of these pollutants in high-altitude mountain areas of Europe is observed for the period between 1996 and 2006. In contrast, atmospheric deposition of organochlorine pesticides showed a strong decrease. Volatilization from soils or melting glaciers related to climate change and the differences in physical–chemical properties between compounds may explain the observed temporal trend.
Related subject area
Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Fluxes, patterns and sources of phosphorus deposition in an urban–rural transition region in Southwest China
Kinetics and impacting factors of HO2 uptake onto submicron atmospheric aerosols during the 2019 Air QUAlity Study (AQUAS) in Yokohama, Japan
Influence of tropical cyclones on tropospheric ozone: possible implications
Tropospheric mercury vertical profiles between 500 and 10 000 m in central Europe
A multi-sensor upper tropospheric ozone product (MUTOP) based on TES ozone and GOES water vapor: validation with ozonesondes
Composition of the TTL over Darwin: local mixing or long-range transport?
Yuanyuan Chen, Jiang Liu, Jiangyou Ran, Rong Huang, Chunlong Zhang, Xuesong Gao, Wei Zhou, Ting Lan, Dinghua Ou, Yan He, Yalan Xiong, Ling Luo, Lu Wang, and Ouping Deng
Atmos. Chem. Phys., 22, 14813–14823, https://doi.org/10.5194/acp-22-14813-2022, https://doi.org/10.5194/acp-22-14813-2022, 2022
Short summary
Short summary
Estimating the characteristics of atmospheric P deposition is critical to understanding the biogeochemical P cycle. Here we chose a typical urban–rural transition to monitor the dry and wet P depositions for 2 years. We found that atmospheric dry P deposition was the primary form of total P deposition, and P deposition could be affected by both meteorological factors and land-use types. Findings provide proper management of land use, which may help mitigate the pollution caused by P deposition.
Jun Zhou, Kei Sato, Yu Bai, Yukiko Fukusaki, Yuka Kousa, Sathiyamurthi Ramasamy, Akinori Takami, Ayako Yoshino, Tomoki Nakayama, Yasuhiro Sadanaga, Yoshihiro Nakashima, Jiaru Li, Kentaro Murano, Nanase Kohno, Yosuke Sakamoto, and Yoshizumi Kajii
Atmos. Chem. Phys., 21, 12243–12260, https://doi.org/10.5194/acp-21-12243-2021, https://doi.org/10.5194/acp-21-12243-2021, 2021
Short summary
Short summary
HO2 radicals play key roles in tropospheric chemistry, their levels in ambient air not yet fully explained by sophisticated models. Here we measured HO2 uptake kinetics onto ambient aerosols in real time using a self-built online system and investigated the impacting factors on such processes by coupling with other instrumentations. The role of the HO2 uptake process in O3 formation is also discussed. Results give useful information for coordinated control of aerosol and ozone pollutants.
Siddarth Shankar Das, Madineni Venkat Ratnam, Kizhathur Narasimhan Uma, Kandula Venkata Subrahmanyam, Imran Asatar Girach, Amit Kumar Patra, Sundaresan Aneesh, Kuniyil Viswanathan Suneeth, Karanam Kishore Kumar, Amit Parashuram Kesarkar, Sivarajan Sijikumar, and Geetha Ramkumar
Atmos. Chem. Phys., 16, 4837–4847, https://doi.org/10.5194/acp-16-4837-2016, https://doi.org/10.5194/acp-16-4837-2016, 2016
Short summary
Short summary
The present study examines the role of tropical cyclones in the enhancement of tropospheric ozone. The most significant and new observation reported is the increase in the upper-tropospheric ozone by 20–50 ppbv, which has extended down to the middle and lower troposphere. The descent rate of enhanced ozone layer during the passage of tropical cyclone is 0.8–1 km day−1. Enhancement of surface ozone concentration by ~ 10 ppbv in the daytime and 10–15 ppbv at night-time is observed.
Andreas Weigelt, Ralf Ebinghaus, Nicola Pirrone, Johannes Bieser, Jan Bödewadt, Giulio Esposito, Franz Slemr, Peter F. J. van Velthoven, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 16, 4135–4146, https://doi.org/10.5194/acp-16-4135-2016, https://doi.org/10.5194/acp-16-4135-2016, 2016
Short summary
Short summary
We show the first mercury profile measurements over Europe since 1996. Besides gaseous elemental mercury (GEM) and total gaseous mercury (TGM), the gases CO, SO2, NOx, and O3 were measured from aboard a research aircraft over four European locations. Compared to the boundary layer, the concentration of GEM and TGM in the free troposphere was 10–30% lower. Inside the individual layers no vertical gradient was apparent. Combined with CARIBIC data, a unique profile from 0.4 to 10.5 km is provided.
J. L. Moody, S. R. Felker, A. J. Wimmers, G. Osterman, K. Bowman, A. M. Thompson, and D. W. Tarasick
Atmos. Chem. Phys., 12, 5661–5676, https://doi.org/10.5194/acp-12-5661-2012, https://doi.org/10.5194/acp-12-5661-2012, 2012
W. J. Heyes, G. Vaughan, G. Allen, A. Volz-Thomas, H.-W. Pätz, and R. Busen
Atmos. Chem. Phys., 9, 7725–7736, https://doi.org/10.5194/acp-9-7725-2009, https://doi.org/10.5194/acp-9-7725-2009, 2009
Cited articles
Ahn, M., Filley, T. R., Jafvert, C. T., Nies, L., Hua, I., and Bezares-Cruz, J.: Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides and sediment, Environ. Sci. Technol., 40, 215–220, 2006.
Alaee, M., Arias, P., Sjödin, A., and Bergman, Å.: An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release, Environ. Int., 29, 683–689, 2003.
Arellano, L., Fernández, P., Tatosova, J., Stuchlik, E., and Grimalt, J. O.: Long-range transported atmospheric pollutants in snowpacks accumulated at different altitudes in the Tatra Mountains (Slovakia), Environ. Sci. Technol., 45, 9268–9275, 2011.
Arinaitwe, K., Muir, D. C. G., Kiremire, B. T., Fellin, P., Li, H., and Teixeira, C.: Polybrominated diphenyl ethers and alternative flame retardants in air and precipitation samples from the northern Lake Victoria region, east Africa, Environ. Sci. Technol., 48, 1458–1466, 2014.
Bacardit, M. and Camarero, L.: Fluxes of Al, Fe, Ti, Mn, Pb, Cd, Zn, Ni, Cu and As in monthly bulk atmospheric deposition over the Pyrenees (SW Europe): The influence of meteorology on the atmospheric component of trace element cycles and its implications for high mountain lakes, J. Geophys. Res., 114, G00D02, https://doi.org/10.1029/2008JG000732, 2009.
Bartrons, M., Grimalt, J. O., and Catalan, J.: Altitudinal distributions of BDE-209 and other polybromodiphenyl ethers in high mountain lakes, Environ. Pollut., 159, 1816–1822, 2011.
Bartrons, M., Grimalt, J. O., de Mendoza, G., and Catalan, J.: Pollutant dehalogenation capability may depend on the trophic evolutionary history of the organism: PBDEs in freshwater food webs, PLoS ONE, 7, e41829, https://doi.org/10.1371/journal.pone 0041829, 2012.
Batterman, S. A., Chernyak, S., Jia, C., Godwin, C., and Charles, S.: Concentrations and emissions of polybrominated diphenyl ethers from U.S. houses and garages, Environ. Sci. Technol., 43, 2693–2700, 2009.
Beniston, M.: Mountain Climates and Climatic Change: An overview of processes focusing on the European Alps, Pure Appl. Geophys., 162, 1587–1606, 2005.
Bezares-Cruz, J., Jafvert, C. T., and Hua, I.: Solar photodecomposition of decabromodiphenyl ether: products and quantum yield, Environ. Sci. Technol., 38, 4149–4156, 2004.
Birgul, A., Katsoyiannis, A., Gioia, R., Crosse, J., Eanshaw, M., Ratola, N., Jones, K. C., and Sweetman, A. J.: Atmospheric polybrominated diphenyl ethers (PBDEs) in the United Kingdom, Environ. Pollut., 169, 105–111, 2012.
Breivik, K., Wania, F., Muir, D. C. G., Alaee, M., Backus, S., and Pacepavicius, G.: Empirical and modeling evidence of the long-range atmospheric transport of decabromodiphenyl ether, Environ. Sci. Technol., 40, 4612–4618, 2006.
Carrera, G., Fernández, P., Vilanova, R., and Grimalt, J. O.: Analysis of trace polycyclic aromatic hydrocarbons and organochlorine compounds in atmospheric residues by solid-phase disk extraction, J. Chromatogr. A, 823, 189–196, 1998.
Carrera, G., Fernández, P., Grimalt, J. O., Ventura, M., Camarero, L., Catalán, J., Nickus, U., Thies, H., and Psenner, R.: Atmospheric deposition of organochlorine compounds to remote high mountain lakes of Europe, Environ. Sci. Technol., 36, 2587–2588, 2002.
Carrizo, D., Grimalt, J. O., Ribas-Fito, N., Sunyer, J., and Torrent, M.: Influence of breastfeeding in the accumulation of polybromodiphenyl ethers during the first years of child growth. Environ. Sci. Technol., 41, 4907–4912, 2007.
Cetin, B. and Odabasi, M.: Particle-phase dry deposition and air-soil gas-exchange of polybrominated diphenyl ethers (PBDEs) in Izmir, Turkey, Environ. Sci. Technol., 41, 4986–4992, 2007.
Darnerud, P. O.: Brominated flame retardants as possible endocrine disrupters, Int. J. Androl., 31, 152–160, 2008.
de Wit, C. A.: An overview of brominated flame retardants in the environment, Chemosphere, 46, 583–624, 2002.
de Wit, C. A., Herzke, D., and Vorkamp, K.: Brominated flame retardants in the Arctic environment-trends and new candidates, Sci. Total Environ., 408, 2885–2918, 2010.
Dickhut, R. M., Cincinelli, A., Cochran, M., and Kylin, H.: Aerosol-mediated transport and deposition of brominated diphenyl ethers to Antarctica. Environ. Sci. Technol., 46, 3135–3140, 2012.
Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition, Australian Meteorol. Mag., 47, 295–308, 1998.
Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA Air Resources Laboratory, Silver Spring, MD, available at: http://ready.arl.noaa.gov/HYSPLIT.php (last access: June 2013), 2013.
EPA DecaBDE phase-out initiative, http://www.epa.gov/oppt/existingchemicals/pubs/actionplans/deccadbe.html (last access: March 2013), 2009.
Escudero, M., Castillo, S., Querol, X., Avila, A., Alarcón, M., Viana, M., Alastuey, A., Cuevas, E., and Rodríguez, S.: Wet and dry African dust episodes over eastern Spain, J. Geophys. Res., 110, D18S08, https://doi.org/10.1016/j.atmosres.2010.12.002, 2005.
Fernández, P. and Grimalt, J. O.: On the global distribution of persistent organic pollutants, Chimia, 57, 514–521, 2003.
Fernández, P., Vilanova, R. M., Martínez, C., Appleby, P., and Grimalt, J. O.: The historical record of atmospheric pyrolitic pollution over Europe registered in the sedimentary PAH from remote mountain lakes, Environ. Sci. Technol., 34, 1906–1913, 2000.
Fernández, P., Carrera, G., Grimalt, J. O., Ventura, M., Camarero, L., Catalán, J., Nickus, U., Thies, H., and Psenner, R.: Factors governing the atmospheric deposition of polycyclic aromatic hydrocarbons to remote areas, Environ. Sci. Technol., 37, 3261–3267, 2003.
Gallego, E., Grimalt, J. O., Bartrons, M., Lopez, J. F., Camarero, L., Catalan, J., Stuchlik, E., and Battarbee, R.: Altitudinal gradients of PBDEs and PCBs in fish from European high mountain lakes, Environ. Sci. Technol., 41, 2196–2202, 2007.
Gambaro, A., Radaelli, M., Piazza, R., Stortini, A. M., Contini, D., Belosi, F., Zangrando, R., and Cescon, P.: Organic micropollutants in wet and dry depositions in the Venice Lagoon, Chemosphere, 76, 1017–1022, 2009.
Gascon, M., Fort, M., Martinez, D., Carsin, A.-E., Forns, J., Grimalt, J. O., Santa Marina, L., Lertxundi, N., Sunyer, J., and Vrijheid, M.: Polybrominated diphenyl ethers (PBDEs) in breast milk and neuropsychological development in infants, Environ. Health Perspect., 120, 1760–1765, 2012.
Gouin, T. and Harner, T.: Modelling the environmental fate of the polybrominated diphenyl ethers, Environ. Int., 29, 717–724, 2003.
Gouin, T., Harner, T., Daly, G. L., Wania, F., Mackay, D., and Jones, K. C.: Variability of concentrations of polybrominated diphenyl ethers and polychlorinated biphenyls in air: implications for monitoring, modeling and control, Atmos. Environ., 39, 151–166, 2005.
Gouin, T., Thomas, G. O., Chaemfa, C., Harner, T., Mackay, D., and Jones, K. C.: Concentrations of decabromodiphenyl ether in air from Southern Ontario: Implications for particle-bound transport, Chemosphere, 64, 256–261, 2006.
Grimalt, J. O., Fernandez, P., Berdié, L., Vilanova, R. M., Catalan, J., Psenner, R., Hofer, R., Appleby, P. G., Rosseland, B. O., Lien, L., Massabuau J. C., and Battarbee, R. W.: Selective trapping of organochlorine compounds in mountain lakes of temperate areas, Environ. Sci. Technol., 35, 2690–2697, 2001.
Halse, A. K., Schlabach, M., Eckhardt, S., Sweetman, A., Jones, K. C., and Breivik, K.: Spatial variability of POPs in European background air, Atmos. Chem. Phys., 11, 1549–1564, https://doi.org/10.5194/acp-11-1549-2011, 2011.
Harley, K. G., Marks, A. R., Chevrier, J., Bradman, A., Sjödin, A., and Eskenazi, B.: PBDE concentrations in women's serum and fecundability, Environ. Health Persp., 118, 699–704, 2010.
Harrad, S. and Hunter, S.: Concentrations of polybrominated diphenyl ethers in air and soil on a rural-urban transect across a major UK conurbation, Environ. Sci. Technol., 40, 4548–4553, 2006.
Hayakawa, K., Takatsuki, H., Watanabe, I., and Sakai, S. I.: Polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/ dibenzofurans (PBDD/Fs) and monobromo-polychlorinated dibenzo-p-dioxins/ dibenzofurans (MoBPXDD/Fs) in the atmosphere and bulk deposition in Kyoto, Japan, Chemosphere, 57, 343–356, 2004.
Hites, R. A.: Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ. Sci. Technol., 38, 945–956, 2004.
Ikonomou, M. G., Rayner, S., and Addison, R. F.: Exponential increases of the brominated flame retardants, polybrominated diphenyl ethers, in the Canadian Arctic from 1981 to 2000, Environ. Sci. Technol., 36, 1886–1892, 2002.
Kirchgeorg, T., Dreyer, A., Gabrieli, J., Kehrwald, N., Sigl, M., Schwikowski, M., Boutron, C., Gambaro, A., Barbante, C., and Ebinghaus, R.: Temporal variations of perfluoroalkyl substances and polybrominated diphenyl ethers in alpine snow, Environ. Pollut., 178, 367–374, 2013.
Koenig, S., Huertas, D., and Fernández, P.: Legacy and emergent persistent organic pollutants (POPs) in NW Mediterranean deep-sea organisms, Sci. Total Environ., 443, 358–366, 2013.
Lagalante, A. F., Shedden, C. S., and Greenbaker, P. W.: Levels of polybrominated diphenyl ethers (PBDEs) in dust from personal automobiles in conjunction with studies on the photochemical degradation of decabromodiphenyl ether (BDE209), Environ. Int., 37, 899–906, 2011.
La Guardia, M. J., Hale, R. C., and Harvey, E.: Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures, Environ. Sci. Technol., 40, 6247–6254, 2006.
Law, R. J., Covaci, A., Harrad, S., Herzke, D., Abdallah, M. A. E., Fernie, K., Toms, L.-M. L., and Takigami, H.: Levels and trends of PBDEs and HBCDs in the global environment: Status at the end of 2012, Environ. Int. 65, 147–158, 2014.
Lee, R. G. M., Thomas, G. O., and Jones, K. C.: PBDEs in the atmosphere of three locations in western Europe, Environ. Sci. Technol., 38, 699–706, 2004.
Legler, J.: New insights into the endocrine disrupting effects of brominated flame retardants, Chemosphere, 73, 216–222, 2008.
Li, J., Liu, X., Zhang, G., and Li, X.-D.: Particle deposition fluxes of BDE-209, PAHs, DDTs and chlordane in the Pearl River Delta, South China, Sci. Total Environ., 408, 3664–3670, 2010.
Ma, Y., Salamova, A., Venier, M., and Hites, R. A.: Has the phase-out of PBDEs affected their atmospheric levels? Trends of PBDEs and their replacements in the Great Lakes atmosphere, Environ. Sci. Technol., 47, 11457–11464, 2013.
Mariani, G., Canuti, E., Castro-Jiménez, J., Christoph, E. H., Eisenreich, S. J., Hanke, G., Skejo, H., and Umlauf, G.: Atmospheric input of POPs into Lake Maggiore (Northern Italy): PBDE concentrations and profile in air, precipitation, settling material and sediments, Chemosphere, 73, S114–S121, 2008.
Meyer, T., Muir, D. C. G., Teixeira, C., Wang, X., Young, T., and Wania, F.: Deposition of brominated flame retardants to the Devon Ice Cap, Nunavut, Canada, Environ. Sci. Technol., 46, 826–833, 2012.
Moon, H., Kannan, K., Lee, S., and Choi, M.: Atmospheric deposition of polybrominated diphenyl ethers (PBDEs) in coastal areas in Korea, Chemosphere, 66, 585–593, 2007.
Moser, V. C. and Gee, J. R.: Overview and evaluation of neurobehavioral effects of flame retardants in laboratory animals, Neurotoxicol. Teratol., 29, p. 412, 2007.
Newton, S., Bidleman, T., Bergknut, M., Racine, J., Laudon, H., Giesler, R., and Wiberg, K.: Atmospheric deposition of persistent organic pollutants and chemicals of emerging concern at two sites in northern Sweden, Environ. Sci.: Processes Impacts, 16, 298–305, 2014.
Noël, M., Dangerfield, N., Hourston, R. A. S., Belzer, W., Shaw, P., Yunker, M. B., and Ross, P. S.: Do trans-Pacific air masses deliver PBDEs to coastal British Columbia, Canada?, Environ. Pollut., 157, 3404–3412, 2009.
Ostrozlik, M.: Seasonal variability of air circulation in the High Tatras region. In Bioclimatology and Natural Hazards, edited by: Strelcová, K., Skvarenina, J., and Blazenec, M., International Scientific Conference: Polana nad Detvon, Slovakia, 6 pp., 2007.
Pey, J., Querol, X., Alastuey, A., Forastiere, F., and Stafoggia, M.: African dust outbreaks over the Mediterranean Basin during 2001–2011: PM10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology, Atmos. Chem. Phys., 13, 1395–1410, https://doi.org/10.5194/acp-13-1395-2013, 2013.
Prevedouros, K., Jones, K. C., and Sweetman, A. J.: Estimation of the production, consumption, and atmospheric emissions of pentabrominated diphenyl ether in Europe between 1970 and 2000, Environ. Sci. Technol., 38, 3224–3231, 2004a.
Prevedouros, K., Jones, K. C., and Sweetman, A. J.: European-scale modeling of concentrations and distribution of polybrominated diphenyl ethers in the pentabromodiphenyl ether product, Environ. Sci. Technol., 38, 5993–6001, 2004b.
Quiroz, R., Arellano, L., Grimalt, J. O., and Fernández, P.: Analysis of polybrominated diphenyl ethers in atmospheric deposition and snow samples by solid-phase disk extraction, J. Chromatogr. A, 1192, 147–151, 2008.
Raff, J. D. and Hites, R. A.: Deposition versus photochemical removal of PBDEs from Lake Superior air, Environ. Sci. Technol., 41, 6725–6731, 2007.
Renner, R.: Increasing levels of flame retardants found in North American environment, Environ. Sci. Technol., 34, 452A–453A, 2000.
Roberts, S. C., Noyes, P. D., Gallagher, E. P., and Stapleton, H. M.: Species-specific differences and structure-activity relationships in the debromination of PBDE congeners in three fish species, Environ. Sci. Technol., 45, 1999–2005, 2011.
Robinson, B. H. E.: Waste: an assessment of global production and environmental impacts, Sci. Total Environ., 408, 183–191, 2009.
Rolph, G. D.: Real-time Environmental Applications and Display sYstem (READY), NOAA Air Resources Laboratory, Silver Spring, MD, available at: http://ready.arl.noaa.gov (last access: June 2013), 2013.
Schenker, U., Soltermann, F., Scheringer, M., and Hungerbühler, K.: Modeling the environmental fate of polybrominated diphenyl ethers (PBDEs): The importance of photolysis for the formation of lighter PBDEs, Environ. Sci. Technol., 42, 9244–9249, 2008.
Schuster, J. K., Gioia, R., Breivik, K., Steinnes, E., Scheringer, M., and Jones, K. C.: Trends in European background air reflect reductions in primary emissions of PCBs and PBDEs, Environ. Sci. Technol., 44, 6760–6766, 2010.
Schuster, J. K., Gioia, R., Moeckel, C., Agarwal, T., Bucheli, T. D., Breivik, K., Steinnes, E., and Jones, K. C.: Has the burden and distribution of PCBs and PBDEs changed in European background soils between 1998 and 2008? Implications for sources and processes, Environ. Sci. Technol., 45, 7291–7297, 2011.
Simó, R., Grimalt, J. O., and Albaigés, J.: Loss of unburned-fuel hydrocarbons from combustion aerosols during atmospheric transport, Environ. Sci. Technol., 31, 2697–2700, 1997.
Sjödin, A., Jakobsson, E., Kierkegaard, A., Marsh, G., and Sellstrom, U.: Gas chromatography identification and quantification of polybrominated diphenyls ethers in a commercial product, Bromkal 70-5DE, J. Chromatogr A, 822, 83–89, 1998.
Sjödin, A., Patterson, D. G., and Bergman, A.: A review on human exposure to brominated flame retardants-particularly polybrominated diphenyl ethers, Environ. Int., 29, 829–839, 2003.
Söderström, G., Sellström, U., de Wit, C. A., and Tyskling, M.: Photolityc debromination of decabromodiphenyl ether (BDE 209), Environ. Sci. Technol., 38, 127–132, 2004.
Stapleton, H. M., Alaee, M., Letcher, R. J., and Baker, J. E.: Debromination of the flame retardant decabromodiphenyl ether by juvenile carp (Cyprinus carpio) following dietary exposure, Environ. Sci. Technol., 38, 112–119, 2004.
Stockholm Convention on Persistent Organic Pollutants (POPs), Programmes, New POPs, https://chm.pops.int/Programmes/NewPOPs/The9newPOPs/tabid/672/language/en-US/default.aspx (last access: March 2013), 2010.
Su, Y., Wania, F., Harner, T., and Lei, Y. D.: Deposition of polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons to a boreal deciduous forest, Environ. Sci. Technol., 41, 534–540, 2007.
Sun, P., Backus, S., Blanchard, P., and Hites, R. A.: Temporal and spatial trends of organochlorine pesticides in Great Lakes precipitation, Environ. Sci. Technol., 40, 2135–2141, 2006.
Ter Schure, A. F. H. and Larsson, P.: Polybrominated diphenyl ethers in precipitation in southern Sweden (Skåne, Lund), Atmos. Environ., 36, 4015–4022, 2002.
Ter Schure, A. F. H., Agrell, C., Bokenstrand, A., Sveder, J., Larsson, P., and Zegers, B. N.: Polybrominated diphenyl ethers at a solid waste incineration plant II: Atmospheric deposition, Atmos. Environ., 38, 5149–5155, 2004a.
Ter Schure, A. F. H., Larsson, P., Agrell, C., and Boon, J. P.: Atmospheric transport of polybrominated diphenyls ethers and polychlorinated biphenyls to the Baltic Sea, Environ. Sci. Technol., 38, 1282–1287, 2004b.
Tian, M., Chen, S.-J., Wang, J., Shi, T., Luo, X.-J., and Mai, B.-X.: Atmospheric deposition of halogenated flame retardants at urban, e-waste, and rural locations in southern China, Environ. Sci. Technol., 45, 4696–4701, 2011.
Tomy, G. T., Pleskach, K., Ferguson, S. H., Hare, J., Stern, G., MacInnis, G., Marvin, C. H., and Loseto, L.: Trophodynamics of some PFCs and BFRs in a western Canadian Arctic marine food web, Environ. Sci. Technol., 43, 4076–4081, 2009.
Usenko, S., Landers, D. H., Appleby, P. G., and Simonich, S. L.: Current and historical deposition of PBDEs, pesticides, PCBs, and PAHs to Rocky Mountain national park, Environ. Sci. Technol., 41, 7235–7241, 2007.
Usenko, S., Simonich, S. L. M., Hageman, K. J., Schrlau, J. E., Geiser, L., Campbell, D. H., Appleby, P. G., and Landers, D. H.: Sources and deposition of polycyclic aromatic hydrocarbons to western U.S. national parks, Environ. Sci. Technol., 44, 4512–4518, 2010.
van Drooge, B. L., Grimalt, J. O., Camarero, L., Catalan, J., Stuchlik, E., and Torres Garcia, C. J.: Atmospheric semivolatile organochlorine compounds in European high-mountain areas (central Pyrenees and high Tatras), Environ. Sci. Technol., 38, 3525–3532, 2004.
Venier, M. and Hites, R. A.: Atmospheric deposition of PBDEs to the Great Lakes featuring a Monte Carlo analysis of errors, Environ. Sci. Technol., 42, 9058–9064, 2008.
Vestreng, V., Rigler, E., Adams, M., Kindbom, K., Pacyna, J. M., van der Gon, H. D., Reis, S., and Travnikov, O.: Inventory review 2006, Emission data reported to the LRTAP Convention and NEC Directive. Stage 1, 2, and 3 review and evaluation of inventories of HM and POPs, available at: http://www.emep.int (last access: July 2013), 2006.
Vives, I., Grimalt, J. O., Lacorte, S., Guillamon, M., Barcelo, D., and Rosseland, B. O.: Polybromodiphenyl ether flame retardants in fish from lakes in European high mountains and Greenland, Environ. Sci. Technol., 38, 2338–2344, 2004.
Vizcaino, E., Arellano, L., Fernández, P., and Grimalt, J. O.: Analysis of whole congener mixtures of polybromodiphenyl ethers by gas chromatography-mass spectrometry in both environmental and biological samples at femtogram levels, J. Chromatogr. A, 1216, 5045–5051, 2009.
Vizcaino, E., Grimalt, J. O., Lopez-Espinosa, M. J., Llop, S., Rebagliato, M., and Ballester, F.: Polybromodiphenyl ethers in mothers and their newborns from a non-occupationally exposed population (Valencia, Spain), Environ. Int., 37, 152–157, 2011.
Wan, Y., Zhang, K., Dong, Z., and Hu, J.: Distribution is a major factor affecting bioaccumulation of decabrominated diphenyl ether: Chinese sturgeon (acipenser sinensis) as an example, Environ. Sci. Technol., 47, 2279–2286, 2013.
Wang, X.-M., Ding, X., Mai, B.-X., Xie, Z.-Q., Xiang, C.-H., Sun, L.-G., Sheng, G.-Y., Fu, J.-M., and Zeng, E. Y.: Polybrominated diphenyl ethers in airborne particulates collected during a research expedition from the Bohai Sea to the Arctic, Environ. Sci. Technol., 39, 7803–7809, 2005.
Wania, F. and Dugani, C. B.: Assessing the long-range transport potential of polybrominated diphenyl ethers: a comparison of four multimedia models, Environ. Toxicol. Chem., 22, 1252–1261, 2003.
Xia, K., Luo, M. B., Lusk, C., Armbrust, K., Skinner, L., and Sloan, R.: Polybrominated diphenyl ethers (PBDEs) in biota representing different trophic levels of the Hudson River, New York: From 1999 to 2005, Environ. Sci. Technol., 42, 4331–4337, 2008.
Xiao, H., Shen, L., Su, Y., Barresi, E., DeJong, M., Hung, H., Lei, Y.-D., Wania, F., Reiner, E. J., Sverko, E., and Kang, S.-C.: Atmospheric concentrations of halogenated flame retardants at two remote locations: The Canadian High Arctic and the Tibetan Plateau, Environ. Pollut., 161, 154–161, 2012.
Zhu, L., Ma, B., and Hites, R. A.: Brominated flame retardants in serum from the general population in northern China, Environ. Sci. Technol., 43, 6963–6968, 2009.
Altmetrics
Final-revised paper
Preprint